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Abstract. Every day the global media system produces an abundance
of news stories, all containing many references to people. An important
task is to automatically generate reliable lists of people by analysing
news content. We describe a system that leverages large amounts of data
for this purpose. Lack of structure in this data gives rise to a large num-
ber of ways to refer to any particular person. Entity matching attempts
to connect references that refer to the same person, usually employing
some measure of similarity between references. We use information from
multiple sources in order to produce a set of similarity measures with
differing strengths and weaknesses. We show how their combination can
improve precision without decreasing recall.
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1 Introduction

The global media system produces a vast amount of news articles which discuss
named entities, such as people, places and organisations. Extracting these refer-
ences to named entities can enable us to study interactions between them and
the news stories that they appear in.

In this paper we describe a complete system for the extraction and matching
of named entities from unstructured news data, where large numbers and mul-
tiple sources of information are used to improve the precision of the extracted
output. Our aim is to investigate how the fusion of information can improve the
performance of the system.

To this end, the system has been collecting on-line news articles from multiple
sources over a period of nearly two years. These come from RSS feeds, which
are visited many times per day. Articles are passed through a named entity
extraction tool, Gate [1], which provides us with references to named entities
in each article. These references do not have one-to-one correspondences with
named entities as there are many ways to refer to the same entity.

Currently the system contains 9.3 million English articles, which contain
references to 3.8 million people. Amongst these references are many sources of



noise, such as rare misspellings of names and errors in the entity extraction
process.

Any study based on the people that appear in the media will be affected by
the problem of multiple references, so these must first be resolved. Given the
scale of the input this must be automated and we should be very careful not to
merge similar-looking, yet different references, such as ‘Tim Johnson’ and ‘Jim
Johnson’.

We describe our approach to entity matching, fusing three sources of informa-
tion to improve precision, without reducing recall and we test a method for the
removal of ambiguous references based on their degree in a co-reference network.

2 Methods and Problem Formulation

In this section we formalise the problem of entity matching and discuss the
similarity measures that will be used in our experiments.

Problem. We consider a set of references to named entities, {r1, r2, ...rn} ∈
R. References may occur in many articles and pairs that appear in the same
article are said to co-occur. The number of articles that a reference A appears
in is its frequency, f(A) and the number of times that any pair of references
co-occur is their co-occurrence frequency, f(A, B).

This definition allows us to construct a graph of cooccurrences, G(V, E),
which consists of references from set R as vertices and co-occurrences between
references as edges. In this graph we wish to find pairs of references that represent
the same person.

String Similarity. Most references to the same person share something
in common. These range from multiple words, for example ‘Hillary Clinton’
and ‘Hillary Rodham Clinton’, to small differences in spelling like ‘Hilary’ or
‘Hillary’. We use three measures of string similarity from the SimMetrics library
[13]: Jaro-Winkler, Q-Gram and Levenshtein.

Titles, such as ‘Mr’, ‘President’, or ‘Governor’ should not be matched, there-
fore we maintain a list of titles and remove them prior to comparison. This leads
us to rate ‘President Barack Obama’ and ‘Barack Obama’ very highly, whilst
avoiding matches such as ‘President Obama’ and ‘President Bush’.

Note that string similarity alone cannot resolve cases where similar names
belong to different entities, as is the case for ‘George W. Bush’ and ‘George H.
W. Bush’. In order to resolve this ambiguity we require additional information.

Neighbourhood Similarity. Matching references are likely to be either
directly linked, or to share a very similar set of neighbours. For this reason
we employ measures of neighbourhood similarity in order to locate potential
matches.

Finding references with similar neighbours could require us to compare all
pairs, which is infeasible on large inputs. Fortunately we do not need to measure
similarity between references that are more than two steps away from each other
in the input graph, as we prove that their similarity must be zero.



Definition 1. A graph G(V, E) is composed of a set of vertices (references),
V and a set of edges (co-occurring references), E. Each edge connects exactly
two vertices. The distance, d(u, v) between vertices u and v is the length of the
shortest path between them. The neighbours of a vertex, N(v) are the set of all
vertices that are adjacent to v. If u and v are adjacent, d(u, v) = 1.

A neighbourhood similarity measure, Snbr(u, v) describes the amount of
overlap of the neighbourhoods of u and v. In general, if N(u) ∩ N(v) = ∅ then
Snbr(u, v) = 0 and if N(u) ∩ N(v) = N(u) ∪ N(v) 6= ∅ then Snbr(u, v) = 1.

