
Automated Product Pricing Using
Argumentation

Nikolaos Spanoudakis1,2, Pavlos Moraitis2

1Department of Sciences - Technical University of Crete,
nikos@science.tuc.gr

2Department of Mathematics and Computer Science – Paris Descartes University,
{pavlos, nikolaos.spanoudakis}@mi.parisdescartes.fr

Abstract This paper describes an argumentation-based approach for automating
the decision making process of an autonomous agent for pricing products. Product
pricing usually involves different decision makers with different - possibly con-
flicting - points of view. Moreover, when considering firms in the retail business
sector, they have hundreds or thousands of products to apply a pricing policy. Our
approach allows for applying a price policy to each one of them by taking into ac-
count different points of view expressed through different arguments and the dy-
namic environment of the application. This is done because argumentation is a
reasoning mechanism based on the construction and the evaluation of interacting
conflicting arguments. We also show how we conceived and developed our agent
using the Agent Systems Engineering Methodology (ASEME).

1 Introduction

Automating the product pricing procedure in many different types of enterprises
like retail businesses, factories, even firms offering services is an important issue.
Product pricing is concerned with deciding on which price each of a firm’s prod-
ucts will have in the market. The product pricing agent that we present in this pa-
per allows for the integration of the views of different types of decision makers
(like financial, production, marketing officers) and can reach a decision even
when these views are conflicting. This is achieved with the use of argumentation.

Argumentation has been used successfully in the last years as a reasoning
mechanism for autonomous agents in different situations, as for example for de-
liberating over the needs of a user with a combination of impairments [8] and for
selecting the funds that should be included in an investment portfolio [11]. It is the
first time that it is used for decision making in the retail business sector. This pa-
per aims to show that argumentation can be applied successfully in an area that

Nikolaos Spanoudakis and Pavlos Moraitis 322

sparse works provide solutions, the retail business sector. Argumentation re-
sponded well to our requirements, which demanded a system that would have the
possibility to apply a pricing policy adjusted to the market context, in the mean-
while reflecting the points of views of diverse decision makers.

This product pricing agent was developed in the context of MARKET-MINER
project that was co-funded by the Greek government. After evaluation, its results
have been considered to be successful and are expected to have an important im-
pact in the firm’s business intelligence software suite in the next four to five years.

In what follows we firstly present the basics of the used argumentation frame-
work in section 2 and then, in section 3, we discuss how we modeled the knowl-
edge of the particular application domain. Subsequently, we present the product
pricing agent, including information on how we conceived and modeled the sys-
tem using the Agent Systems Engineering Methodology (ASEME), in section 4,
followed by the presentation of the evaluation results in section 5. Finally, in sec-
tion 6, we discuss related work and conclude.

2 The Theoretical Framework

Decision makers, be they artificial or human, need to make decisions under com-
plex preference policies that take into account different factors. In general, these
policies have a dynamic nature and are influenced by the particular state of the en-
vironment in which the agent finds himself. The agent's decision process needs to
be able to synthesize together different aspects of his preference policy and to
adapt to new input from the current environment. We model the product pricing
decision maker as such an agent.

To address requirements like the above, Kakas and Moraitis [5] proposed an
argumentation based framework to support an agent's self deliberation process for
drawing conclusions under a given policy. The following definitions present the
basic elements of this framework:

Definition 1. A theory is a pair (T, P) whose sentences are formulae in the
background monotonic logic (L, ⊢) of the form L←L1,…,Ln, where L, L1, …, Ln
are positive or negative ground literals. For rules in P the head L refers to an (irre-
flexive) higher priority relation, i.e. L has the general form L = h_p(rule1, rule2).
The derivability relation, ⊢ , of the background logic is given by the simple infer-
ence rule of modus ponens.

An argument for a literal L in a theory (T, P) is any subset, T, of this theory
that derives L, T ⊢ L, under the background logic. A part of the theory T0 ⊂ T, is
the background theory that is considered as a non defeasible part (the indisput-
able facts). An important notion in argumentation is that of attack. In the current
framework an argument attacks (or is a counter argument of) another when they
derive a contrary conclusion. Another notion is that of admissibility. An argument
(from T) is admissible if it counter-attacks all the attacks it receives. For this it

Automated Product Procing Using Argumentations 323

needs to take along priority arguments (from P) and makes itself at least as strong
as its counter-arguments

Definition 2. An agent’s argumentative policy theory or theory, T, is a tuple
T = (T, PR, PC) where the rules in T do not refer to h_p, all the rules in PR are prior-
ity rules with head h_p(r1, r2) s.t. r1, r2 ∈ T and all rules in PC are priority rules
with head h_p(R1, R2) s.t. R1, R2 ∈ PR ∪ PC.

