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Abstract Chest radiography is a reference standard andhttial idiagnostic test
performed in patients who present with signs andpggms suggesting a pulmo-
nary infection. The most common radiographic mastéton of bacterial pulmo-
nary infections is foci of consolidation. These waisble as bright shadows inter-
fering with the interior lung intensities. The disery and the assessment of
bacterial infections in chest radiographs is alehging computational task. It has
been limitedly addressed as it is subject to inggaity variability, content diver-
sity, and deformability of the depicted anatomiwstures. In this paper, we pro-
pose a novel approach to the discovery of congididaatterns in chest radio-
graphs. The proposed approach is based on nonianegattrix factorization
(NMF) of statistical intensity signatures charaizieg the densities of the de-
picted anatomic structures. Its experimental exanademonstrates its capability
to recover semantically meaningful information frohest radiographs of patients
with bacterial pulmonary infections. Moreover, ttesults reveal its comparative
advantage over the baseline fuzzy C-means clugtapproach.

1 Introduction

Artificial intelligence and data mining applicat®nn medicine are increasingly
becoming popular tools as the utilization of digitaedia meets the everyday
clinical practice. Computer-aided diagnosis, imgelht information retrieval and
knowledge discovery are some of the associatedargsealirections, which can
prove valuable to patient safety and quality ofitheare [1].

Health care-related infections comprise a majagahto patient safety. They
are encountered in hospitals or health care fedliénd they are usually reported
as adverse events associated with medical procediMiest commonly include
pulmonary, urinary tract, skin, and soft tissueeations of bacterial origin [2].
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The early detection of such infections as welltesthoice of the appropriate an-
tibiotic treatment can be life-saving especially tiee critically ill patients. To this
end, a computational approach that would be capaEtdetomatically discovering
patterns of infections and antibiotic prescriptitom patients’ health records
would constitute a valuable tool to the commungj [

Patients’ health records may include both structumad unstructured data,
digital signals and images. In the case of chestms, chest radiographs provide
substantial indications on the presence of a puémpimfection. The most com-
mon radiographic manifestation of bacterial pulmgnafections is foci of con-
solidation. These are visible as bright shadowsriating with the interior lung
intensities, which include intensities the lunggraashyma and intensities of super-
imposed structures of the thoracic cavity suchhasribs and the mediastinum.
The diversity and the complexity of the visual anitof the lung fields as well as
the quality variability induced by the variable pareters of the radiation expo-
sure, make its medical interpretation a challendask. This task has motivated
many researchers to develop computational methmrdautomatic lung field de-
tection and analysis [4][5].

Current lung field analysis methods include sizasueements of structures of
the thoracic cavity [6], detection of the ribs [[King nodule detection [8], whereas
fewer methods have been proposed for mining radplgc patterns associated
with the presence of pulmonary infections [9]. Migipatterns of pneumonia and
severe acute respiratory syndrome (SARS) has &en In the scope of contem-
porary research. In [10] a supervised approachyustensity-histograms and sec-
ond-order statistical features has been proposenhifing pneumonia and SARS
patterns, whereas most recently, the use of wabaletd features have been
proved useful for the detection radiographic patesf childhood pneumonia un-
der a supervised classification framework [11].

In contrast to the former methods this paper prepasn unsupervised ap-
proach to the discovery of consolidation patterssoaiated with bacterial pulmo-
nary infections. Such an approach does not takeaotount any information ex-
tracted from previous images, thus avoiding thednfee feature normalization
between images. We use statistical intensity sigeatcharacterizing the densities
of the several anatomic structures depicted intalaelographs to recover seman-
tically meaningful information regarding the corndation patterns. This is
achieved by a clustering approach based on Nontimeg®latrix Factorization
(NMF) that involves cluster merging. The resultg¢aiied are compared with
those obtained with the fuzzy C-means (FCM) clusteapproach [12].

The rest of this paper consists of three sectiBsstion 2 provides a descrip-
tion of the proposed methodology, section 3 presthd results of its experimen-
tal application on a set of high-resolution chestiographs, and section 4 summa-
rizes the conclusions that can be derived fromstidy.



Mining Patterns of Lung Infections 207
2 Methodology

Non-negative Matrix Factorization (NMF) was intragd by Paatero and Tapper
[13] as a way to find a non-negative reduced regniedion of non-negative data,
but it has gained popularity by the works of Led &®sung [14, 15]. In contrast to
other methods such as Principal Component Anafy&3A), NMF allows only
additive combinations of non-negative data, leadimga representation that is
more intuitive and closer to the human perception.