Proposition 1. Any pair of vertices that have some neighbours in common,
N(u) ∩ N(v) 6= ∅ must be within two steps of one another, i.e.:

Snbr(u, v) > 0, ∀u, v ∈ V , s.t. d(u, v) ≤ 2

Proof. Assume we have a pair of vertices, (u, v), where Snbr(u, v) > 0 and
d(u, v) > 2. If Snbr(u, v) > 0, then N(u)∩N(v) 6= ∅, ∃w ∈ V s.t. w ∈ N(u), w ∈
N(v). Therefore d(w, u) = 1, d(w, v) = 1 and d(u, v) ≤ d(w, u) + d(w, v) = 2,
which contradicts our assumption. ut

We use the Jaccard and Adar neighbourhood similarity measures [3], which
are defined in (1) and (2). Adar is similar to Jaccard with the addition of a
uniqueness score for each reference.

Sjaccard(ri, rj) =
|N(ri) ∩ N(rj)|

|N(ri) ∪ N(rj)|
(1)

Sadar(ri, rj) =

∑

c∈(N(ri)∩N(rj))
u(c)

∑

c∈(N(ri)∪N(rj))
u(c)

where u(c) =
1

log(|N(c)|)
(2)

Co-reference Similarity. Named entities are extracted using a named entity
recognition tool that is part of the Gate distribution [1]. Gate also finds co-
references [2], which are references to the same entity that occur within the
same article. This information is used as another clue in our entity matching
process. We treat this as a binary measure as shown in (3).

Scoref(ri, rj) =

{

1, if f(ri, rj) > 0
0, otherwise

(3)

Note that since this can only link references that appear in the same article
it will not resolve systematic spelling differences from different sources, such as
‘Gaddafi’ and ‘Kaddafi’. For these we can only rely on string similarity.

The degree a node in this network reveals information about its ambiguity
and is used to filter out ambiguous references, as we show in the next section.

Combination of Measures. All measures are normalised to be in the range
[0, 1] and we test weighted combinations of them as shown, for example, in (4).

S(r1, r2) = αS1(r1, r2) + βS2(r1, r2) + γS3(r1, r2)

where α, β, γ ∈ [0, 1], s.t. α + β + γ = 1 (4)



3 Experimental Set-Up

In this section we describe how our experiments were set up, then present and
discuss our findings. We also discuss the difficulties of measuring performance
in an unstructured setting. This is a setting where references are not retrieved
from a database where a certain degree of standardisation has been enforced,
but are extracted from free text using statistical methods.

3.1 Measuring Performance

Matching entities that are automatically extracted from unstructured data is
difficult due to the variability of references and errors in extraction and spelling.
Freely available data sets for this task are difficult to find.

In order to be able to measure performance on this type of data we produced
our own data set, consisting of 1417 pairs of marked references. This breaks
down into two sets containing 901 correct and 516 incorrect pairs1.

In web extraction applications it is more important to guarantee the quality
of extracted information than it is to extract it all. As there is plenty of data
available, we focus on high precision rather than high recall, in a similar vein
to [15]. In addition we focus on relative changes in performance resulting from
information fusion, rather than on absolute performance.

Precision and Recall. The input is a set of entity references, R from our
entity database. All pairs of references could potentially be linked, P = R × R.

Our algorithms produce a set of linked pairs, PL ⊆ P . The ground-truth
data consists of two sets of pairs, correct and incorrect, or PT ⊆ P and PF ⊆ P ,
respectively. Precision and recall are calculated according to (5).

Precision =
|PT ∩ PL|

|PT ∩ PL| + |PF ∩ PL|
, Recall =

|PT ∩ PL|

|PT − PL|
(5)

3.2 Basic Set Up

For experimental purposes we focus on one week of references from the 20th to
the 27th December 2009. During this time we observed 114,388 references and
2,008,225 co-occurring pairs, in N = 96,880 articles. The size of this graph is
reduced by discarding edges that co-occur less than 5 times. This reduces the
size of the vertex and edge sets to, |V | = 8, 264 and |E| = 57, 361.

χ-Square Test of Independence. To ensure that the remaining edges are
statistically significant we use Pearson’s χ-square test of independence [14]. In
this setting we examine the contents of an article and make a pair of observations
on the presence of references A and B. Our null hypothesis is that references A
and B are statistically independent so their expected frequency of co-occurrence

should equal f(A)f(B)
N

, where N is the number of articles and f(A) is the number
of articles reference A is seen in.

