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Abstract Within the broad area of computational intelligenités of great impor-
tance to develop new computational models of hubetraviour aspects. In this
report we look into the recently suggested thebat neural synchronization of
activity in different areas of the brain occurs wheeople attend to external visual
stimuli. Furthermore, it is suspected that thisserarea synchrony may be a gen-
eral mechanism for regulating information flow thgh the brain. We investigate
the plausibility of this hypothesis by implementiagcomputational model of vis-
ual selective attention that is guided by endogenamnd exogenous goals (i.e.,
what is known as top down and bottom-up attentidhp theoretical structure of
this model is based on the temporal correlationeafral activity that was initially
proposed by Niebur and Koch (1994). While a salfen@ap is created in the
model at the initial stages of processing visuplinat a later stage of processing,
neural activity passes through a correlation cdérsystem which comprises of co-
incidence detector neurons. These neurons medseirdegree of correlation be-
tween endogenous goals and the presented visalliséind cause an increase in
the synchronization between the brain areas indblaevision and goal mainte-
nance. The model was able to simulate with sudoelsavioural data from the “at-
tentional blink” paradigm (Raymond and Sapiro, 199bhis suggests that the
temporal correlation idea represents a plausibfothesis in the quest for under-
standing attention.

1 Introduction

Due to the great number of sensory stimulation éhperson experiences at any
given point of conscious life, it is practically possible to integrate all informa-

tion that is available to the senses into a sipgieeptual event. This implies that
a mechanism must be present in the brain to foelgsts/ely its resources on spe-
cific information. This mechanism, known as attentican be described as the
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process by which information is passed on to adridével of processing either
through relative amplification of the neural adtvthat represents the “to be at-
tended” stimuli or by suppression of the distragtiatimuli, or both.

Attention can be guided by top-down and bottom-upcessing as cognition
can be regarded as a balance between internal atiotis and external stimula-
tions. Volitional shifts of attention or endogenoasention results from "top-
down" signals originating in the prefrontal cortekile exogenous attention is
guided by salient stimuli from "bottom-up" signatsthe visual cortex (Corbetta
and Shulman, 2002).

Previous literature on attention suggests thagttention selection mechanism
functions in two hierarchical stages: An early stad parallel processing across
the entire visual field that operates without caydanitation, and a later limited-
capacity stage that deals with selected informaitioa sequential manner. When
items pass from the first to the second stage afgusing, they are typically con-
sidered as selected. (Treinsman and Gelade 1980).

Previous research suggests that attention is lasédo processes. The first is
known as “biased competition” (Moran and Desimat@85) and it is supported
by findings from studies with single-cell recordigrhese studies have shown
that attention enhances the firing rates of theamsithat represent the attended
stimuli and suppresses the firing rates of the oresithat encode the unattended
stimuli. The second process, which refers to thelsgonization of neural activity
during the deployment of attention, is supportedstudies showing that neurons
selected by attention have enhanced gamma-frequsmoronization (Gruber et
al., 1999; Steinmetz et al., 2000; Fries et alQ130For example, in a study by
Fries et al. (2001) the activity in area V4 of train of macaque monkeys was re-
corded while the macaques attended relevant stirRalsults showed increased
gamma frequency synchronization for attended stimmnpared to the activity
elicited by distractors. A recent study by Buelhnand Deco (2008) provided
evidence that attention is affected by both biasmdpetition and the synchroniza-
tion of neural activity.

A computational model for biased competition hasrbproposed by Deco and
Rolls (2005). In this model Deco and Rolls havevaihehat competition between
pools of neurons combined with top-down biasinghi competition gives rise to
a process that can be identified with attentionwkbeer, it should be pointed out
that this model only considered rate effects whdenma synchronization was not
addressed.

