TELIOS: A Tool for the Automatic Generation
of Logic Programming Machines

Alexandros C. Dimopoulos and Christos Pavlatos and Geaagak®nstantinou

Abstract In this paper the tool TELIOS is presented, for the autongdiceration
of a hardware machine, corresponding to a given logic pragiehe machine is
implemented using an FPGA, where a corresponding infersrazhine, in appli-
cation specific hardware, is created on the FPGA, based onFaBisser, to carry
out the inference mechanism. The unification mechanismsgedan actions em-
bedded between the non-terminal symbols and implemented sigecial modules
on the FPGA.

1 Introduction

Knowledge engineering approaches have extensively beghmsnany application
domains such as medicine, scheduling and planning, couitdicial intelligence
[12] etc. The low power requirements, small dimensions,raadttime limitations,
which are usually specified in such applications, imposentes of designing spe-
cialized embedded systems for their implementation [1Bgr&fore, the possibility
of exploiting knowledge engineering approaches in embedygstems, is of crucial
importance.

The first machine introduced for the implementation of logiograms (PRO-
LOG) was the Warren Abstract Machine (WAM) [2]. Th® Generation computing
era was targeted towards this direction [1]. The cost foirtidementation of such
systems, along with their size, prevented their use in ssalle applications in
embedded system environments [13].

The effort of designing hardware capable of supporting #atative program-
ming model, for logic derivations, can now lead to inteligg@mbedded designs

Alexandros C. DimopoulosChristos PavlatosGeorge Papakonstantinou

National Technical University of Athens, School of Elecadiand Computer Engineering,
Iroon Polytechneiou, Zografou 15773, Athens, Greece,

e-mail: {alexdem,pavlatos,papakp@cslab.ece.ntua.gr

524 Alexandros C. Dimopoulos and Christos Pavlatos andged@apakonstantinou

Input string
|

Logic Transformation Action l Parser l Barse) l FIERUER
Program Grammar | | Table | Constructor
Parse¢Tree
Final [| [Action |Action [Action
Result id
FPGA

Fig. 1 Overview of our approach

which are considerably more efficient compared to the fi@thl ones. Some ef-
forts have been done in the past, towards this directior{14], [6] . In [4] a hard-
ware parser was presented based on the CYK parsing algofithfhl] another
hardware parser was presented based on the Earley’s palgtieithm [7]. Both
parsers have been implemented using FPGAs. In [6] a sinplaroach to the one
proposed here was presented. Nevertheless, the unificagohanism was imple-
mented using softcore general purpose on chip processasetreducing drasti-
cally the speed up obtained by using the hardware parser.

In this paper the tool TELIOS (Tool for the automatic gEnierabf Loglc prO-
gramming machineS) is presented. The user describes lisdaggram in a subset
of PROLOG and the systems generates the necessary code déabdded to an
FPGA (Field Programmable Gate Array). This FPGA is the maelfior this spe-
cific logic program. The proposed implementation follows éinchitecture shown in
Fig. 1. The given logic program can be transformed to an edgind grammar, which
feeds the proposed architecture, in order the differenfmarants to be constructed.
The contribution of this paper is:

1. The modification of the hardware parser of [11], in ordebéoused for logic
programming applications. It is noted that the parser of j$lwo orders of
magnitude faster than the one used in [6].

2. The (automatic) mapping of the unification mechanismctmas, easily imple-
mentable in FPGAs. To the best of the authors knowledgeighise first effort
to implement logic programs on FPGAS, without the use of daresl real pro-
cessor or a softcore one on the same chip.

2 Theoretical Background

Attribute Grammars (AG) [8] have been extensively used égid programming
applications [10], [5], [9]. The basic concepts for trangfing a logic program to
an equivalent AG are the following: Every inference rulehia initial logic program
can be transformed to an equivalent syntax rule consistigysof non-terminal
symbols. Obviously, parsing is degenerate since thereaterminal symbols. For
every variable existing in the initial predicates, two iatites are attached to the
corresponding node of the syntax tree, one synthesized a@dnberited. Those
attributes assist in the unification process of the infeegamine. For more details

TELIOS: A Tool for the Automatic Generation of Logic Progranimg Machines 525

the useris referred to [10], [9]. The computing power reggifior the transformation
of logic programs to AGs is the one of L-attributed AGs [8]tlhese grammars the
attributes can be evaluated traversing the parse tree &firtolright in one pass.

