
A Logic-Based Approach to Solve the Steiner
Tree Problem

Mohamed El Bachir Menai

Abstract Boolean satisfiability (SAT) is a well-studiedN P-complete problem for
formulating and solving other combinatorial problems like planning and schedul-
ing. The Steiner tree problem (STP) asks to find a minimal cost tree in a graph that
spans a set of nodes. STP has been shown to beN P-hard. In this paper, we pro-
pose to solve the STP by formulating it as a variation of SAT, and to solve it using
a heuristic search method guided by the backbone of the problem. The algorithm
is tested on a well known set of benchmark instances. Experimental results demon-
strate the applicability of the proposed approach, and show that substantial quality
improvement can be obtained compared to other heuristic methods.

1 Introduction

The satisfiability problem in propositional logic (SAT) is the task to decide for a
given propositional formula in conjunctive normal form (CNF) whether it has a
model. More formally, letC = {C1,C2, . . . ,Cm} be a set ofm clauses that involven
Boolean variablesx1,x2, . . . ,xn. A literal is either a variablexi or its negation¬xi .
Each clauseCi is a disjunction ofni literals,Ci =

∨ni
j=1 l i j . The SAT problem asks to

decide whether the propositional formulaΦ =
∧m

i=1Ci is satisfiable. SAT is the first
problem shown to beN P-complete [2]. TheN P-completeness concept deals
with the idea of polynomial transformation from a problemPi to Pj where the es-
sential results are preserved: ifPi returns “yes”, thenPj returns “yes” under the same
problem input. MAX-SAT (orunweightedMAX-SAT) is the optimization variation
of SAT. It asks to find a variable assignment that maximizes the number of satisfied
clauses. InweightedMAX-SAT (or only MAX-SAT), a weight wi is assigned to
each clauseCi (notation:Cwi

i), and the objective is to maximize the total weight of

Mohamed El Bachir Menai
Computer Science Department, College of Computer and Information Sciences, King Saud Uni-
versity, PO Box 51178, Riyadh 11543, Kingdom of Saudi Arabia, e-mail: menai@ksu.edu.sa

74 Mohamed El Bachir Menai

satisfied clauses∑m
i=1wi ·I(Ci), whereI(Ci) is one if and only ifCi is satisfied and

otherwise zero. Partial MAX-SAT (PMSAT) involves two weighted CNF formulas
fA and fB. The objective is to find a variable assignment that satisfies all clauses of
fA (non-relaxable or hard clauses) together with the maximum clauses infB (relax-
able or soft clauses). SAT has seen many successful applications in various fields
such as planning, scheduling, and Electronic Design Automation. Encoding combi-
natorial problems as SAT problems has been mostly motivated by the simplicity of
SAT formulation, and the recent advances in SAT solvers. Indeed, new solvers are
capable of solving very large and very hard real world SAT instances. Optimization
problems that involve hard and soft constraints can be cast as a PMSAT, e.g. uni-
versity course scheduling and FPGA routing. In 1995, Jianget al. [6] proposed the
first heuristic local search algorithm to solve this problem as a MAX-SAT. In 1997,
Chaet al. [1] proposed another local search technique to solve the PMSAT prob-
lem. In 2005, Menaiet al. [9] proposed a coevolutionary heuristic search algorithm
to solve the PMSAT. In 2006, Fu and Malik [4] proposed two approaches based on
a state-of-the-art SAT solver to solve the PMSAT.