Given amxn non-negative matri¥ and a reduced rank (r < min(m,n)), the
non-negative matrix factorization problem liesiimding two non-negative factors
W andH of V such that;

V~V=WxH D

whereW e R™" andH e R"™".

We may think oW as the matrix containing the NMF basis &hés the ma-
trix containing the non-negative coefficients (aicedings) that exhibit a one-to-
one correspondence with the data that con¥st3o quantify the distance be-

tween the data matri¥ and the model matri¥¥ we used the Frobenius norm:
. 2
nW1]|r:|1||V—WH||F , W,H>0 (2a)

This optimization problem is solved using the fallng multiplicative update
rules:

VxWT 2b
Wir<_Wir ( !F ( )
WxHxH"}

(WT XV)ri

Hi<H, 2
. " iWTxWxHirj (20)

NMF can be considered as an alternative clustaeicgnique [16,18-20] since
given a normalized squtiorW  H ) of NMF, H T can be interpreted as the clus-
ter posterior and thull ir represents the posterior probability tiiglbelongs to the
r-th cluster [20]. We can express the columns\bndH™ as: W = (w,....w, ),

HT =(h,,...h,) where in clustering terms, can be interpreted as the centroid of

the r-th cluster and thie, as the posterior probability of the r-th clust@y. nor-
malizing theW and H™ column-wisely we have the normalized columns are

W = (Wy,.... W, ) and HT = (ﬁl,...,ﬁ,) and the normalization:
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WH = WSH (3)
where

W = WDy}, (4a)

HT=H™D (4b)

S=DyDy (4c)

whereDy, andDy, are diagonal matrices with diagonal elements libéh,-norm:

(DC )rr :”Er"p 1(DH )rr =

Erp

(®)

For the Euclidean distance cade-gorm) ||, =1, [h,

2=1 and due to the

non-negativity of the data, this is just the coioditthat columns sum to 1. Thus,
Dy contains the column sums W, andDy, contains the column sums ldf.

In this paper, we apply NMF as a clustering techaitp extract consolidation
patterns from radiographic images. A radiograpmege is divided into a set of
non-overlapping sub-images which are subsequehtitered into an even num-
ber ofr clusters. Some of these clusters will corresponghtterns of normal lung
parenchyma and the rest will correspond to conatiid patterns. The sub-
images are represented by intensity histogram siges characterizing the densi-
ties of the anatomic structures depicted in a chedibgraph [21]. Finally, the
clusters are dyadically merged down to two clustesed on the similarity of
their centroids. Considering that the consolidati@me dense foci in the lungs
which are normally filled with air, we assume tha cluster with the lower inten-
sity centroid corresponds to the patterns of threnablung field parenchyma, and
that the cluster with the higher intensity centro@iresponds to the consolidation
patterns.

3 Resaultsand Discussion

For the evaluation of the proposed approach, wd aseollection of chest radio-

graphs from twenty patients. The radiographic insagere 8-bit grayscale with a
size of 2816x2112 pixels. The lung fields wereasadl using the methodology
proposed in [5] and were divided into 32x32 subgew From each sub-image an
intensity histogram signature was calculated s dwiild the data matrix that was
used as input to the NMF. A representative chefibgagaph along with the iso-

lated lung fields are illustrated in Fig. 1.
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Fig. 1. (&) A chest radiographic image, (b) theglfields isolated from (a). The magnified area
illustrates the sub-images considered. Consolidadi@as are visible as bright shadows within
the lung fields.

Each column in the initial data matriX, corresponds to the histogram infor-
mation of each window. The resulting non-negativa&rioes,W andH, represent
the feature bases and their membership probabibtieordingly. BottW andH
were normalized by following the procedure desdtilie the methodology sec-
tion. Such a normalization allows to easily comphes bases with the initial fea-
ture vectors on the one hand, while on the othadlitaleads to an easier interpre-
tation of the probability of a signature to beldog certain cluster or category.

To evaluate the performance of the proposed approac applied the pro-
posed as well as the conventional NMF-based approacach radiographic im-
age. Prior to the application of the algorithmsagas were annotated by an expert
S0 as to provide us with the necessary ground infdrmation. The results ob-
tained are compared with the performance obtaingt the fuzzy c-means
(FCM) algorithm which is considered as a baselim¢hod [12].