In this paper it is shown that L-attributed AGs are equivaterfaction” gram-
mars, which are introduced in this paper, due to their eapjementation in hard-
ware. Hence, we can transform a logic program to an equiva#ion grammar.

The Action Grammars, are defined in this paper as BNF gramraagsnented
with “actions”. Actions are routines which are executedobefand after the recog-
nition of an input substring corresponding to a non-termimehe rule:< NT >::=
...[A] <NT >... <NT; > [Aj], the actions to be taken are the execution of the
routineA; before recognizing the non-termindil; and the execution of the routine
A after the recognition of the non-termindll;. The execution oA andA; takes
place after the generation of all possible parse trees.drcéise of Earley’s algo-
rithm this is done in parallel, so that at the end of the pargirocess all possible
parse trees are available.

As it was stated before, it will be shown here that action grears are equiva-
lent to L-attributed grammars. For this purpose, some mulest be applied: 1) For
each attribute (synthesized or inherited) a stack is defin@edng the same name
as the attribute. 2) At the end of each rule, unstacking ofyimthesized attributes,
of the descendant (children nodes) of the non-terminaletefi hand side of the
rule (parent node), is done. These synthesized attribu¢estdhe top of the stack.
The synthesized attribute of the parent node is calculatedrding to the corre-
sponding semantic rule and is pushed to the appropriatk atashown in Fig. 2a.
In this way, it is sure that at the top of the stack, the synfleelsattributes of the
children nodes of the parent (up to the corresponding chileplaced in sequence.
3) Regarding the inherited attributes: a) A push is doneatthrresponding stack
of the inherited attribute, the first time it is evaluatedogluced). A pop is done at
the time the inherited attribute is needed (consumed) asgin2b. b) If in a rule
an inherited attribute is used in more than one children teominals (as in Fig.
2b), then the same number of pushes of that attribute sh@uttbbe. c) If a value
transfer semantic rule (for the same attribute) is needeéderAG, then no action
is required for inherited and synthesized attributes (d5gn 2b). In Fig. 2,i is an
inherited attributes a synthesized; auxiliary (temporary) variables and the arrows
indicate attribute dependencies.

The rules described above, will be further clarified with aaraple which fol-
lows.

a) b)

_~8,=f(s},...,8,) = semantics _~ i,=value =i, i=f(i,...) =» semantics
<NT>1=. . <NT>..<NT>[A])) <NT,>:=[A]..[AINT>...[A]<NT>
sd_-/)sn =» attribute dependencies iw i; =» attribute dependencies

Al X, =pOpPS; X, =pPOPS;..; corresponding actions A,: push |lvalue ; push i value _ i
X, = pop s ; push s f(x,,....x,); A.: no action corresponding actions

Fig. 2 a) Synthesized attribute example b) Inherited attributergle

526 Alexandros C. Dimopoulos and Christos Pavlatos andged@apakonstantinou

3 An lllustrative Example

In order to clarify the aforementioned transformation, veendnstrate a toy-scale
example of a logic program which is transformed to its acjoeommar equivalent
one. Consider that we have the knowledge base (logic progtastrated in Ta-
ble 1 (First Column) and we want to ask the question “p is sssmeof whom?”
i.e. Successdp,?). The syntax rules, which form the equivalent action grammar
evaluator, are illustrated in Table 1 (Second Column) aleith the definition of
the actions. The equivalent action grammar does not coatgirierminal symbols,
therefore every fact P(x,y) is transformed to a syntactle nf the form P— d,
where d is a dummy symbol that is also used for the representat the empty
input string. The meta-variabflag arises from the transformation of the logic pro-
gram to the equivalent AG. Its value is used by the attribwauator to discard
useless subtrees, when it is equal to zero.

It is noted that we have four attributes, two for the two pazters of each pred-
icate, and two (one inherited and one synthesized) for eacdmpeter, denoted by
Pqr. Pyr stands for parameteyrof the predicatesy e {1,2} in our example) and €
{i,s} where i means inherited and s synthesized attribute. Heamoer example we
have the attributes;P P, P1s and Rs. For each attribute a stack is kept i.e. stack
stack, stacks and stacls, respectively.