In the present report, we propose a computatiormleifor endogenous and
exogenous visual attention that is based on batrate and the synchronization
of neural activity. The basic functionality of tineodel relies on the assumption
that the incoming visual stimulus will be manipelhtby the model based on the
rate and temporal coding of its associated newtality. The rate associated with
a visual stimulus is crucial in the case of exogsnattention since this type of at-
tention is mainly affected by the different featu@ the visual stimuli. Stimuli
with more salient features gain an advantage fesipg through the second stage
of processing and subsequently for accessing wonkiemory. On the other hand,
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endogenous or top-down attention is mainly affettgdhe synchronization of in-
coming stimuli with the goals that guide the exemubf a task. These goals are
most likely maintained in the prefrontal cortextbe brain. The presence of a
closed link between endogenous attention with syoréhation is supported by
many recent studies (Niebur et al 2002, Gross 20@4l). For example, Saalmann
et al (2007) recorded neural activity simultanepusbm the posterior parietal
cortex as well as an earlier area in the visuahway of the brain of macaques
during the execution of a visual matching task.diigs revealed that there was
synchronization of the timing activities in the twegions when the monkeys se-
lectively attended to a location. Thus, it seenst tharietal neurons which pre-
sumably represent neural activity of the endogengaels may selectively in-
crease activity in earlier sensory areas. In aolditthe adaptive resonance theory
by Grossberg (1999) implies that temporal patteymihactivities could be ideally
suited to achieve matching of top—down predictiaith bottom—up inputs, while
Engel et al (2001) in their review have noted thtop—down effects induce a
particular pattern of subthreshold fluctuationslé@ndrites of the target population,
these could be ‘compared’ with temporal patterisirag from peripheral input by
virtue of the fact that phase-shifted fluctuatiovid cancel each other, whereas in-
phase signals will summate and amplify in a higioylinear way, leading to a sa-
lient postsynaptic signal” (p.714). Finally, it shd be noted that Hebbian learning
suggests that action potentials that arrive synausly at a neuron summate to
evoke larger postsynaptic potentials than do agimtentials that arrive asynchro-
nously; thus, synchronous action potentials hageeater effect at the next proc-
essing stage than do asynchronous action potentials

A mechanism for selective attention based on tbe aad synchronization of
the neural activity for incoming stimuli is thuseasin the proposed model. The
model has been implemented computationally to siteuthe typical data from
“the attentional blink” phenomenon (Raymond andi®gp992).

2 The Attentional Blink Phenomenon

The Attentional Blink (AB) is a phenomenon obserweéth using the rapid serial
visual presentation (RSVP) paradigm. In the oribegoeriment by Raymond and
Shapiro (1992), participants were requested totifyetwo letter targets T1 and
T2 among digit distractors with each stimulus apipegfor about 100ms (Figure
1a). Results revealed that the correct identificatsh T1 impaired the identifica-
tion of T2 when T2 appeared within a brief tempavaidow of 200-500 ms after
T1. When T2 appeared outside this time window ifldde identified normally
(Figure 1.b series 1.).

Another important finding from the AB task is thalhen T1 is not followed by
a mask/distractor, the AB effect is significantgduced. That is, if the arrival of
the incoming stimulus at t= 200ms (lag 2) and/gr 3a(t=300ms) are replaced by
a blank then the AB curve takes the form showndries 2 and 3 in Figure 1.
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Figurel. Presentation of the RSVP for the “atterdloblink” experiment (Figurel.a) and the
typical attentional blink curve with no blanks (reeries), with blank at lag 1 (green series) and
blank at lag 2 (black series) based on the daRagmond and Sapiro (1992) (Figurel.b).

3 Neural Correlates of the Attentional Blink Phenonenon

Event-related potentials (ERPs) are signals thatsome the electrical activity of
neuronal firing in the brain relative to eventstsas the presentation of stimuli.
Over the years a number of ERP components relatatteéntion have been identi-
fied in the literature.

The first distinguishable physiological signals ateserved around 130-150ms
post stimulus (P1/N1 signals). Most likely, theggnals correspond to the initial
processing in the visual cortex and reflect early-fpontal activation by the in-
coming visual stimuli. At about 180-240 ms postratius the P2/N2 signals are
observed which have become clearer over the lassyeith the use of MEG (lo-
annides and Taylor, 2003). These signals have pemwosed as control signals
for the movement of attention (Hopf et al., 200Gylor 2002). More specifically,
the CODAM model of attention that is proposed bylda(2002) follows a con-
trol theory approach and uses the N2 signal asitl from the controller that
modulates the direction of the focus of attentigioreover, in Bowman and Wy-
ble’'s (2007) Simultaneous Type Serial Token STodel, when the visual sys-
tem detects a task-relevant item, a spatially $igeg@rransient Attentional En-
hancement (TAE), called the blaster, is triggetedhe ST, model the presence of
a correlation between the blaster and a comporfahiedP2/N2 signal is also hy-
pothesized. The P300 ERP component which is presexiiout 350—600 ms post-
stimulus is taken to be an index of the availapifior report of the attention-
amplified input arriving from earlier sensory cods to the associated working
memory sensory buffer site. Thus, access to th&imgpmemory sensory site is
expected to occur in the specific time window. Hinahe N4 component which
is recorded at around 400 ms is related to semanticessing indicating percep-
tual awareness.
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The chronometric analysis of the ERPs occurringnduthe attentional blink
has revealed some important observations. More iitapity in the case where the
second target was not perceived, the P1/N1 an®4@® components which are
considered indices of semantic processing wereostiined even though the N2
and P300 were no longer observed (Sergent et &)200us, one possible expla-
nation for the classic U-shaped curve of Figure(4dvies 1) based on the identifi-
cation of the second target to have a minimum atirad 300 ms, is that an early
attention processing component of the second tépgstsibly N2 of T2) is inhib-
ited by a late component of the first target (P800°1), (Vogel et al 1998,Fell et
al 2001).