The Steiner tree problem (STP) in graphs is a classic combinatorial problem.
It can be defined as follows. Given an arbitrary undirected weighted graphG =
(V,E,w), whereV is the set of nodes,E denotes the set of edges andw : E→R+ is
a non-negative weight function associated with its edges. Any treeT in G spanning
a given subsetS⊆V of terminal nodes is called aSteiner tree. Note thatT may con-
tain non-terminal nodes referred to asSteiner nodes. The cost of a tree is defined to
be the sum of its edge weights. The STP asks for a minimum-cost Steiner tree. The
decision version of STP has been shown to beN P-complete by Karp [8]. STP has
found uses across a wide array of applications including network routing [10] and
VLSI design [7]. Several implementations of metaheuristics have been proposed for
the approximate solution of STP or its variations, such as Simulated Annealing [11],
Tabu Search [5], and Genetic Algorithms [3]. In this paper we are interested in solv-
ing the STP as a PMSAT problem. We show how to encode the STP into PMSAT
and propose a practical approach to solve it based on one of the best known SAT
solver WalkSAT [12] with certain extensions. Indeed, the success of WalkSAT and
its variations has led to the paradigm of SAT encoding and solving difficult prob-
lems from other problem domains. Our approach is based on exploiting problem
structural information, backbone in particular, to guide the search algorithm towards
promising regions of the search space. We show empirically that this method is ef-
fective by comparing our results to those obtained with specialized Steiner heuristic
algorithms. The rest of the paper is structured as follows. In the next section, we
explain how to encode the STP into PMSAT. In Section 3, we describe a heuris-
tic algorithm for PMSAT using backbone guided search. Computational results are
reported in Section 4. Concluding remarks are drawn in the last section.

A Logic-Based Approach to Solve the Steiner Tree Problem 75

2 PMSAT Encoding of STP

Jianget al. [6] suggested to encode STP as a weighted MAX-SAT instance and
to solve it using a MAX-SAT solver. However, a solution for the MAX-SAT in-
stance may violate some clauses whose satisfiability is required for the feasibility
of the STP solution. We propose to encode STP as a PMSAT instance to formu-
late independently hard and soft constraints and to solve it using a PMSAT solver.
Let G = (V,E,w) be a weighted graph ofn nodesv1,v2, . . . ,vn, andS⊆V a set of
terminal nodes.

1. For each edgeei j ,1≤ i ≤ n,1≤ j ≤ n, connecting nodesi and j of the graph,
introduce a boolean variablexi j . I(xi j) = 1 if ei j is chosen as part of the Steiner
tree.

2. For each variablexi j , construct the clauseci j = (¬xi j)wi j to minimize the cost of
including the edgeei j in the tree.fB =

∧
cij are soft clauses.

3. List terminal nodes in an arbitrary order. For some fixedl , generate the possible
k(k≤ l) shortest paths between successive pairs of nodes using Dijkstra’s algo-
rithm. If no path exists between two terminal nodes, then return no solution.
Variablesp1

i j , p2
i j , . . . , pk

i j denote thek shortest paths between terminal nodesi
and j. The reduction is an approximation of the original instance, since only the
k shortest paths are generated between pairs of nodes.

4. A solution to STP must contain a path between each pair of terminal nodes.
Namely, for each(vi ,v j) ∈ S×S, construct a clause(p1

i j ∨ p2
i j ∨·· ·∨ pk

i j).
fA1 =

∧
(p1

ij ∨p2
ij ∨·· ·∨pk

ij) are hard clauses.

5. Each path must contain all its edges. Namely, for each pathpk
i j containing edges

eil ,elm, . . . ,er j , construct clauses(pk
i j ⊃ xil)∧(pk

i j ⊃ xlm)∧·· ·∧(pk
i j ⊃ xr j) which

are equivalent to(¬pk
i j ∨xil)∧ (¬pk

i j ∨xlm)∧·· ·∧ (¬pk
i j ∨xr j).

fA2 =
∧

((¬pk
ij ∨xil)∧ (¬pk

ij ∨xlm)∧·· ·∧ (¬pk
ij ∨xrj)) are hard clauses.

