A Knowledge-based System for Translating
FOL Formulasinto NL Sentences

Aikaterini M pagouli, | oannis Hatzilyger oudis

University of Patras, School of Engineering
Department of Computer Engineering & Informatic®5@0 Patras, Hellas
E-mail: {mpagouli, ihatz}@ceid.upatras.gr

Abstract In this paper, we present a system that transfastorder logic (FOL)
formulas into natural language (NL) sentences. ib&vation comes from an in-
telligent tutoring system teaching logic as a krexige representation language,
where it is used as a means for feedback to thes.uS®L to NL conversion is
achieved by using a rule-based approach, wherexpleiethe pattern matching
capabilities of rules. So, the system consists mi@based component and a lexi-
con. The rule-based unit implements the converpimcess, which is based on a
linguistic analysis of a FOL sentence, and theclexiprovides lexical and gram-
matical information that helps in producing the Bkntences. The whole system
is implemented in Jess, a java-based expert sysieth The conversion process
currently covers a restricted set of FOL formulas.

1 Introduction

To help teaching the course of “Artificial Intelégce” in our Department a web-
based intelligent tutoring system has been cre@ee. of the topics that it deals
with is first-order logic (FOL) as a knowledge repentation language. One of the
issues in the topic is the translation of natuaaiguage (NL) sentences into FOL
formulas. Given that this is a non-automated prog¢és?], it is difficult to give
some hints to the students-users during their effotranslate an “unknown” (to
the system) NL sentence into a FOL formula. Howgseme kind of help could
be provided, if the system could translate the psegd by the student FOL for-
mula into a NL sentence. We introduce here a metbhodonverting/translating
FOL formulas into NL sentences, called FOLtoNL aition. The structure of the
paper is as follows. Section 2 deals with relatedkwSection 3 presents the basic
algorithm and Section 4 refers to its implementatimd lexicon. Section 5 con-
cludes the paper.

158 Aikaterini Mpagouli and loannis Hatzilygeroudis

2 Reated Work

Our work can be considered as belonging to thel fiéINatural Language Gen-
eration [3], since it generates NL sentences frames source of information,
which are FOL formulas. In the existing literatuvee couldn’t trace any directly
similar effort, i.e. an effort to translate FOL smmces into natural language sen-
tences. However, we traced a number of indire@lsted efforts, those of trans-
lating some kind of natural language expressiottssnme kind of FOL ones.

In [4] an application of Natural Language ProceggINLP) is presented. It is
an educational tool for translating Spanish texteftain types of sentences into
FOL implemented in Prolog. This effort gave usratfinspiration about the form
of the lexicon we use in our FOLtoNL system.

In [5], ACE (Attempto Controlled English), a struotd subset of the English
language, is presented. ACE has been designedbsiitsite for formal symbol-
isms, like FOL, in the input of some systems to endthe input easier to under-
stand and to be written by the users.

Finally, in [6], a Controlled English to Logic Trslation system, called CELT,
allows users to give sentences of a restrictedifimgrammar as input. The sys-
tem analyses those sentences and turns them into\W@at is interesting about it
is the use of a PhraseBank, a selection of phrésetgal with the ambiguities of
some frequently used words in English like have,ake, take, give etc.

3 FOLtoNL Conversion Process

Our FOLtoNL conversion algorithm takes as input Ffotmulas [1] of the fol-
lowing form (in a BNF notation, where ‘[]’ denotesptional and ‘< >’ non-
terminal symbols): [<quant-expr>] [<stmtl> =>] <$8m, where <quant-expr>
denotes the expression of quantifiers in the foan>" denotes implication and
<stmtl> and <stmt2> denote thatecedent and theconsequent statements of the
implication. These statements do not contain gfiargi So, the input formula is
in its Prenex Normal Form [1, 2]. Furthermore, <dtmand <stmt2> can not con-
tain implications. Hence, the system currently &&sion the translation of simple
FOL implications or FOL expressions that do nottaonimplications at all. For
typing convenience, we use the following symbolsim FOL formulas: ‘~' (ne-
gation), ‘&’ (conjunction), ‘V’ (disjunction), ‘=>'(implication), ‘forall’ (universal
quantifier), ‘exists’ (existential quantifier).