4  Proposed Model

The proposed model is a two stage model that, mrast to other computational
models, contains a correlation control module (Fég8). That is, in the case of
endogenous attention tasks, the functioning ofntloelel is based on the synchro-
nization of incoming stimuli with information held the endogenous goals mod-
ule which has probably been initialized by inforroatfrom long —term memory
(Engel et al 2001).

In the conducted simulations each stimulus thagrerthe visual field, is coded
by determining the rate of the related neuron sp{k@hanced relatively by the sa-
lience filters) as well as the exact timing of #$m@kes. This means that both of
these characteristics are considered in the raweeba the different visual stimuli
to access working memory as initially implementedciicomputational model by
Niebur and Koch (1994).

As shown in Figure 3, a visual stimulus initiallyowes from the inputs module
into the first stage of parallel processing. Irsthiage, competition among all sti-
muli, implemented as lateral inhibition, exerts finst impact on each of the neu-
ral responses. Following that, as the neural @gtoontinues up through the visual
hierarchy, the information from the visual stimpdisses through the semantic cor-
relation control module. During this stage of ps;ea coincidence detection me-
chanism similar to the procedure discussed by Milarid Niebur (2008) meas-
ures the degree of correlation between the vigiral$ and the endogenous goals
(in the case of top-down attention).

This procedure provides an advantage (in the chsenplification) to the se-
lected neural activity for accessing working memadtipwever, the initialization
of a signal by the correlation control module (tbah be implied to be relevant
with the N2pc signal -component of N2/P2), can égresented by the combined
firing of a neural network. Thus, it is approprideconsider a relative refractory
period each time the correlation control modulee$l' or activates the specific
signal for amplification or inhibition. Consequentthe refractory period of the
correlation control module combined with the laténhibition between the RSVP
items causes the attenuation of the attentionakbih the case in which the dis-
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tractors are replaced by blanks and both these anésths are inherited in the
proposed model (series 2 and 3 in Figurel.b.).
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Figure 3. Diagram of the proposed computationalehod

Finally, after the handling of the neural activiy each incoming stimulus, a
specific working memory node is excited producingibition towards the other
working memory nodes. After a specific thresholgpassed, the working memory
node will fire an action potential simulating thatialization of the P300 signal
representing perceptual awareness of the spedgfi@bvstimuli as well as inhibi-
tion of the following signal from the correlatioortrol model ( possibly the N2/
P2 signals of the following stimulus) if it appedatging that specific timing.

It should be also noted that even stimuli with céatgly no correlation with
the endogenous goals could gain access to workigemmary sites, provided that
their response has been enhanced sufficiently bys#tience filters at the first
stages of processing. Thus, the model allows fogerous shifts of attention.
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5 Simulations and Results

The computational model has been implemented irMatab-Simulink environ-
ment. Each of the visual stimuli has been represebly a 10 ms sequence of
spikes. As seen in Figure 4, in each ms a valumef(spike) or zero (no-spike) is
possible. For coding a target, a specific patters leen decided so that if the in-
coming stimulus represents a target, it will have%possibility for each time step
to have the correct information. On the other héitkde incoming stimulus repre-
sents a distractor, it will have a 0.85 possibitifynot having the correct informa-
tion at each time step. Both distractors and targgt have the same rate, which
equals to 10 spikes + a random noise, since batggts and distractors) have the
same effect from the salience filters (same brigbsh intensity etc.).
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Figure4. Coding of the incoming visual stimuli.

Inside the endogenous goals module, the patterresepting the targets is
saved. Therefore, when a visual stimulus enterspiacidence detector mecha-
nism measures the degree of correlation and firetative signal. For the simula-
tions, T1 was always presented at titn@® and T2 at each of the following time
lags. For each time lag that T2 was presentedsithelations where run for 50
times for the three different cases. That is, whistractors capture all the avail-
able positions causing masking to the targets, bldhk at lag 1 and with blank at
lag 2. The simulation results compared to expertaleesults can be seen in Fig-
ure 5 below.
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Figure5. Comparison between simulation data (Sd)experimental data (5.b).
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6 Discussion

The model described above has implemented compogdty a novel conjecture
put forward by Niebur and Koch 1994. Niebur and K&@ave suggested that im-
posing a temporal modulation on attended sensanyats is a plausible mecha-
nism for producing unique percepts within the hjgtistributed architecture of
the cortex.