6. Let fA = fA1 ∧ fA2. f = fA ∧ fB is the PMSAT instance yield.

The number of variables is|E|+ k(|S| − 1). The total number of clauses is
O(|E|+ kL(|S| − 1)), whereL is the maximum number of edges in pre-computed
paths. The reduction is linearly dependent on the number of edges. The reduction is
sound as any PMSAT solution yields a valid Steiner tree. Since all hard clausesfA
are satisfied, a path exists between each pair of terminal nodes in the obtained set
of nodes. The reduction is incomplete, since the PMSAT instance will not yield a
solution if there is no Steiner tree using thek paths generated in step 3.

3 Heuristic Search for PMSAT

Backbone variables are a set of literals which are true in every model of a SAT in-
stance. The backbone of a PMSAT instance is the set of assignments of values to
variables which are the same in every possible optimal solution. They are proven to

76 Mohamed El Bachir Menai

influence hardness in optimization and approximation [13]. Heuristic search meth-
ods could improve their performance by using backbone information. We propose
to solve a PMSAT using a heuristic local search algorithm that takes advantage of
a pseudo-backbone sampled using information extracted from local minima. Our
method is inspired by a heuristic sampling method for generating assignments for a
local search for MAX-SAT [14].

Let Ω be a set of assignments onX, the set of Boolean variables,A(xi) the value
of the variablexi in the assignmentA, andC(A) the contribution ofA defined as the
total number of satisfied clauses infA and fB: C(A) = | fA| ·#satfA(A)+ #satfB(A),
where#satfA(A) and#satfB(A) denote the number of satisfied clauses infA and fB,
respectively. A multiplier coefficient| fA| is added toC(A) to underline the priority
of satisfying clauses offA. A variable frequencypi of positive occurrences ofxi in
all assignments ofΩ is defined aspi = (∑A∈Ω C(A) ·A(xi))/∑A∈Ω C(A). A(xi) = 1
with the probabilitypi . Let X(α) denote the set of variables which appear in the set
of clausesα. The main steps of the algorithm BBPMSAT are outlined in Figure 1.

procedure BB PMSAT
input: A formulaF = fA∧ fB in CNF containingn variablesx1, . . . ,xn,

MaxTries1, MaxTries2, MaxSteps.
output: A solutionA for F , or “Not found” if fA is not satisfiable.
begin

for t = 0 to |Ω |−1 do
A← WalkSAT MAXSAT(F,X(F),MaxTries=1 ,MaxSteps);
If A satisfiesF then return A;
Ω [t]← A;

end for
A← BB WalkSAT MAXSAT(F,X(F), Ω , MaxTries1, MaxSteps);
if A satisfiesF then return A;
if (∃ fASAT, fAUNSAT| fA = fASAT∧ fAUNSAT) and (A satisfiesfASAT)

and (X(fASAT)∩X(fAUNSAT) = /0)
then f ← fAUNSAT,X(f)← X(fAUNSAT);
else f ← fA,X(f)← X(fA);
end if
Af ← BB WalkSAT(f ,X(f), Ω , MaxTries2, MaxSteps);
if Af satisfiesf then updateA andreturn A;
return “Not found”;

end

Fig. 1 The BB PMSAT procedure

In a first phase, the PMSAT instance is solved as a MAX-SAT instance using a
variation of the procedure WalkSAT [12] for MAX-SAT (WalkSATMAXSAT) to
initialize the pseudo-backboneΩ with reached local minima. Next, both formulas
fA and fB are solved together as a MAX-SAT instance using a variation of the proce-
dure BBWalkSAT for MAX-SAT (BB WalkSAT MAXSAT). Figure 2 presents the
procedure BBWalkSAT for SAT. It integrates a pseudo-backbone estimation using
variable frequenciespi to generate initial assignments. The pseudo-backboneΩ is

A Logic-Based Approach to Solve the Steiner Tree Problem 77

updated at each time a new local minimum is encountered. The second phase of the
algorithm is performed if the best assignment found in the previous phase does not
satisfy fA (a PMSAT instanceF is satisfied iff fA is satisfied). In such case, it is
recycled to try to satisfyfA using BBWalkSAT guided by the information inΩ . If
the best assignment found does not satisfyfA, then it is recycled to a model offA
usingΩ .