The question asked has two solutions, which are “j” and “liife Torresponding
parse tree, decorated with the actions are illustratedgn3=iA tracing of the exe-
cution of the actions (4 A1, Az, A11, Ag, Ag, Ag, A7, As, Az and Ay, A1, Ag, Ar1,

Table 1 An AG equivalent representation of the knowledge basedeofghccessor problem”

Informal Definition of the Knowledge Basd|Equivalent Action Grammar

1. Goal(X)Y)+« Successor(X,Y) < Goal> =TA1] < successor [A,]$

2. Successor(X,Y3}- Parent(Z,X) and < successor = [A3] < parent> [A4]
Successor(Z,Y) < successor-[As]$

3. Successor(X,Y}- Parent(Y,X) < successor = [Ag] < parent>[A7]$

4. Parent(},b) < parent>:=d [Ag] $

5. Parent(),l) < parent>:=d[A] $

6. Parent (b,a) < parent>:=d[A10] $

7. Parent (b,p) < parent>:=d[A1] $

A1]— noaction

A,]— noaction

As] — tmp, = pop (stack);push(stack,tmpy);push (stack,nil)

A4] — tmpy, = pop (stacks);push(stack,tmp,);

As]— tmp;=pop(stacks); tmp,=pop(stacks);tmps=pop(stacks);push(stack,tmp;); push(stack,tmp,);

As] — tmpy = pop (stack); tmp, = pop (stack); push (stack, tmpy); push (stack, timp,);

A7] — tmp, = pop (stacks); tmp, = pop (stacks); push (stacks, tmpy); push (stack, tmp,);

Ag] — tmp = pop (stack); if ((tmp = nil) and (tmp '="7")) then flag =0 else push (steg, 7);
tmp = pop (stack); if ((tmp != nil) and (tmp !=“b")) then flag =0 else push (stas, “b") ;

[Ao] — tmp = pop (stack); if ((tmp = nil) and (tmp '="7")) then flag =0 else push (steg, T") ;
tmp = pop (stack); if (tmp != nil) and (tmp != “I")) then flag =0 else push (stag, “I") ;

[A10] — tmp = pop (stack); if ((tmp = nil) and (tmp = "b")) then flag =0 else push (slag, “b") ;
tmp = pop (stack); if ((tmp != nil) and (tmp != “a")) then flag =0 else push (slkag, “a”) ;

[A11] — tmp = pop (stack); if ((tmp = nil) and ({tmp = "b")) then flag =0 else push (slag, “b") ;
tmp = pop (stack); if ((tmp != nil) and (tmp != “p”)) then flag =0 else push (stas, “p”) ;

Goal (p,x) [[<Goal>=TAo]$

[Ao] — push (stack, p);push (stack, nil);

TELIOS: A Tool for the Automatic Generation of Logic Progranimg Machines 527

(Al <G>lAd] B > A

l

Al <s> [A]

l

Fig. 3 Parse trees for the
“successor” example leading g ; ‘ !
to solutions (Note that tree e “ood
traversal is top-bottom, left to Lod S
right) f—

Az, A, for the two parse trees) will leave at the top of the stackistathe values
“I”, “b” respectively. The predicate names have been ablted.

4 Implementation

Chiang & Fu [3] parallelized Early’s parsing algorithm [#jtroducing a new oper-

ator® and proposed a new architecture which requﬂfé%ﬂ processing elements
(PEs) for computing the parse table. A new combination @invas proposed in
[11] for the implementation of the operator. In this paper a modification of the
parsing algorithm of [11] has been done in order to computeeiements of the
parse table PT by the use of omiyprocessing elements that each one handled the
cells belonging to the same column of the PT.

It is obvious that since parsing is top-down, when recursiccurs and no input
string is used (the empty string is the input string), we mayehinfinite creation
of dotted recursion rule in the boxes. Hence, we have to firexhe maximum re-
cursion depth as well as the maximum number of the input chens(d characters)
in the input string, as installation parameters. The urificeamechanism has been
implemented through actions. The parse trees are constirfretm the information
provided by the parser. Actions are identified in the Actideritification module
and executed in the Action Execution module (Fig. 1).