The key idea of our conversion method, based o®hk inplication, is that
when both the antecedent and the consequent statemast, the consequent can
give us the Basic Structure (BS) of that implicatioNL translation. BS may con-
tain variable symbols. In that case, the antecedlfethte implication can help us to
define the entities represented by those variapigbsls. In other words, we can

A Knowledge Based System for Translating FOL Foamaul 159

find NL substitutes for those variables and thea them instead of variable sym-
bols in BS to provide the final NL translation d&timplication.

If the FOL expression does not contain variables,ttanslation is simpler: “if
<ant-translation> then <con-translation>", wherentt@anslation> and <con-
translation> consist of appropriately combined riptetations of atoms and con-
nectives. In case we have only <stmt2>, i.e. arresgion without implications,
we use the same method with one difference: varitlhl substitutes emerge from
the expression of quantifiers, since there is niea@tent. Of course, there is a
special case in which we choose some atoms ofxjpession for the estimation
of NL substitutes and the rest of them for the B8 &e work as if we had an im-
plication.

The basic steps of our algorithm are the following:

1. Scan the user input and determine <quant-exprsmtdst and <stmt2>.
Gather information for each variable (symbol, gifaert etc). Each atom
represents a statement. Analyze each atom in tiee tharts of its corre-
sponding statement: subject-part, verb-part andabigjart.

2. If <stmtl># &,

2.1 Find the basic structure (BS) of the final sentdvased on <stmt2>.

2.2 For each variable symbol in BS specify the corresipmg NL sub-
stitute based on <stmtl1>. If there are no varighhen BS is in NL.
In that case, find also the Antecedent Transla{idh) based on
<stmtl>.

3. If <stmtl> =g,

3.1 Find BS based on all or some of the atoms of <stmt2

3.2 For each variable symbol in BS specify the corresjiog NL sub-
stitute based on the information of quantifiergparticular atoms of
<stmt2>. If there are no variables, then BS isduik all the atoms
of <stmt2> and is in NL.

4. Substitute each variable symbol in BS for the gpomding NL substitute
and give the resulting sentence as output. If theeeno variables, distin-
guish two cases: If the initial FOL sentence wasngplication then return:
“If <AT> then <BS>". Otherwise, return BS.

In the sequel, we explain steps 2 and 3 of ourrdlgo, which are quite similar.

3.1 Finding the Basic Structure of the Final Sentence

In this subsection, steps 2.1 and 3.1 are analyzest.of all, we find the atoms in
<stmt2> that can aggregate, i.e. atoms that hawesdime subject-part and verb-
part but different object-parts, or the same sukgect but different verb-parts and
object-parts or different subject-parts but the samrb-part and the same object-
part. Atoms that can aggregate are combined to farmew sentence which is
called asub-sentence. If an atom cannot be aggregated, then it becaanssb-
sentence itself. This process ends up with a sstilpfsentences, which cannot be

160 Aikaterini Mpagouli and loannis Hatzilygeroudis

further aggregated and, when divided by commas &$. Let us consider the
following input sentences as examples:
(i) (forall x) (exists y) human(x) & human(y) => lovas()
(ii) (exists x) cat(x) & likes(Kate,x)
(iii) (forall x) (exists y) (exists z) dog(x) & me(y,x) & town(z) &
lives(y,z) => lives(x,z) & loves(x,y)
(iv) (forall x) bat(x) => loves(x,dampness) & loygglarkness) & small(x)
& lives(x,caves)
(v) (forall x) bird(x) & big(x) & swims(x) & ~fliegx) => penguin(x)

The basic structures produced for these input seateare the following (note
the aggregation in (iii) and (iv) and the exclusafrthe atom ‘cat(x)’ from BS in
(ii)):

(i) xlovesy.
(i) Kate likes x.
(iii) x lives in z and loves y.
(iv) x loves dampness and darkness and x is smdlliges in caves.
(v) xis a penguin.
The next stage is the specification of NL subst#ifor the variable symbols.