1 Data available at: http://patterns.enm.bris.ac.uk/entity-matching-data.



Our test makes multiple comparisons between reference pairs and the test
statistic is calculated for all pairs of references which co-occur. In reality we

implicitly compare g = n(n+1)
2 − n pairs, for n total references. Therefore we

apply the Bonferroni correction and adjust the significance level to 1/g.
For this network we have g ≈ 3.42 × 107 and an adjusted significance of

2.93 × 10−10. Applying the χ-square test of independence at this significance
level leaves us with |V | = 8, 230 and |E| = 53, 462.

3.3 Results

We now present results for string, neighbourhood and co-reference similarities,
along with weighted combinations of the three.

Note that all measures are implicitly aided by neighbourhood information, as
comparisons are made between references that are up to two steps apart in the
co-occurrence network. This step ensures that we do not calculate similarities for
all pairs of references. When we discuss neighbourhood similarity we are referring
to further specific measures on the immediate neighbours of each reference.

We quote values of precision and recall which demonstrate the peak precision
of each method. This excludes any results where precision becomes unstable
when the number of output pairs becomes too small.

String Similarity. Table 1 shows results for string similarity measures, along
with weighted combinations of them. All measures exhibit reasonably high pre-
cision but have subtly different types of reference-pairs that they can and cannot
match. JaroWinkler is biased toward matching the beginning of a string, which
leads to incorrect matches such as, ‘Robert Casey’ and ‘Robert Costa’.

Q-gram is able to handle more variation in the input as it operates on sets
of 3-grams, so order and positioning of characters is less important. This works
in the case of ‘Thomas James Leggs Jr.’ and ‘Thomas J. Leggs Jr.’, but fails on
pairs such as ‘James Anderson’ and ‘Pamela Anderson’.

Levenshtein is a lot more selective, as each insertion, modification or deletion
incurs a cost. Very similar strings like ‘Tim Johnson’ and ‘Jim Johnson’ are still
a problem, however this is true for all of the measures we have described.

Neighbourhood Similarity. The addition of neighbourhood to string sim-
ilarity did not lead to any improvement. We ran a number of weighted combi-
nations of these measures and in all cases precision fell to around 50%.

This loss of precision was due to the inclusion of many false positives, which
were typically strongly-connected pairs such as ‘Warren Taylor’ and his ex-wife
‘Karen Taylor’. Neighbourhood measures have no way of discriminating refer-
ences that are similar due to being related in some way from those which are the
same. Similar to findings in [3], references which are similar but not matching
are scored highly and incorrectly matched.

Co-Reference Similarity. Table 1 also shows precision and recall for co-
reference similarity, followed by the addition of string and then neighbourhood
similarity measures. Co-reference similarity alone shows strong performance,
however we can improve this by adding in string measures.



Table 1. Precision and recall for measures, plus weighted combinations of them. Com-
bining string measures seems to improve precision slightly, although Levenshtein per-
forms best alone. Neighbourhood measures reduce performance (we show Levenshtein
combined with both Jaccard and Adar — all other combinations perform comparably).
Co-reference shows high precision and the addition of string similarity improves this,
without a reduction in recall. The final line shows the effect of removing high-degree
(ambiguous) references.