The coincidence detector mechanism proposed asia tmctionality of the
correlation control module between the incomingnsti and the endogenous
goals can cause an increase in the synchronizafitine different cortical areas
involved in the process. Actually, coincidence daie neurons in the brain are
neurons that they fire if they receive synchronimpaits from other neurons. Co-
incidence of firing between two or more neurons camnse increase in the strength
of the following synapses connected on the speniigrons. This will gradually
cause synchronization between the involved bragasras has been observed
(Saalmann et al 2007) and mentioned in the pre\deason.

The model presented here has successfully managsdhtilate the behavioral
data of the attentional blink experiment giving aeplementary confirmation
that the temporal correlation between differenticat areas might be an impor-
tant mechanism for regulating information throubé brain. Furthermore, the co-
incidence detector neural network model of selecttention can be used to
simulate some other important attentional phenomearaributing thus to the
formulation of more explicit theories of attention.

References

1. Bowman H.,Wyble S.(2007). “The Simultaneous Typeri@ Token Model of Temporal
Attention and Working Memory.” Psy. Re., Vol. 114

2. Buehlmann A., Deco G (2008). “The Neuronal Basig\tiéntion: Rate versus Synchro-
nization Modulation”. The Jour. of Neuros. 28(30)

3. Corbetta, M., Shulman, G.L. (2002)."Control of golilected and stimulus-driven atten-
tion in the brain”. Nature R. Neuroscience 3:205:21

4. Deco G, Rolls ET (2005). “Neurodynamics of biasethpetition and cooperation for at-
tention: a model with spiking neurons”. J. Neurcgit84

5. Engel A. K., Fries P., Singer W.(2001) “Dynamic gic¢ions: Oscillations and synchrony
in top—down processing” Nature, Volume 2 pp.704-716

6. Fries P, Reynolds JH, Rorie AE, Desimone R (200pdulation of oscillatory neuronal
synchronization by selective visual attention”.ebie 291:1560-1563.

7. Grossberg, S. (1999). “The link between brain legynattention, and consciousness”.
Conscious. Cogn 8, 1-44
8. Gross J., Schmitz F., Schnitzler I. et al (2004fotjulation of long-range neural syn-

chrony reflects temporal limitations of visual atien in humans.” PNAS August 31,
2004 vol. 101 no. 35 pp13050-13055

9. Gruber T, Muller MM, Keil A, Elbert T (1999). “Seatéive visual-spatial attention alters
induced gamma band responses in the human EEGI’ Nelirophysiol 110:2074-2085.



Computational Modeling of Visual Selective Attemtio 223

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Hopf, J.-M., Luck, S.J., Girelli, M., Hagner, T.,dvdgun, G.R., Scheich, H., Heinze, H.-
J., (2000). “Neural sources of focused attentiorvisual Search”. Cereb. Cortex 10,
1233-1241.

loannides, A.A., Taylor, J.G., (2003). “Testing mnatslof attention with MEG”. In: Pro-
ceedings IJCNN'03. pp. 287-297.

Mikula S., Niebur E., (2008). “Exact Solutions f&ate and Synchrony in Recurrent
Networks of Coincidence Detectors.” Neural Comgata20

Moran J, Desimone R (1985). “Selective attentioregaisual processing in the extrastri-
ate cortex”. Science 229:782-784.

Niebur E., Hsiao S.S., Johnson K.O., (2002) “Syankr a neuronal mechanism for at-
tentional selection?” Cur.Op. in Neurobio., 12:119%

Niebur E, Koch C (1994). “A Model for the Neuroralplementation of Selective Visual
Attention Based on Temporal Correlation Among Nesto Journal of Computational
Neuroseience 1, 141-158.

Raymond JE, Shapiro KL, Arnell KM (1992). “Tempoyauppression of visual process-
ing in an RSVP task: an attentional blink?". Jxjf.eosyc. Human perc, and performance
18 (3): 849-60

Saalmann Y.B., Pigarev I.N., et al. (2007Neural Mechanisms of Visudttention:
How Top-Down Feedback Highlights Relevant Locatiddsience 316 1612

Sergent C., Baillet S. & Dehaene S. (2005). “Timafghe brain events underlying ac-
cess to consiousness during the attentional bliNkf’ Neurosci, Volume 8, Number 10,
page 1391-1400.

Steinmetz PN, Roy A, et al.(2000). “Attention maates synchronized neuronal firing in
primate somatosensory Cortex”. Nature 404:187-190.

Taylor J.G., Rogers M. (2002). “A control modeltbé movement of attention”. Neural
Networks 15:309-326

Treisman, A., & Gelade, G. (1980). “A feature-inmaigpn theory of attention”. Cognitive
Psychology, 12, 97-136.

Vogel E.K., Luck S.J., Shapiro K.L., (1998). “Elespphysiological evidence for a post-
perceptual locus of suppression during the atteatiblink.” J. Exp. Psychol. Hum. Per-
cept. Perform. 24 pp.1656-1674.