3.2 Finding Natural Language Substitutes for Variable Symbols

Natural language substitutes are specified basetstnt1>, in case of an implica-
tion, or based on quantifiers and maybe some pdaticsingle-term atoms of
<stmt2>, in case of an implication-less expressitme first step is to determine
the primary NL substitutes for all variables. Amary NL substitute contains all
the information provided for a variable symbol bygte-term atoms. The second
step is to enrich each variable’s primary NL substi with information about that
variable’s relation to other entities, via apprapei two-term atoms. This step is
ignored in case of an implication-less expressiia.use <name-of-x> to indicate
the NL substitute of a variable with symbol x anéfer-x> as a kind of referring
expression that we can use instead of <name-ofixenvihe latter appears more
than once in BS.

For each variable symbol, say x, the algorithm qrent the first step as fol-

lows:

A-1. If there is only one atom P(x): Depending ba tuantifier information
we have <quant> = “every”/*some”/“not every”/“noAccording to the
type of P, the primary name of x is determinedadievs: If P is a noun,
then <name-of-x>="<quant><P>" and <refer-x>="tha®>. If P is an
adjective, then <name-of-x>="<quant> <P> thing” amefer-x>="that
thing”. If P is a verb, then <name-of-x>="<quantsnyg that <P>" and
<refer-x>="that thing".

A-2. If there are more than one atoms, sgy)Ki=1,...k): These atoms are
divided into three categories according to the typtheir predicate (ad-

A Knowledge Based System for Translating FOL Foamaul 161

A-4.

jective, noun, verb). We denote by Pa, Pn and Bdipates of type ad-
jective, noun and verb respectively. The primarynaawill be of the

form; “<quant> [<P@,<Pa>,...and <Pg] thing/<Pn><Pn>,...and

<Pn,> [that <Py><Pw>,...and <Py]" and <refer-x> will be of the
form “that thing”/“that <Pg>, that <Pp>,...and that <Pg>".

. If there is no atom P(x), then, accordinghe tuantifier, <name-of-x>

will be: “everything’/“something’/“not everything"hothing”.

Special case: For each variable y, differeotf x, if there is no atom
Pn(y), but there are atoms;Bn x) and maybe atoms Pa(y) or/and Pv(y),
then we treat each of the atoms(Pnx) as an atom ‘has(x,y)’, after we
have computed the primary name of y, <name-of-y>f&a>,
<Pg>,...and <Pg] <Pn>,<Pn>,...and <Pp> [that <P\>,<Pw>,...and
<Pv>]" and <refer-y>="“that <P», that <Pp>,...and that <Pp>".
Hence, <name-of-x> becomes “<name-of-x> that hasnarof-y>".

The primary names of the variables for the exarnmgat sentences 1-5 are:

(i

<name-of-x> = “every human”, <name-of-y> = “somertan” (A-1)

(i) <name-of-x> = “some cat” (A-1)
(i) <name-of-x> = “every dog”, <name-of-y> = “a mastemame-of-z> =

“some town” (A-4)

(iv) <name-of-x> = “every bat” (A-1)

(v) <name-of-x> = “every big bird that swims and daesfly” (A-2)

The second step is the enrichment of primary nawegwo term atoms, to
achieve the final NL substitutes. The enrichmekésaplace via the recursive call
of the function “build-name” which is described @&l The enrichment function,
each time it is called, uses only the atoms thaehaot been used in previous
calls. For each variable symbol, say x, in BS,delhg the order of occurrence,
the following actions are performed by “build-name”

B-1.

B-2.

If there are no two-term atoms to be usedHterenrichment of <name-
of-x>: If x has not been referred to in the NL dithge of the previous
variable symbol in BS, or x is BS's first variabtben the final NL sub-
stitute for x is the primary substitute computedhie previous step.