The performance measures considered in this stedysansitivity, specificity
and accuracy [23],

TP

Sensitivity = ——— 6
v TP+FN (©)
e TN
ecificity = ——— 7
> v TN +FF )
Accuracy = TP+ TN (8)
TP+FF+TN+FN

where TP (true positive), TN (true negative), FRIS¢ positive) and FN (false
negative) are estimated as follows:
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TP=GTP~PCLA, TN=GTNNNCLA,

9
FP=GTNNPCLA, FN=GTPANCLA ®)

where PCLA (positive cluster lung area) is the areaesponding to the patterns
considered as consolidations, NCLA (negative chusteg area) is the area corre-
sponding to the patterns considered as normal pargnchyma, and GTP and
GTN are the ground truth areas of consolidatiorss mormal lung parenchyma,
respectively.

(b)

© (d)

Fig. 2. Mining patterns of infections with the cemional NMF (left) and FCM (right) ap-
proaches using two clusters. (a) NMF first clustiey,FCM first cluster, (¢) NMF second cluster,
(d) FCM second cluster.

The formation of the clusters from the datasetwerifrom the image in Fig.1
is illustrated in Fig.2 for the 2 clusters case &dboth NMF (on the left) and
FCM (on the right). Figure shows that NMF achielseier separation of the con-
solidated areas (top left image), in contrast t&/R@at fails to separate the con-
solidated areas from the normal ones. Howeverséparation of the consolidated
from the normal areas is not always feasible usimy clusters. An example is
provided in Fig. 3 where the clustering of the Idigdds in Fig.3(a) in two clus-
ters results in an accuracy that does not exce&d 40 cope with this problem,
clustering in more than two clusters followed bglaster merging scheme is pro-
posed.

According to this approach the image signaturesrati@lly clustered into an
even number of clusters. Considering that the NMBel actually represent the
cluster centroids, the clusters are dyadically mérdown to two based on the
similarity of their centroids. Since the signatuaes intensity histograms the simi-
larity is evaluated by the histogram intersecticetna [22].
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Fig. 3. Mining patterns of infections with the cemtional NMF clustering approach using two
clusters. (a) The lung fields to be clusteredifs} cluster (consolidation areas), c) second-clus
ter (normal lung field parenchyma).

(a)

An example of the application of this merging mdare is illustrated in Fig.4.
The feature vectors (NMF bases) of the four initialsters are graphically de-
picted above the upper row of images, which illags the image regions as-
signed to each cluster. The four clusters are sulesdly merged down to two
clusters, which are visualized in the last rowro&ges in the figure. The consoli-
dated areas are spotted in clusters 1 and 2oh\®us that the proposed merging
scheme achieves a better separation of the coatiolidareas in contrast to the
conventional clustering in two target clusters, abhis quantified to an 87% of ac-
curacy.

cluster 1 cIusterZ cIuster3 cIuster4

Fig. 4. Mining patterns of infections with the posed approach. The resulting NMF bases after
clustering the dataset derived from Fig.3(a) inuéters (top row), the formation of the 4 clusters
(top row) and the resulting merged clusters (bottow).
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The average results estimated from the applicaifothe proposed approach
on the whole dataset are summarized in Fig. 5.aMeeage accuracy achieved by
the NMF followed by cluster merging is 75%, wheréas accuracy achieved by
the direct NMF clustering into two clusters is sfggantly lower reaching only
35%. It can be noticed that the average accuratairas with the FCM is poorer.
Though, its sensitivity is much higher than the otained with the NMF after
cluster merging, NMF provides much higher spedifiégind accuracy leading to
an overall better performance. As it is illustratacthe figure, the accuracy ob-
tained with the FCM is about 29% in the direct tduisig case and 61% for the
cluster merging case. Comparing the results optbposed approach with the re-
sults of the FCM clustering with and without clusteerging as illustrated in Fig.
5, it becomes evident that the proposed approaafoie suitable than the FCM
for the particular clustering task.
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Fig. 5. Performance of the proposed cluster mergieghod in terms of sensitivity, specificity
and accuracy.

4  Conclusionsand Future Work

This study presented a novel approach to the disgoef patterns of bacterial
pulmonary infections. The proposed approach is dase non-negative matrix
factorization of statistical intensity signatureslldwed by a cluster merging
scheme. The proposed approach was experimentadlipaed on radiographic
images of patients with bacterial infection martéelsas foci of consolidation. The
experimental evaluation of the proposed techniraahstrates the superiority of
the proposed NMF-based algorithm over the conveatiblMF clustering scheme
and the standard FCM for non-negative image data.

Currently the improvement of the proposed methoglpls considered and
our effort is made towards the development of aalligent system for discovery
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and assessment of pulmonary infections from radjgigic images. Our future
work involves further experimentation with the pogpd and alternative cluster
merging schemes, comparisons with state of therestipervised and supervised
approaches, and utilization of various image fesstur
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