procedure BB WalkSAT
input: A formulaF in CNF containingn variablesx1, . . . ,xn,

Ω , MaxTries, MaxFlips.
output: A satisfying assignmentA for F , or “Not found”.
begin

for try = 1 to MaxTries do
Calculatepi ,(i = 1,n) usingΩ ;
A← best assignment forn variables amongt randomly
created assignments inΩ usingpi ;
for f lip = 1 to MaxFlips do

if A satisfiesF then return A;
c← an unsatisfied clause chosen at random;
if there exists a variablex in c with break value = 0
then

A← A with x flipped;
else

with probability p
x← a variable inc chosen at random;

with probability(1− p)
x← a variable inc with smallest break value;

A← A with x flipped;
end if

end for
if (A 6∈Ω) and (∃Ω [k]|C(Ω [k]) < C(A)) then Ω [k]← A;

end for
return “Not found”

end

Fig. 2 The BB WalkSAT procedure

4 Computational Experience

The computing platform used to perform the experiments is a 3.40 GHz Intel Pen-
tium D Processor with 1 GB of RAM running Linux. Programs are coded in C
language. We compared the BBPMSAT results with the optimal solutions of a test
problems’ set of the OR-Library (series D and E). Series D consists of 20 problems
with 1000 nodes, arcs varying from 1250 to 25000, and terminals from 5 to 500.
Series E consists of 20 problems of 2500 nodes, arcs varying from 3250 to 62500,

78 Mohamed El Bachir Menai

and terminals from 5 to 1250. In order to test the effectiveness of the proposed ap-
proach, we compared BBPMSAT results with those obtained with the Tabu Search
method called Full Tabusteiner (F-Tabu) from Gendreauet al. [5], which is one of
the best heuristic approach for the STP in terms of solution quality. BBPMSAT was
also compared to one of the best Genetic Algorithms (GA-E) that has solved STP,
which is due to Esbensen [3].

Table 1 Results for series D of STP.
WalkSAT BB PMSAT

Instance GA-E(%) F-Tabu (%) (%) CPU secs (%) CPU secs
D1-20 0.58 0.10 4.19 4.50 0.11 3.14
E1-20 0.42 0.31 4.65 10.67 1.19 8.29
Best approach 18/40 28/40 16/40 28/40

PMSAT and MAX-SAT instances were generated from STP instances using the
reduction described in Section 2. The numberk of pre-computed paths between
each pairs of nodes was fixed to 10. The total number of tries for each run of
BB PMSAT was shared between its two phases. Letr be the first phase length
ratio of the total run length andpb the ratio of pseudo-backbone size to the num-
ber of variablesn. BB PMSAT was tested using the following parameter settings:
r = 0.6, pb= 0.5 (values ofr and pb are recommended in [9]),MaxFlips= 105,
andMaxTries= 100 (shared betweenMaxTries1 andMaxTries2). WalkSAT was
tested using a noise parameterp = 0.5 (recommended by the authors [12]) and the
same values ofMaxFlipsandMaxTriesused in BBPMSAT.

Table 1 shows the mean results in terms of solution quality (in error percent-
age w.r.t. the optimum) for the series D and E of STP and their comparison with
the Tabu Search method F-Tabu [5] and the Genetic Algorithm GA-E [3]. The re-
sults reported for WalkSAT and BBPMSAT include average CPU time required
over 10 runs. CPU times of the methods GA-E and F-Tabu are omitted because
of a difference in the evaluation of the processing times. BBPMSAT and F-Tabu
were the best approaches in 28 times and gave clearly better solutions than GA-E
(18 times) and WalkSAT (16 times). In terms of solution quality, the average results
given by BBPMSAT and F-Tabu for series D were comparable. However, for se-
ries E, F-Tabu outperformed BBPMSAT. We expect that greater exploration of the
parameters of BBPMSAT may yield still better results.