Thus, in defining the decision maker’s theory three levels are used. The first
level (T) that defines the rules that refer directly to the subject domain, the second
level that define priorities over the first level rules and the third level rules that de-
fine priorities over the rules of the previous level.

Gorgias (http://www.cs.ucy.ac.cy/~nkd/gorgias/), a prolog implementation of the
framework presented above, defines a specific language for the object level rules
and the priorities rules of the second and third levels. A negative literal is a term
of the form neg(L). The language for representing the theories is given by rules
with the syntax rule(Signature, Head, Body) where Head is a literal, Body is a list of
literals and Signature is a compound term composed of the rule name with selected
variables from the Head and Body of the rule. The predicate prefer/2 is used to cap-
ture the higher priority relation (h_p) defined in the theoretical framework. It
should only be used as the head of a rule. Using the previously defined syntax we
can write the rule rule(Signature, prefer(Sig1, Sig2), Body)., which means that the rule
with signature Sig1 has higher priority than the rule with signature Sig2, provided
that the preconditions in the Body hold. If the modeler needs to express that two
predicates are conflicting he can express that by using the rule conflict(Sig1,Sig2).,
which indicates that the rules with signatures Sig1 and Sig2 are conflicting. A lit-
eral’s negation is considered by default as conflicting with the literal itself.

3 Domain Knowledge Modeling

Firstly, we gathered the domain knowledge in free text format by questioning the
decision makers that participate in the product pricing procedure. They were offi-
cers in Financial, Marketing and Production departments of firms in the retail
business but also in the manufacture domain. Then, we processed their statements
aiming on one hand to discover the domain ontology and on the other hand the de-
cision making rules.

We used the Protégé (http://protege.stanford.edu/) open source ontology editor
for defining the domain concepts and their properties and relations. In Figure 1,
the Product concept and its properties are presented. The reader can see the prop-
erties identified previously hasPrice and isAccompaniedBy. Price is defined as a
real number (Float) and isAccompaniedBy relates the product to multiple other in-
stances of products that accompany it in the consumer’s cart. In the figure, we also
present the firm strategy concept and its properties that are all Boolean and repre-
sent the different strategies that the firm can have activated at a given time. For

Nikolaos Spanoudakis and Pavlos Moraitis 324

example, the hitCompetition property is set to true if the firm’s strategy is to re-
duce the sales of its competitors. The property retail_business characterizes the
firm as one in the retail business sector.

Fig. 1. The Product and FirmStrategy ontology concepts.

For our knowledge base definition we used Prolog. To use the concepts and
their properties as they were defined in Protégé we defined that a Boolean prop-
erty is encoded as a unary predicate, for example the advertisedByUs property of
the Product concept is encoded as advertisedByUs(ProductInstance). A property
with a string, numerical, or any concept instance value is encoded as a binary
predicate, for example the hasPrice property of the Product concept is encoded as
hasPrice(ProductInstance, FloatValue). A property with a string, numerical, or
any concept instance value with multiple cardinality is encoded as a binary predi-
cate. However the encoding of the property to predicate can be done in two ways.
The first possibility is for the second term of the predicate to be a list. Thus, the
isAccompaniedBy property of the Product concept is encoded as isAccompa-
niedBy(ProductInstance, [ProductInstance1, ProductInstance2, …]), where prod-
uct instances must not refer to the same product. A second possibility is to create
multiple predicates for the property. For example the hasProductType property of
the Product concept is encoded as hasProductType(ProductInstance, Pro-
ductTypeInstance). In the case that a product has more than one product types, one
such predicate is created for each product type.

