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Abstract The monitoring of human physiological data, in botbrmal and ab-
normal situations of activity, is interesting ftietpurpose of emergency event de-
tection, especially in the case of elderly peopld on their own. Several tech-
nigues have been proposed for identifying suchrafist situations using either
motion, audio or video data from the monitored sabpnd the surrounding envi-
ronment. This paper aims to present an integratdigmni fall detection platform
that may be used for patient activity recognitiowd &@mergency treatment. Both
visual data captured from the user’s environmeudt motion data collected from
the subject’'s body are utilized. Visual informati@® acquired using overhead
cameras, while motion data is collected from onybsensors. Appropriate track-
ing techniques are applied to the aforementionediali perceptual component
enabling the trajectory tracking of the subjectscéleration data from the sensors
can indicate a fall incident. Trajectory informatiand subject’s visual location
can verify fall and indicate an emergency evenpdut Vector Machines (SVM)
classification methodology has been evaluated uflieglatter acceleration and
visual trajectory data. The performance of thesifees has been assessed in terms
of accuracy and efficiency and results are presente

1 Introduction

The telemonitoring of human physiological data,bisth normal and abnormal
situations of activity, is interesting for the page of emergency event detection
or long term data-storage for later diagnosis oittie purpose of medical explora-
tion. In the case of elderly people living on theivn, there is a particular need for
monitoring their behavior. The goal of this surlaite is the detection of major
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incidents such as a fall, or a long period of indistin a part of their area. Several
techniques have been proposed for identifying slistiness situations using either
motion, audio or video data from the monitored subpnd the surrounding envi-
ronment. This paper presents a human body falctieteplatform based both mo-
tion and visual perceptual components. A numbesrsbody sensors collect the
movement data and transmit them wirelessly to tbeitaring unit, while over-
head cameras track the trajectory and shape didtg and provide information
regarding the patient’s position and activity. Appriate classification of the mo-
tion data can give an indication of a fall. Comhapthe latter with unusual change
of body’ shape followed by inactivity, an alarm da@ triggered and more infor-
mation regarding the severity of the incident cenobtained; in case patient re-
mains still after the fall or moves but the body&tected on the ground then the
patient requires immediate assistance.

The rest of the paper is organized as follows;iB8e@ discusses related work
in the context of patient activity and fall detecti Section 3 describes the pro-
posed system architecture and Sections 4 and 5ilgeslee acquisition of the pa-
tient movement and visual data using sensors aathead cameras respectively.
Section 6 presents the data classification usimgp&itt Vector Machines and cor-
responding evaluation results and finally Sectiaoicludes the paper.

2 Reated Work

Although the concept of patient activity recognitiwith focus on fall detection is
relatively new, there exists related research waihich may be retrieved from
the literature ([1]-[9]). Information regarding tipatient movement and activity is
frequently acquired through visual tracking of thetient’s position. In [5] over-
head tracking through cameras provides the movernajetctory of the patient
and gives information about user activity on predained monitored areas. Un-
usual inactivity (e.g., continuous tracking of tregtient on the floor) is interpreted
as a fall. Similarly, in 8 omni-camera images asedito determine the horizontal
placement of the patient’s silhouettes on the fl@ase of fall). Success rate for
fall detection is declared at 81% for the latterkvd? different approach for col-
lecting patient activity information is the usesgisors that integrate devices like
accelerometers, gyroscopes and contact sensorslaftbe approach is less de-
pended on the patient and environmental informadiwh can be used for a variety
of applications for user activity recognition ([13], [7]). Regarding fall detection,
authors in [2], [6], [9] use accelerometers, gyopss and tilt sensors for move-
ment tracking. Collected data from the acceleromsdfies., usually rotation angle
or acceleration in the X, Y and Z axis) is used/¢oify the placement of the pa-
tient and time occupation in rooms and detect abmgvement that could be as-
sociated with fall. Detection is performed usinggefined thresholds [1], [3], [4],
[6] and association between current position, mamnand acceleration [2], [9].
To our best knowledge there is no work in the ditere that combines both visual
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and sensor information for a more complete and sbbatimation of a patient’s
fall and can provide some information regarding sheerity of the incident (e.g.
patient has gotten up right after the fall, patisrihactive, etc.).

3 System Architecture Overview

The presented system follows the architecturetititisd in Fig. 1. Accelerometers
data are collected through the sensor attachetieonder’s chest and belt and are
transmitted wirelessly to the monitoring node. Braission of data is performed
through J2ME sockets following the client-servechaiecture. The monitoring
unit acting as movement data receiver serves asdher whereas each node is
the client.

