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Abstract In the scientific literature, it is generally assumed that models can be com-
pletely established before the diagnosis analysis. However, in the actual mainte-
nance problems, such models appear difficult to be reached in one step. It is indeed
difficult to formalize a whole complex system. Usually, understanding, modelling
and diagnosis are interactive processes where systems are partially depicted and
some parts are refined step by step. Therefore, a diagnosis analysis that manages
different abstraction levels and partly modelled components would be relevant to
actual needs. This paper proposes a diagnosis tool managing different modelling
abstraction levels and partly depicted systems.

1 Introduction

In the diagnosis community, abstraction has been presented as a promising tech-
nique to reduce the computational cost of model-based diagnosis [6, 1, 2, 3]. Ab-
stract procedure tends to aggregate items to describe a system at different levels of
abstraction with different levels of details (structural and behavioral). It is called
bottom-up methotlecause it begins by the most detailed level and stops in the most
abstract level. Then, algorithms, which are based on Mozetic's approach, are pro-
posed to solve the problem. Contrarylottom-up methqgdatop-down methods
proposed. The important point of our purpose is to use abstraction to fit the actual
diagnosis process in the context of human machine cooperation.

In this paper, the terriemis preferred tacomponenbecause in actual applica-
tions different types of elements may be encountered such as functions, operations,
components. Moreover, in a multi-abstraction level context, super-functions and a
super-components use to appear.
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2 Problem statement

2.1 Behavioural and functional modelling

In a physical system, a phenomenon is a directly observable element of informa-
tion about the state of a system. It is usually modelled by physical variables. The
behavior of an item is modelled by constraints characterizing the set of possi-
ble values of involved variables. Theehavioral modeof an item is modelled by

one or more constraints. In [5], the model of multiple modes is introduced. Then,
each item may have a normal modk and a set of possible abnormal modes
including a complementary unknown fault modém A specific fault mode is
denoted byfm. Hence, the set of behavioral modes of an item may be written:;
Modegitem) = {ok [fmy,..., fmy], cfm}

An item is callednon-modelledf there is no available constraint that represents
any of its modes. However, it is convenient to assume the existence of 2 miodes
andcfmfor such an item that can be depicted as a part of another item. Itis discussed
in the next subsection.

2.2 Formalizing abstraction

Let’s considebehavioral abstractionAs mentioned before, an item is either a func-
tion or a physical resource. The hierarchical decomposition of a system is gener-
ally begun by the global function of the system i.e. the most abstract item. Then,
this item may be decomposed into child-items that may be child-functions, child-
components, . ... In other words, an expected behavioral mode of an item is achieved
by its child-items. In order to formalize hierarchical relations between items, let's
introduce the notion of m-proposition.

Definition 1. (m-proposition) A logical proposition where symbols are modes of
items, which can be expressed by a conjunctive normal form, is called a m-
proposition. If #(moda, ...,mode) is a m-proposition, the suppaf? is defined

by ModegZ?) = {modgq, ...,mode}.

For example(mode — mode) A mode, with -mode = mode VvV mode, is a
m-proposition because it can be rewritten @sode V mode vV mode) Amode.

Definition 2. (monomial of m-proposition) A monomial in a m-proposition is one
of the disjunctive proposition appearing in the equivalent conjunctive normal form.

For instance, in the previous examptepdg vV mode Vv mode andmode are
the monomials of the m-proposition.
The concept of partial behavioral abstraction can then be introduced.
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Definition 3. (partial behavioral abstraction) Lebe an item and = {l1, ..., In}
a set of itemsl is a partial behavioral abstractionbif Ym € Modegl), it exists a
m-proposition?; such asm — &2 with Modeg.%%) = {mod€l,), ...,mod€l)}.

If I is a partial behavioral abstraction b= {l1, ..., I}, | is namedparent-
item of eachl; and eacH; is a child-item ofl. Normally, if a parent-item behaves
correctly, it is deduced that its child-items are in a normal mode. It is represented
by a logical implicatiorok(l) — ok(l1) Aok(l2) A... Aok(ln). In the context of hu-
man machine cooperation, partial behavioral abstraction represents the knowledge
of expert, who tests the faulty system, about the structure of a system.