Then, we used the Gorgias framework for writing the rules. The goal of the
knowledge base would be to decide on whether a product should be priced high,

Automated Product Procing Using Argumentations 325

low or normally. Thus it emerged, the hasPricePolicy property of the Product
concept. After this decision we could write the object-level rules each having as
head the predicate hasPricePolicy(Product, Value) where Value can be low, high
or normal – the relevant limitation for this predicate is also defined in the ontology
(see the hasPricePolicy property of the Product concept in Figure 1). Then, we
defined the different policies as conflicting, thus only one policy was acceptable
per product. To resolve conflicts we consulted with the firm (executive) officers
and defined priorities over the conflicting object rules. Consider, for example, the
following rules (variables start with a capital letter as it is in Prolog):

rule(r1_2_2(Product), hasPricePolicy(Product, low), [hitProductTypeCompetition(

ProductType), hasProductType(Product, ProductType)]).
rule(r2_3(Product), hasPricePolicy(Product, high), [newTechnologyProduct(Product),

advertisedInvention(Product)]).
rule(pr1_2_6(Product), prefer(r1_2_2(Product), r2_3(Product)), []).

Rules r1_2_2 and r2_3 are conflicting if they are both activated for the same

product. The first states that a product should be priced low if the firm wants to hit
the competition for its product type, while the second states that a new technology
product that is an advertised invention should be priced high. To resolve the con-
flict we add the pr1_2_6 priority rule which states that r1_2_2 is preferred to
r2_3.

4 The Product Pricing Agent

In this section we firstly describe the Market-mIner product Pricing Agent (also
referred to as MIPA) development process and then we focus in two important as-
pects of it, the decision making module and human-computer interaction.

We designed our agent using the Agent Systems Engineering Methodology
(ASEME) [10]. During the analysis phase we identified the actors and the use
cases related to our agent system (see Figure 2). Note that the Agent Modeling
Language [9] (AMOLA), which is used by ASEME for modeling the agent-based
system, allows for actors to be included in the system box, thus indicating an
agent-based system. The system actor is MIPA, while the external actors that par-
ticipate in the system’s environment are the user, external systems of competitors,
weather report systems (as the weather forecast influences product demand as in
the case of umbrellas) and municipality systems (as local events like concerts,
sports, etc, also influence consumer demand). We started by identifying general
use cases (like interact with user) and then we elaborated them in more specific
ones (like present information to the user and update firm policy) using the <<in-
clude>> relation.

Then, we completed the roles model as it is presented in Figure 3(a). This mod-
el defines the dynamic aspect of the system, general use cases are transformed to
capabilities, while the generic ones are transformed to activities. We used the Gaia

Nikolaos Spanoudakis and Pavlos Moraitis 326

operators ([14]) for creating liveness formulas that define the dynamic aspect of
the agent system, what happens and when it happens. A. B means that activity B is
executed after activity A, Aω means that activity A is executed forever (when it fin-
ishes it restarts), A | B means that either activity A or activity B is executed and A ||

B means activity A is executed in parallel with activity B.

Fig. 2. MIPA Use Case Diagram

The next step was to associate each activity to a functionality, i.e. the technol-
ogy that will be used for its implementation. In Figure 3(b) the reader can observe
the capabilities, the activities that they decompose to and the functionality associ-
ated with each activity. The choice of these technologies is greatly influenced by
non-functional requirements. For example the system will need to connect on di-
verse firm databases. Thus, we selected the JDBC technology (http://java.sun.com/

javase/technologies/database/) that is database provider independent.
The last step, before implementation, is to extract from the roles model the sta-

techart that resembles the agent. This is achieved by transforming the liveness
formula to a statechart in a straightforward process that uses templates to trans-
form activities and Gaia operators to states and transitions (see [9] for more de-
tails). The resulting statechart, i.e. the intra-agent control (as it is called in
ASEME) is depicted in Figure 7. The statechart can then be easily transformed to
a computer program.

The decision making capability includes four activities:

1. wait for new period activity: It waits for the next pricing period
2. get products information activity: It accesses a corporate database to collect the

data needed for inference,
3. determine pricing policy activity: It reasons on the price category of each prod-

uct, and,
4. fix prices activity: Based on the previous activity’s results, it defines the final

product price.

Automated Product Procing Using Argumentations 327

Role: Product Pricing Agent
Liveness:
product pricing agent = (decide on

pricing policy)ω || (interact with
user)ω || [(get market
information)ω]

decide on pricing policy = wait for
new period. get products
information. determine pricing
policy. fix prices.

interact with user = (present
information to the user | update
firm policy)+

get market information = get weather
information. get local
information. get competition
information.