Method Precision Recall

Levenshtein 86.36 2.11
Q-Gram 80.77 2.33
JaroWinkler 79.17 2.11
1

4
JaroWinkler + 3

4
Levenshtein 83.33 2.22

1

2
JaroWinkler + 1

2
Levenshtein 84.21 1.78

3

4
JaroWinkler + 1

4
Levenshtein 82.61 2.11

1

4
JaroWinkler + 3

4
Q-Gram 71.43 2.77

1

2
JaroWinkler + 1

2
Q-Gram 84.21 1.78

3

4
JaroWinkler + 1

4
Q-Gram 82.35 1.55

1

4
Q-Gram + 3

4
Levenshtein 83.33 1.66

1

2
Q-Gram + 1

2
Levenshtein 86.36 2.11

3

4
Q-Gram + 1

4
Levenshtein 85.00 1.89

1

2
Levenshtein + 1

2
Jaccard 53.19 2.77

1

2
Levenshtein + 1

2
Adar 48.78 2.22

CoRef 91.76 8.66
1

2
Levenshtein + 1

2
CoRef 95.35 9.10

1

2
Q-Gram + 1

2
CoRef 95.92 5.22

1

2
JaroWinkler + 1

2
CoRef 94.87 8.21

1

3
Levenshtein + 1

3
Jaccard + 1

3
CoRef 91.67 1.22

CoRef (ambiguous nodes removed) 91.49 19.09

Combining co-reference and string similarity gives some increase in perfor-
mance. A co-reference error, which links ‘Vicki Kennedy’ to ‘Ted Kennedy’ is
scored highly in terms of co-reference but relatively poorly by the Levenshtein
measure, resulting in its removal. There is also the addition of pairs that cannot
be found by co-reference alone, such as ‘Mahmud Abbas’ and ‘Mahmoud Abbas’.

This combination results in increased precision without decreasing recall over
the baseline string and co-reference measures. The co-reference network map
also allow us to identify and remove references that are ambiguous (high-degree
nodes).

4 Related Work

Existing methods [6, 7] use on-line data, such as Wikipedia, to place references
to entities into some context. An entity can then be disambiguated according
to words or other entities that it appears alongside. Similarly, Bekkerman and
McCallum [5] obtain context from a list of contacts in a user’s mailbox. They



suggest that web pages related to a person will exist in a community of web
pages related to that person’s contacts.

Most methods [12] operate on structured data so do not have to handle noise
associated with automatically extracting named entities from unstructured text.

Whilst state-of-the-art entity matching tools produce high accuracies, they
do not scale well to large data sets. Rastogi [10] addresses this by defining a
general framework for large scale entity matching. Dalvi [11] also discusses the
more general problem of connecting related concepts.

Our system processes a high volume of unstructured data from the global
media system, automatically extracting and storing named entities on a large
scale. This introduces a lot of noise into our entity matching task and must be
resolved with high precision in order that we may launch further studies with
high confidence in our data.

5 Conclusions and Future Work

In this paper we have explored the use of information fusion for the task of in-
formation extraction from unstructured text. We have considered the problem
of entity matching and have shown that combining multiple sources of infor-
mation results in improved performance. Note that we have concentrated on
relative changes in performance resulting from information fusion, rather than
on absolute performance.

We looked at three similarity measures, all of which have different strengths
and weaknesses. String similarity is a very effective method of comparison but is
also very vulnerable to connecting similar-looking names. Co-reference informa-
tion also gives high precision results and we have demonstrated that combining
this with string similarity leads to increased precision, without reducing recall.

Neighbourhood similarity proved to be poor at this task as it assigns high
scores to related references when we are looking for pairs which are the same.
Whilst it does not prove useful as a similarity measure, the use of neighbourhood
information is essential in order to reduce computation and produce a system
which can scale.

In future work we will look to improve the recall of the system. The co-
occurrence network is improved by considering greater volumes of news, for
the simple reason that infrequent references can be disregarded, which greatly
reduces noise in the input. We will also investigate further the performance
improvements due to removing ambiguous (high-degree) nodes from the co-
reference network. Examples include common forenames, the removal of which
produces a much cleaner network. These noise-reduction steps will allow us to
select lower thresholds to increase recall, without reducing precision.

On a more general level, our task is to find nodes in a network which are
strongly related to one another. In this case the relation is one of identity, i.e.,
do these references refer to the same person? Other strong relations like family
or work are regularly found and we wish to ignore these.



This also raises the issue of domain knowledge. One desirable property of
an entity matching system is that it could be applied to other domains, as we
also collect references to locations and organisations. It is very clear from our
results that domain knowledge is very important and that a general system for
matching entities of different types is a long way off. Increasing the amount of
domain knowledge that we include should prove very effective at reducing the
number of false positives that are produced.
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12. Köpcke, H., Rahm, E.: Frameworks for entity matching: A comparison. Data
Knowledge Engineering (2009)

13. Chapman, S.: SimMetrics Library http://www.dcs.shef.ac.uk/~sam/

simmetrics.html . NLP Group, University of Sheffield (2006)
14. Duda, R., Hart, P., Stork, D.: Pattern classification. Wiley Interscience (2nd Edi-

tion)
15. Talukdar, P., Brants, T., Liberman, M., Pereira, F.: A context pattern induction

method for named entity extraction. CoNLL (2006)