Overall, BB PMSAT found more optimal solutions than WalkSAT on all in-
stances in less average CPU time. Indeed, the average CPU time achieved by
BB PMSAT and WalkSAT on all the problems is 5.71 secs and 7.58 secs, respec-
tively. These positive results can demonstrate the superiority of the PMSAT encod-
ing and the use of BBPMSAT search procedure in comparison to the MAX-SAT
encoding and the use of WalkSAT procedure for STP. BBPMSAT’s overall perfor-
mance is comparable to the Tabu Search method F-Tabu.

A Logic-Based Approach to Solve the Steiner Tree Problem 79

5 Conclusions

In this paper we have examined a logic-based method to solve STP. We have consid-
ered MAX-SAT and Partial MAX-SAT encodings of STP. Empirical evaluation has
been conducted on these encodings using two heuristic algorithms: BBPMSAT and
WalkSAT. BB PMSAT relies on a pseudo-backbone sampling to guide the search
trajectory through near-optimal solutions. We have reported some computational
results showing that BBPMSAT can solve large instances of STP. It appears that
solving STP as a PMSAT using BBPMSAT is more effective than solving it as a
MAX-SAT using WalkSAT. Results are compared to those of specialized STP al-
gorithms (F-Tabu and GA-E). The performance of BBPMSAT is better than that
of GA-E and close to that of F-Tabu in terms of solution quality . We have tested
larger STP instances and obtained good results. However, the lack of space prevents
us to present them and to discuss the choice ofk, the number of precomputed short-
est paths. We can conclude that the reduction of STP into PMSAT and the use of
BB PMSAT represent an effective means of solving STP.

References

1. Cha, B., Iwama, K., Kambayashi, Y., Miyazaki, S.: Local search algorithms for Partial
MAXSAT. In Proc. AAAI-97, (1997), 263–268

2. Cook, S.A.: The complexity of theorem proving procedures. In Proc. 3rd ACM Symposium
of the Theory of Computation, (1971) 263–268

3. Esbensen, H.: Computing near-optimal solutions to the Steiner problem in graphs using a
genetic algorithm. Networks 26, (1995) 173–185

4. Fu, Z., Malik, S.: On solving the Partial MAX-SAT problem. In Proc. SAT’06, LNCS 4121,
(2006) 252–265

5. Gendreau, M., Larochelle, J.-F., Sansò, B.: A tabu search heuristic for the Steiner tree problem.
Networks 34(2), (1999) 162–172

6. Jiang, Y., Kautz, H.A., Selman, B.: Solving problems with hard and soft constraints using a
stochastic algorithm for MAX-SAT. In Proc. 1st Inter. Joint Workshop on Artificial Intelli-
gence and Operations Research, (1995)

7. Kahng, A.B., Robins, G.: On optimal interconnections for VLSI. Kluwer Publishers, (1995)
8. Karp, R.M.: Reducibility among combinatorial problems. In E. Miller and J.W. Thatcher, eds,

Complexity of Computer Computations, Plenum Press, (1972) 85–103
9. Menäı, M.B., Batouche, M.: A backbone-based co-evolutionary heuristic for Partial MAX-

SAT. In Proc. EA-2005, LNCS 3871, (2006) 155–166, Springer-Verlag
10. Nguyen, U.T.: On multicast routing in wireless mesh networks. Computer Communications

31(7), (2008), 1385–1399
11. Osborne, L.J., Gillett, B.E.: A comparison of two simulated annealing algorithms applied to

the directed Steiner problem on networks. ORSA Journal on Computing 3, (1991), 213–225
12. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In Proc.

AAAI-94, (1994) 337–343
13. Slaney, J., Walsh, T.: Backbones in optimization and approximation. In Proc. IJCAI-01, (2001)

254–259
14. Telelis, O., Stamatopoulos, P.: Heuristic backbone sampling for maximum satisfiability. In

Proc. 2nd Hellenic Conference on AI, (2002) 129–139