(a) (b)

Fig. 3. MIPA Role Model (a) and the relation between Capabilities, Activities and Functional-
ities (b).

Fig. 4. MIPA Intra-agent Control Model

The determine pricing policy activity invokes the prolog rule base presented in
§3 that includes 274 rules, 31 of which are the object rules and 243 are the priority
rules. The fix prices activity’s algorithm aims to produce a final price for each
product. The algorithm’s inputs are a) the procurement/manufacture cost for a
product, or its price in the market, b) the outcome of the reasoning process (the
price policy for each product), c) the default profit ratio for the firm, d) a step for
rising the default profit ratio, e) a step for lowering this ratio, and, f) the lowest
profit ratio that the firm would accept for any product. The pricing algorithm also
takes into account the number of arguments that are admissible for choosing a
specific price policy, strengthening the application of the policy.

Nikolaos Spanoudakis and Pavlos Moraitis 328

A screenshot from the human-machine interface is presented in Figure 5. In the
figure we present the pricing results to the application user for some sample prod-
ucts. The facts inserted to our rule base for this instance are the:

rule(f1, high_low_strategy, []).
rule(f2, hitProductTypeCompetition(electrical_domestic_appliances), []).
rule(f3, penetrateProductTypeMarket(electrical_domestic_appliances), []).
rule(f4, hasProductType(jacket_XXL, clothing), []).
rule(f5, advertisedByUs(lcd_tv_32_inches), []).
rule(f6, advertisedInvention(lcd_tv_32_inches), []).
rule(f7, newTechnologyProduct(lcd_tv_32_inches), []).
rule(f8, isAccompaniedBy(lcd_tv_32_inches, [jacket_XXL]), []).
rule(f9, hasProductType(lcd_tv_32_inches, electrical_domestic_appliances), []).
rule(f10, hasProductType(t_shirt_XXL, clothing), []).

The reader should notice the application of the rules presented in §3 for the

lcd_tv_32_inches product that is a new technology product and an advertised in-
vention but is priced with a low policy because its product type (electri-
cal_domestic_appliances) has been marked by the firm as a market where it
should hit competition. Moreover, the firm has also decided that it wants to pene-
trate the electrical_domestic_appliances market, therefore there are two argu-
ments for pricing the lcd_tv_32_inches product low. In Figure 5, these reasons are
explained to the user in human-readable format and also the final price is com-
puted. The human-readable format is generated automatically by having default
associations of the predicates to free text. The t_shirt_XXL and jacket_XXL prod-
ucts are clothes that are having a normal pricing policy. However, the jacket_XXL
product accompanies in the consumer’s basket the lcd_tv_32_inches product,
therefore, it is priced high according to the high_low_strategy of the firm.

Fig. 5. The Product Pricing Agent Application

Automated Product Procing Using Argumentations 329

5 Evaluation

The product pricing agent application was evaluated by SingularLogic SA, the
largest Greek software vendor for SMEs. The MARKET-MINER project included
an exploitation plan [12]. The application evaluation goals were to measure the
overall satisfaction of its users. In the evaluation report [13] three user categories
were identified, System Administrators, Consultants and Data Analysts. The crite-
ria C1) Performance, C2) Usability, C3) Interoperability, and C4) Security and
Trust were used for measuring user satisfaction. The users expressed their views
in a relevant questionnaire and they marked their experience on a scale of one
(dissatisfied) to five (completely satisfied) and their evaluation of the importance
of the criterion on a scale of one (irrelevant) to five (very important).

The Process of Evaluation of Software Products [2] (MEDE-PROS) was used
for our set of criteria. The results of the evaluation are presented in Table 1 and
they have been characterized as “very satisfactory” by the SingularLogic research
and development software assessment unit. MARKET-MINER has been decreed
as worthy for recommendation for commercialization and addition to the Firm’s
software products suite.

Table 1. MARKET-MINER evaluation results. The rows with white background are those of the
consultants, while those with grey background represent the evaluation of the system administra-
tors (see [13] for more details).