The system TELIOS has been implemented in synthesizabieyeén the XIL-
INX ISE 8.2 environment while the generated source has been simulatecl
idation, synthesized and tested on a Xilinx SPARTAN 3E FPGéthermore, it
has been tested with hardware examples we could find in thiedpiaphy and in all
cases our system runs faster. In the case of the well-dodech&Wwumpus World
Game” and of finding paths in a directed acyclic graph [6], system was two
orders of magnitude faster than the one of [6] required.

1 Xilinx Official WebSite, http://www.xilinx.com

528 Alexandros C. Dimopoulos and Christos Pavlatos andged@apakonstantinou

5 Conclusion and Future Work

The system is very useful in cases where rapid developmesthafl scale intelli-
gent embedded hardware has to be used in special purposeatippk, locally in
dangerous areas, in robotics, in intelligent networks ofees e.t.c.. The system in
its present form accepts a subset of PROLOG e.g. only vasadid constants as
parameters of the predicates. Nevertheless, since we hawaghe equivalence of
L-attributed grammars with action grammars and L-atteldujrammars can cover
many other characteristics of PROLOG [9] (e.qg. functots)s straightforward to
extend our system. Future work aims at: 1) Combining the resdof parsing and
action execution in one module so that parsing will be coteplesemantically
driven. This will solve the recursion problem in a more effitiway. 2) Extending
the power of the grammar from L-attributed to many passes.@)eApplying the
tool in medical applications. 4) Extending the PROLOG stiised in this paper.

Acknowledgements This work has been funded by the project PENED 2003. Thiseptdp
part of the OPERATIONAL PROGRAMME "COMPETITIVENESS” and o-funded by the
European Social Fund (80%) and National Resources (20%).

References

. Communications of the ACN26(9), 1983.

. Hassan Ait-KaciWarren’s abstract machine : a tutorial reconstructiollIT Press, 1991.

. Y T Chiang and King-Sun Fu. Parallel parsing algorithmd ®h.S| implementations for

syntactic pattern recognitiohEEE Trans. on PAMI6:302-314, 1984,

4. C. Ciressan, E. Sanchez, M. Rajman, and J.C. Chappelieipga-based coprocessor for the
parsing of context-free grammars.FE€CM '00: Proceedings of the 2000 IEEE Symposium on
Field-Programmable Custom Computing Machinesge 236, Washington, DC, USA, 2000.

5. Pierre Deransart, Bernard Lorho, and Jan Maluszynskipored Proceedings of the 1st In-
ternational Workshop on Programming Language Impleméaand Logic Programming,
PLILP’88, Orléans, France, May 16-18, 1988pringer, 1989.

6. A.Dimopoulos, C. Pavlatos, |. Panagopoulos, and G. Raysa#tintinou. An efficient hardware
implementation for Al applicationsLecture Notes in Computer Scien@&955:35-45, April
2006.

7. Jay Earley. An efficient context-free parsing algoritt@emmun. ACM13(2):94-102, 1970.

8. Jukka Paakki. Attribute grammar paradigms a high-levethodology in language imple-
mentation. ACM Comput. Sury27(2):196-255, 1995.

9. T.Panayiotopoulos, G. Papakonstantinou, and G. Stpmaliws. Ai-debot papeAngewandte
Informatik 88(5), 1988.

10. G Papakonstantinou, C Moraitis, and T Panayiotopodasattribute grammar interpreter as
a knowledge engineering tooAngew. Inf, 28(9):382-388, 1986.

11. C. Pavlatos, A. C. Dimopoulos, A. Koulouris, T. Andramsk I. Panagopoulos, and G. Pa-
pakonstantinou. Efficient reconfigurable embedded par€emiputer Languages, Systems &
Structures 35(2):196 — 215, 2009.

12. Stuart Russell and Peter Norvigrtificial Intelligence: A Modern ApproachPrentice-Hall,
Englewood Cliffs, NJ, 2nd edition edition, 2003.

13. Frank Vahid and Tony GivargisEmbedded System Design: A Unified Hardware/Software

Introduction WILEY, 2002.

WN -