Definition 4. (complete behavioral abstraction) lldte anitem andi={l1, ..., In}
a set of itemsl is a complete behavioral abstractionldf Vimy € Modegl), it exists
am-proposition?; such asm; — %2 with Modeg.%% ) = {mod€l), ...,mod€l,)}.

A partial behavioral abstractidn= {l4, ..., In} of | can always be transformed
into a complete one in introducing a new virtual item that represents the part of item
I which is not inl, denoted by for virtual item with VI =1\ 1.

2.3 Fault propagation

In actual physical systems, a fault propagation models the fact that a fault (or failure)
mode of an item induces fault modes of other items. Fault propagation is usually
represented by a logical implication, engodéitem ) — modé(item;). To take into
account fault propagations, the transformation of logical implications into logical
conjunctions is achieved. A logical implicatidn— B is equivalent to~AV B, then
modéditem) — modé(item;) is equivalent to-modéitem ) vV mod€item).

2.4 Formulation of a complete diagnostic problem

Let's summarize results that can appears in the statement of a complete diagnostic
problem

1. the list of items and possible modes for each item.

2. the partial behavioral abstractions inferred from expert’s knowledge.

3. the modes implied in inconsistent tests, modelled by disjunctive m-propositions.
4. the fault propagations, modelled by disjunctive m-propositions.

3 An iterative diagnosis solving process

Let's now detail the diagnosis process based on interactive decompositions (top-
down method). It is an interactive process between a diagnosis tool (a machine)
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and an expert. The diagnosis process begins when a malfunction is detected. Fault
isolation usually starts with the tests that check the global function of a system. In
each expert’s interaction, expert performs tests, collects new data and continues the
process. According to the monotony principle, the diagnosis tool provides more and
more detailed diagnoses as new results arise. Step by step, it locates the subsystems
or components which are in a faulty mode. This diagnosis process is depicted by
figure 1.

Note that, the solving process is the same at each interaction. Let’s focus now
on what happens between two interactions. Diagnosis process between two interac-
tions can be decomposed into two parts. The first one is catedformation it
transforms the expert problem with partial behavioral abstractions into a solvable
problem. The second one is based oMlldS-Tree algorithnmwhich computes and
provides diagnoses from the solvable problem.

3.1 Transformation

During the transformation step, the initial knowledge about system (symptoms, de-
composition model and fault propagations) can be transformed into a m-proposition
by:

1. introducing complementary fault mode for each known item

2. introducing virtual complementary items in order to transform partial behavioral
abstractions into complete behavioral abstractions in formalizing all the implica-
tions from conjunction of child modes to each parent mode, in order to compute
the corresponding equivalent m-propositions.

3. transforming logical implications from fault propagation into disjunctive propo-
sitions (see 2.3).

4. replacing the abstract modes by their equivalent m-propositions for points (3)
and (4) in section 2.4.

5. developing the m-propositions into a conjunctive normal form and splitting the
resulting proposition into a set of monomials.

Finally, after these transformations, the diagnosis problem to be solved may be
formulated as m-proposition whose monomials are provided to the solving algo-
rithm to compute diagnoses.

Step 1 Step 2 Step n
Expert problem Expert problem Expert problem
— Transformation o — Transformation | __________ »| — Transformation
— MHS-Tree algorithm — MHS-Tree algorithm — MHS-Tree algorithm

Fig. 1 Diagnosis process
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3.2 Solving algorithm

When items contain multiple modes, the standard HS-tree algorithm (a tree whose
nodes are hitting sets [8]) may lead to diagnoses that contain several behavioral
modes of the same item. However, these diagnoses are impossible because an item
may be in only one mode at the same time.