Criterion Criterion performance Criterion Importance
C1 86% 0,78
C2 83% 0,88
C3 91% 0,88
C4 83% 0,64
C3 86% 0,92
C4 61% 0,92

6 Conclusion and Future Perspectives

This paper presented a novel application of autonomous agents for automating the
product pricing process. This issue has never been tackled before in this scale. A
patent just provided some guidelines on an architecture for such a system exclu-
sively for super market chains [1]. Earlier works proposed a support of the product
pricing process for the retail business sector but did not provide an automated de-
cision mechanism [7]. In this paper we used argumentation that allows for ex-
pressing conflicting views on the subject and a mechanism for resolving these
conflicts. Moreover, with argumentation it is possible to provide an explanation of
the decisions that the agent makes. This is also the main technical difference with
existing works in the agent technology literature, where product pricing agents
have been referred to as economic agents, as price bots, or, simply, as seller agents

Nikolaos Spanoudakis and Pavlos Moraitis 330

(see e.g. [6], [3] and [4]) and their responsibility is to adjust prices automatically
on the seller’s behalf in response to changing market conditions [6].

All these existing solutions focus on a selected product negotiation rather than
bundles of products (as in the retail business sector). The MARKET-MINER
product pricing agent borrows interesting features from these works, i.e. resets
prices at regular intervals and can employ different strategies for pricing depend-
ing on market conditions. The added value of the MARKET-MINER product pric-
ing agent regarding these approaches is the capability to model human knowledge
and apply human-generated strategies to automate product pricing with the possi-
bility to provide logical explanations to decision makers, if needed.

The presented application’s results were evaluated according to a widely used
process (MEDE-PROS [2]) and they were proposed by the SingularLogic research
and development department for commercialization by the firm.

References

1. Charles C, Freeny Jr (2000) Automated Synchronous Product Pricing and Advertising.
United States Patent 6076071

2. Colombo R, Guerra A (2002) The Evaluation Method for Software Product. In Proc 15th
Int Conf on Softw & Syst Eng & Appl, Paris, France, December 3-4

3. Dasgupta P, Das S (2000) Dynamic pricing with limited competitor information in a multi-
agent economy. In LNCS 1906, Springer-Verlag: 291-310

4. DiMicco JM, Greenwald A, Maes P (2001) Dynamic pricing strategies under a finite time
horizon. In Proc ACM Conf on Electron Commer, October

5. Kakas A, Moraitis P (2003) Argumentation based decision making for autonomous agents.
In Proc 2nd Int Conf on Auton Agents and Multi-Agent Syst, Melbourne, Australia, July
14-18

6. Kephart JO, Hanson JE, Greenwald AR (2000) Dynamic pricing by software agents. Com-
put Netw 36(6):731-752

7. Matsatsinis N, Moraitis P, Psomatakis V et al (2003) An Agent-Based System for Products
Penetration Strategy Selection. Appl Artif Intell J 17(10):901-925

8. Moraitis P, Spanoudakis N (2007) Argumentation-based Agent Interaction in an Ambient
Intelligence Context. IEEE Intell Syst 22(6):84-93

9. Spanoudakis N, Moraitis P (2008) The Agent Modeling Language (AMOLA). In LNCS
5253, Springer, Varna, Bulgaria

10. Spanoudakis N, Moraitis P (2007) The Agent Systems Methodology (ASEME): A Prelimi-
nary Report. In Proc 5th European Workshop on Multi-Agent Systems, Hammamet, Tuni-
sia, December 13 - 14

11. Spanoudakis N, Pendaraki K (2007) A Tool for Portfolio Generation Using an Argumenta-
tion Based Decision Making Framework. In Proc Annual IEEE Int Conf on Tools with Ar-
tif Intell, Patras, Greece, October 29-31

12. Toulis P, Tzovaras D, Spanoudakis N (2007) MARKET-MINER Project Exploitation Plan.
MARKET-MINER Proj Deliv Π6.1 (in Greek language), Singular Logic S.A.

13. Toulis P, Tzovaras D, Pantelopoulos S (2007) MARKET-MINER System Evaluation Re-
port. MARKET-MINER Proj Deliv Π5.1 (in Greek language), Singular Logic S.A.

14. Wooldridge M, Jennings NR, Kinny D (2000) The Gaia Methodology for Agent-Oriented
Analysis and Design. J Auton Agents and Multi-Agent Syst 3(3):285-312