At the same time, camera devices record video fsdinean the user’s site and
provide feed to the video tracker. The latter teattlie movement of the patient’s
body and generates body shape features (i.e. caedi of a bounding box con-
taining the subject’'s body). The data are propedgsformed in a suitable format
for the classifier and the classification phaseitmeBased on a predefined classi-
fication model (i.e. train model), the patient stais detected (i.e. emergency
status when fall detected, normal status otherwise)

Apart from the indication of a fall incident, antiegation of the severity of the
incident can be provided based on the patient'swtieh after the fall as recorded
visually; movement indicated by accelerometersviual inactivity or soft activ-
ity suggests that patient has not lost consciossaed is trying to recover from
the fall, both sensor and normal visual activity @adicate that patient has recov-
ered from fall, and no activity at all can indic&igher severity of the incident.
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Fig. 1. Platform Architecture and Data interactlmetween the movement capturing tools and

monitoring node.
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4  Patient Movement Data Acquisition

This section provides information on the acquisitamd pre-processing of the pa-
tient movement data. The Sentilla Perk [10] sek&dras been utilized in our sys-
tem. The latter contains two 2.4 GHz wireless di@asceivers (nodes, see Fig. 2)
using the IEEE 802.15.4 (ZigBee) protocol. It allsdudes a USB port for inter-
face with a personal computer acting as the mdngaunit. Each node has a low-
power, low-voltage MCU (MicroController Unit), or8 Accelerometer for X, Y
and Z axis and additional analog and digital inpius for adding more sensors.
The Perk nodes are provided in a plastic robustlsized enclosure (6x3x1.5cm)
making them more suitable for placing on patiebtisly and tolerating falls.

metencee
- -

@) (b)

Fig. 2. The Sentilla Perk node containing a 3D kxoeneter that can be attached on user and
send motion data through the ZigBee wireless podtothe plastic enclosure can protect the
node from falls and makes it more suitable foryiag it on patient’s body. A) Actual photo of
the node, b) illustration indicating two analogeligital converter ports for the addition of alter-
native sensors.

Two Perk nodes can be placed on patient’s bodyeRigle positions are close
to user’s chest and user’s belt or lower at usfrtd. The latter positions have
proven based on conducted experiments to be apat@por distinguishing rapid
acceleration on one of the three axis that is ggadrduring a fall.

Appropriate J2ME [17] code is developed and deplaye the nodes for read-
ing the accelerometer values and transmitting tiéralessly to the monitoring
unit. At the latter a Java application built usthg Sentilla IDE [10] receives the
movement data and performs further processing s&ritted in the following sec-
tions. An example of motion data as received byttlesensor nodes is illustrated
in Fig. 3. The X, Y and Z acceleration values frbath sensors are interlaced.

5 Video Tracking of Human Body

The goal of the developed body video tracker iprtavide across time the frame
regions occupied by human bodies. The tracker i¥ &round a dynamic fore-
ground segmentation algorithm [12] that utilizestive background modeling.
This is based on Stauffer's algorithm [13] to pdwsithe foreground pixels.
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Stauffer’s algorithm models the different colorgpvpixel can receive in a video
sequence by Gaussian Mixture Models (GMM). One Getvresponds to every
pixel at given coordinates across time. The Ganssdae three-dimensional, cor-
responding to the red, green and blue componertteegbixel color. Their weight
is proportional to the time a particular Gaussiatdais best the color of the pixel.
Hence the weight of a given Gaussian is increasddray as the color of the pixel
can be described by that Gaussian with higher fnibtyathan any other Gaussian
in the GMM can, and that probability is above a#iold. As a result, a map can
be built in which every pixel is represented by waght of the Gaussian from its
GMM that best describes its current color. Thisthie Pixel Persistence Map
(PPM): Regions of the map with large values comesito pixels that have colors
that appear there for a long time, hence they lgetorbackground. On the con-
trary, regions with small values correspond to [sitbat have colors that appear
there for a short time, hence they are foregrouiis is true as long as the fore-
ground objects have distinct colors from the backgd.
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Fig. 3. lllustration of interlaced from both sersarcceleration data in X, Y and Z axis. The Y
axis represents the acceleration value (range ketw2 and 2) and the X axis the number of
samples acquired.

The problem of Stauffer’s algorithm is with foregra objects that stop mov-
ing. In its original implementation, targets/obgethat stop moving are learnt into
the background. This happens as the weights dbthessians of the GMM of pix-
els describing the foreground colors and corresigntb immobile foreground
objects increase with time. To avoid this, the néay rates of the adaptation that
increase the weights of Gaussians are not constaither across space, nor
across time. Instead, they are spatiotemporallyrotbed by the states of Kalman
filters [11]. Every foreground area corresponds target being tracked by a Kal-
man filter. The foreground pixels are combined intaly evidence blobs, used for
the measurement update stage of the Kalman filidrs.states are used to obtain
the position, size and mobility of each target, kwter being a combination of
translation and size change. This information @ li@ck to the adaptive back-
ground modeling module to adapt the learning matthé vicinity of each target:
frame regions that at a specific time have a slowing target have smaller learn-
ing rates. The block diagram of the body trackeshiswn in Fig. 4.
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With the feedback configuration of the tracker, lgsrning of the slow moving
foreground objects into the background is slowedrddong enough for the in-
tended application, i.e. tracking people movingoimis and possibly falling down.
The tracker results when applied on the visual f®edn overhead camera are |il-
lustrated in Fig. 5.
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Fig. 4. Block diagram of the body video trackerlidan filters spatiotemporally adapt the learn-
ing rates of the adaptive background algorithmeaf¥ely avoiding learning of immobile fore-
ground objects into the background.