If there are two-term atoms for the enrichmafrename-of-x> and x has
not been referred to in the NL substitute of thevimus variable symbol
in BS, he enrichment begins: If x is a subject £ &d appears only as a
second term in two-term atoms, the correspondiomatare transformed
appropriately to treat x as a subject-part, eitheusing passive tense for
verb predicates or by analyzing noun predicate atBn(y,x) as “x has y
as <Pn>". Then, for each atom having x as a finshtwe enrich <name-
of-x> as follows: <name-of-x>="<name-of-x> [and] ath <pred-
translation> <build-name(y)>", where <pred-translat="<Pv>"/ “is
the <Pn> of'/ “is <Pa> than>", according to the dicaite type.

. If the current variable symbol x has a refeem the NL substitute of

the previous one due to recursive calls of “buiddre”, we do not need
to build its NL substitute again. We use, insteagkfer-x> determined
earlier.

162 Aikaterini Mpagouli and loannis Hatzilygeroudis

Via the substitution of variable symbols for NL stitutes, we get the next NL
sentences as outputs for the previous five inputesees:

() Every human loves some human.

(i) Kate likes some cat.

(iii) Every dog that has some master that livesdme town lives in that
town and loves that master.

(iv) Every bat loves dampness and darkness any bat is small and lives
in caves.

(v) Every big bird that swims and does not fly igemguin.

4 Implementation Aspects

The FOLtoNL process has been implemented in J8s9dgs is a rule-based ex-
pert system shell written in Java, which howevdersf adequate general pro-
gramming capabilities, such as definition and ukduactions. The system in-
cludes two Jess modules, MAIN and LEX. Each Jessuiechas its own rule base
and its own facts and can work independently frbenrest of Jess modules. Focus
is passed from one module to the other to exedsteules.MAIN is the basic
module of the system, whereas LEX is the systeexgon.

The lexicon consists of a large number of factsceoning words, called word-
facts. Each word-fact is an instance of the follogvtemplate: (word ?type ?gen
?form ?past ?exp ?stem ?lem), where ‘word’ decldratit is a fact describing
the word ?lem and the rest are variables repregetiie fields that describe the
word (part of speech, gender, number, special gystam).

5 Conclusions and Discussion

In this paper, we present an approach for tramgjdfOL formulas into NL sen-
tences, called the FOLtoNL algorithm. The wholetaysis implemented in Jess
and consists of a rule-based system that implentkatsonversion algorithm and
a lexicon. Of course there are some restrictiord #nre challenges for further
work. One problem is the interpretation of sentsnedich are entirely in the
scope of a negation. Yet another constraint isefdnepon the use of ‘=>', which
can only occur once in the input sentence. Anotéstriction is that currently we
do not take into consideration the order of quarsfin the user input. Finally, the
lexicon at the moment contains a limited numbewofds. It should be further ex-
tended. All the above problems constitute our mesearch goals, concerning our
algorithm and system.

A Knowledge Based System for Translating FOL Foamaul 163
References

1. Genesereth MR, Nilsson NJ (1988) Logical foundatiminal. Morgan Kaufmann

2. Brachman RJ, Levesque HJ (2004) Knowledge repregamtahd reasoning. Morgan
Kaufmann

3. Reiter E, Dale R (2006) Building natural language gatien systems. Cambridge Uni-
versity Press

4. Rodriguez Vazquez de Aldana E (1999) An applicafiwriranslation of Spanish sen-
tences into first order logic implemented in prolog
http://aracne.usal.es/congress/PDF/EmilioRodrigukz.p

5. Fuchs NE, Schwertel U, Torge S (1999) Controlledirstlanguage can replace first
order logic. Proceedings 4EEE International Conference on Automated Software
Engineering (ASE’'99). 295-298.
http://www.ifi.unizh.ch/groups/reqg/ftp/papers/ASEQSEf

6. Pease A, Fellbaum C (2004) Language to logic tréinslavith PhraseBank. Proceed-
ings 2nd Global Conference (GWC’'04). 187-192

7. Friedman Hill E (2003) Jess in action: rule-basgstesms in Java. Manning Publishing.
2003