In addition to standard HS-tree approaches, the multi-mode context has to be
taken into account. It is not a new problem. In literature, some solving approaches
has for instance been proposed in [5, 9]. Based on ATMS [4], the model of faults is
integrated in GED+ [9] to analyse whether the faultiness of the components would
really explain the observation. In multi-mode context, Sherlock [5] is developed
from GDE to compute automatically conflict set and diagnostic hypotheses. It focus
reasoning on more probable probabilities firs in attempt to control the combina-
torics. Without the constraints propagation technique, HS-Tree based algorithm [8]
is preferred in this section to manage multiple-modes. The path from a node to the
root node of a HS-Tree show clearly all elements implied in a temporary diagnostic
result in the construction of HS-Tree. Then, it is easy to avoid the existence of two
or more modes of an Item in a diagnostic result. Moreover, in comparison with orig-
inal HS-Tree algorithm, which base on a set of conflicts, MHS-Tree is extended to a
set of disjunctive propositions to computes hitting set. Each disjunctive proposition
can correspond to a test inconsistent or to transformed fault propagation.

In order to keep a sound reasoning, a consistent test is not taken into account to
compute diagnoses except if it is fully checked. However, results of normal consis-
tent tests are useful for classification of diagnoses. In [7], an approach based on a
distance between theoretical and effective signatures has been proposed. Here, it is
extended to multi-mode context.

Let T = (t;) be an ordered list of tests, al= (m) be a set of faulty modes.
the signature of M in T is given by (M):

vi (or(M))i =1 < MN[Tmoadti) # 0 )
" (or(M))i =0 M Mmoddti) =0
where [Tmoadli) corresponds to the set of modes implied in the tesAnd
[Mmoddti) corresponds to the union of complementary modes of each mode implied
in the test;:
[TW= J Modes)\{m()}

mode M1)€ Mmodeti)

LetT = (t;) be an ordered list of tests. At an given instant, the effective signature
in T, denoted byoy, is given by:

(2)

[ (o1)i =1t is inconsistent
, (o1)i =0« t; is consistent
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The next measurement attempts to measure the similarity between the effective
signature and the theoretical signature of a diagnosis [7]T Let(t;) be an ordered
list of tests, andD = d; be a set of diagnoses. The coincidence measurement is given
by:
_ lor (di), c)'T*|Hamming

vd € D, u$(d) = dim(™) 3)

Application of this measurement is illustrated in the next example.

4 Application example

In order to illustrate how the proposed approach fits to iterative diagnosis with
consecutive decompositions, let’s consider a faulty car studied by a car mechanic.
Firstly, the car mechanic notes that the car does not start up. At this step, the re-
sulting symptom, which is also a trivial diagnosis, éém(car). It is very general

and does not direct to the next step: almost every failure is possible. Implicitly, the
possible modes for the car are:

Modegcar) = {ok, cfm} 4)

Secondly, because the starting system may be easily checked, the expert implic-
itly decomposes the car into the electric power resolE&H, the electrical starting
system except the starting drive%3, and the starting driveSD).

The decomposition can be modelled by:

ok(car) — ok(EPR) A ok(ESS A ok(SD) (5)

Then, the expert turns on the key to test whether the starting drive is operating: it
corresponds to a new test. Since he hears the starting drive cranking, he infers from
test 1that:

JOBS/ok(EPR) A ok(ESS A 0k(SD) (6)

The consistency test can be used to sort the diagnoses using the coincidence
measurement. The observed symptoms are now:

cfm(car) (7
JOBS/ok(EPR) A 0k(ESS A ok(SD) (8)

Expression (8) means that it exists at least an observation such that the test given by
(6) is consistent.

The problem is fully defined by (4), (5), (6), (7) and (8). Let's transform this
problem into a solvable problem. In order to obtain a complete behavioral abstrac-
tion, complementary fault modes and a virtual item are introduced. It is named:
VI, = car\ {EPRESSSD}.The new transformed set of modes coming from (4) is:
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{ModegEPR) = (ok cfm); Mode4ESS = (ok, cfm);

9

ModegSD) = (ok cfm); ModegVIl;) = (ok,cfm)} ©
Decomposition can then be written with equivalences:

ok(car) < ok(EPR) A ok(ESS A ok(SD) A ok(VI11) (10)

cfm(car) < cfm(EPR) v cfm(ESS Vv cfm(SD) v cfm(VI11) (11)

Using the MHS-tree algorithm, the diagnosis of the transformed problem can be
computed. It leads to:

{cfm(EPR)}; {cfm(ESS}; {cfm(SD)}; {cfm(VI1)} (12)
Diagnoses can now be sorted. A signature table (1) can be obtained from (6), (7)

and (8):

Table 1 Signature table 1
Ook(EPR ok(ESS ok(SD) ok(VI1)

T 1 1 1 0

The theoretical fault signature isit (cfm(EPR)) = (1); or (cfm(ECS) = (1);
o7 (cfm(SM)) = (1); or(cfm(VI1)) = (0). Since the test 1 is consistent, the effec-
tive signature isof = (0). From (3), the coincidence measurement is given by:
u$ (cfmEPR)) = 1.00; u$(cfm(ECS) = 1.00; u$(cfm(SM)) = 1.00;
us(cfm(Vi1)) = 0.00. Becausgt (cfm(V11)) = 0.00 is the lowest value, the expert
decides to test sub-parts of the virtual item i.e. parts of the car that are not EPR, ESS
or SD. He focuses on the ignition system. The expert disconnects the spark plug
with its wires from the car engine, holds the end of spark plug with its wire close to
a metal surface and gets help to start up the car without using the starting system.
Expert does not see any spark coming from spark plugs. These tests are inconsis-
tent. He infers that the electric power resoure®R), the ignition circuit (C) or
the spark plugs (SP) are faulty. The virtual item has thus been decomposed into the
ignition circuit (IC) and the spark plugsSP):

ok(VI1) — ok(SP) A ok(IC) (13)
The new test leads to:
—0k(EPR) vV —0k(SP) v —0k(IC) (14)

Consequently, the new set of symptoms is given by (7), (8) and
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cfm(Vly) (15)
-0k(EPR) v —0k(SP) v —~0k(IC) (16)

The new problem to be solved is given by: (4), (5), (6), (7), (8), (13), (14), (15),
and (16). The problem is transformed by adding an virtual kégm=VI1;\ {SP,IC},
which is equal tocar\ {EPRESSSD,SP,IC}.

The new transformed set of modes is given by (4), (9)and:

{(SP) = (ok,cfm); (IC) = (okcfm); (Vi2) = (ok cfm)} a7
The transformed abstractions are given by (10), (11) and

ok(VI1) <= ok(SP) A ok(IC) A ok(VI3) (18)
cfm(Vl1) < cfm(SP) v cfm(IC) v cfm(VI,) (19)

Using the MHS-tree algorithm, the diagnosis of the transformed problem can be
computed:

{cM(EPR)}; {cm(SP)}; {cfm(IC)} (20)

From (6), (7) and (8), a signature table is obtained:

Table 2 Signature table 2
ok(EPR) ok(ESS ok(SD) ok(SP ok(IC) ok(VIy)

T 1 0 0

The theoretical fault signatures of diagnoses are givenoyycfmEPR)) =
(1 1);0r(cfmESS)=(1 0);or(cfm(SD))=(1 0);or(cfmSP)=(0 1);
or(cfm(IC)) = (0 1); or(cfm(VIz)) = (0,0). And the effective signature is:
or=(0 1)

Then, the coincidence measurement is giverigycfm EPR)) = 0.50; uf (cfm(ESS) =
1.00; uS (cfm(SD)) = 1.00; u (cfm(SP)) = 0.00; uS (cfm(IC)) = 0.00; ug (cfm(VI2)) =
0.50.

Sinceus (cfm(SP)) = 0.00, u$(cfm(IC)) = 0.00 are lowest values, in the end of
this step, the faulty part is localized at the ignition circli@) or at the spark plugs

(SP.
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5 Conclusion

This proposed approach makes it possible to develop human-machine cooperative
diagnosis process to tackle diagnosis problems without having an initial complete
model of the system. A top-down iterative process has been proposed to handle in-
formation step by step thank to hierarchical decomposition. Diagnoses are refined
step by step. For this purpose, diagnosis problems inferred from the expert knowl-
edge provided at each iteration, are solved by transformations into a solvable prob-
lems composed of the available knowledge (decomposition, inconsistent tests and
fault propagation) coming from system modeling. The resulting diagnosis problem
can then be solved according to the proposed MHS-tree algorithm. The iterative
diagnosis process is illustrated by an example.
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