Fig. 5. Visualization of video tracking performandehe tracker detects the movement of the
body and correlates it with the movement of a mgtigar blob within the visual domain. Upper

left X, Y coordinates and respective width and heigf the blob are reported for each visual
frame. Frame A corresponds to normal walking, Fr&me captured movement during fall and

Frame C illustrates detection of body in horizop@sition after fall.

Tracking through overhead cameras has been seldoedo the fact that it
provides a better visual representation of the tooail area and allows the tracker
to gain a better estimation of the body shape whdiect moves, falls and lays
still after fall. The presented tracker creates taiadks a rectangular blob around
the detection of the moving body within the frana@sl reports the upper left cor-
ner coordinates and respective width and heigtheblog. As indicated in Fig. 5
the size of the blob changes during the fall anel aff.
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6 The System in Practice: Classification of Motion and Visual
Per ceptual Components

This Section provides information regarding thessification method used and
reports the accuracy of the system in the deteatfam patient fall. According to
our previous research [14], [15] the SVM (Suppoecior Machines) classifica-
tion method has been proved to obtain high accuiratlye detection of fall inci-
dents based on movement data. More particularlyracy rates for the distinction
of fall against other movement types can reach%8.[2 previous experiments
the train model has been built using only accelematlata whereas in the pro-
posed system the train model contains also vistiatrnation as described in Sec-
tion 5. The WEKA tool [16] has also been used fa tlevelopment and evalua-
tion the SVM model. Classification data are prodidte the following form:

Fall_ID X Y Z BBx BBy BBwignh BBheght

where X, Y and Z are the acceleration data aseretd from the sensors, BBx and
BBy are the upper left coordinates of the bounding that tracks patient’s body
and BBwidth and BBheight the width and height o thounding box respec-
tively. Fall_ID represents the case of fall incitiérue or false).

To evaluate the efficiency and accuracy of thequresd platform in the context
of detecting patient falls, a number of experimemntse conducted; a volunteer
wearing the sensors devices described in Sectivasdrecorded walking and fal-
ling in different locations and ways while an owesid camera was capturing vis-
ual frames. Motion data and body shape featuresitdized for creating classifi-
cation models. The 10-cross fold validation methogp has been used to verify
each model’s accuracy and performance.

Apart from the detection of fall the system is atspable of estimating the se-
verity of the incident: When an estimation of d fas occurred based on the sen-
sor and visual data the standard deviation of acoeleter values and visual
bounding box values is calculated for the next é&oads. A specific threshold
has been determined for each value that can detertiné severity of the incident
according to the following table:

Table 1. Decision matrix for the severity of a faltident based on standard deviations of
movement data and body bounding box coordinates aftall has occurred.

Motion Bounding Box (X,Y) | Severity

STD STD

>0.5 > 60 Low. Patient has recovered from fall {gootup)

>0.5 <60 Medium. Patient is moving but cannot fuigover
from fall

<0.5 <60 High. No activity is recorded; patient lpasbably
felt unconscious
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Table 2. Accuracy evaluation results of the proddSgstem. Motion and video tracking data of
four fall experiments have been used. Percentageowkctly classified results, Root Mean
Squared Error and correctly classified severittheffall are presented.

Experiment Correctly Clas-| Root Mean Interlaced Mo- | Correctly Clas-
sified Fall (%) | Squared Error | tion Data sified Severity

FallA 99.2 0.0112 Yes Yes

FallB 100.0 0.0072 Yes Yes

FallC 99.4 0.0082 Yes Yes

FallD 98.7 0.0121 Yes Yes

FallA 97.3 0.0242 No Yes

FallB 98.4 0.0173 No Yes

FallC 97.1 0.0449 No Yes

FallD 96.9 0.0534 No Yes

According to the evaluation results as presentefiaible 2, the SVM seem to
achieve high accuracy rates in all cases. Whemthtéon data from both on-body
sensors are interlaced accuracy proves to be higharotherwise. Finally, the se-
verity of each fall incident is correctly estimatiedall cases based on the motion
and video track data after the fall.

7 Conclusions

In this paper an enhanced patient fall detectiostesy has been proposed that
combines both motion and visual information. Accefeeter data obtained
through wireless sensors in conjunction to bodysHeatures acquired by visual
tracking are evaluated through a SVM train modedletection of a fall incident is
then generated. In addition, combining the motiatachnd movement of the body
obtained visually after the fall, the severity bétfall can also be estimated alert-
ing treatment personnel appropriately.
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