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Abstract. This paper presents efficient models in the area of damage poten-
tial classification of seismic signals. After an earthquake, one of the most 
important actions that authorities must take is to inspect structures and es-
timate the degree of damages. The interest is obvious for several reasons 
such as public safety, economical recourses management and infrastructure. 
This approach provides a comparative study between the Mamdani-type 
and Sugeno-type fuzzy inference systems (FIS). The fuzzy models use a set 
of artificial accelerograms in order to classify structural damages in a spe-
cific structure. Previous studies propose a set of twenty well-known seismic 
parameters which are essential for description of the seismic excitation. The 
proposed fuzzy systems use an input vector of twenty seismic parameters 
instead of the earthquake accelerogram and produce classification rates up 
to 90%. Experimental results indicate that these systems are able to classify 
the structural damages in structures accurately. Both of them produce the 
same level of correct classification rates but the Mamdani-type has a slight 
superiority. 

 Keywords: Seismic Parameters, Earthquake Damage Classifica-
tion, Fuzzy Inference Systems. 

 
 

1 Introduction 

Earthquake engineering can be defined as the field of engineering which deals 
with earthquakes and their effect on structures such as multistory buildings, 
bridges, towers, etc. As with any other natural phenomenon, earthquakes and their 
effects should be considered when designing a structure to ensure its safety. How-
ever, it is not economically feasible to design a structure that can withstand any 
seismic event without damages (elastic response). Sometimes devastating earth-
quakes hit populated areas. In this case, the ability to estimate the post-seismic 
damage status of oscillated structures instantly after the earthquake event may op-
timize the administration measures (optimized management of human and mate-
rial resources, reduction of loss of lives and injuries).  
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The thrust of the current research is the automatic approach of the post-seismic 
status of buildings using intelligent FIS. Two types of fuzzy systems (Mamdani 
and Sugeno) are designed and implemented. These models use a set of artificial 
accelerograms. Numerical results indicate the ability of them to classify the struc-
tural damage in the examined structure. 

In this research the set of artificial accelerograms is applied as a case study to a 
sixth floor reinforced concrete frame structure. The proposed classifiers can esti-
mate the degree of structural damage on any other structure under the precondition 
that the training phase is carried out for the same building. 

The key point of this study is to map the input space (artificial accelerograms) 
to an output space (degree of structural damage). Accelerograms are records of the 
acceleration versus time measured during an earthquake ground motion. The 
seismic accelerograms are a useful tool in earthquake engineering because they 
are able to provide an explicit description of the seismic excitation. However, due 
to the random sizes and shapes it is very difficult to exploit their similarities. 
Therefore, a set of twenty seismic parameters has been used to represent the seis-
mic signals. These seismic parameters have been presented in the literature during 
the last decades and are able to express the damage potential of earthquakes. Table 
1 presents those parameters. Previous study [1] reveals the correlation grade be-
tween seismic parameters and damage indices of structures.  

Table 1.  Seismic parameters. 

Seismic Parameters 
Peak Ground Acceleration Power (P0.90) 
Peak Ground Velocity  Central Period  
Strong Motion Duration  after Trifunac/Brady Arias Intensity 
Root Mean Square Acceleration  Spectral Displacement  
Spectrum Intensity after Housner  Spectral Velocity  
Spectrum Intensity after Kappos  Spectral Acceleration  
Spectrum Intensity after Martinez-Rueda  Seismic Energy  Input  
Seismic Intensity after Fajfar/Vidic/Fischinger  Effective Peak Acceleration (EPA) 
Destructiveness Potential  Maximum EPA  
Cumulative Absolute Velocity  PGA to PGV ratio 

 
For the present approach the level of structural damage caused by an earth-

quake is numerically quantified using damage indices (DIs). In recent years con-
siderable efforts have been devoted to develop different types of damage indices 
(local-global). In general, a damage index is local when it refers to a restricted 
area (e.g. a cross section), while it is considered global when it describes the state 
of the whole structure. In this study the systems were developed based on the 
maximum inter storey drift ratio (MISDR) [2] and the widely used Park/Ang [3] 
overall damage indicator.   

In order to quantify the consequences of an earthquake, it is necessary to know 
the physical deterioration (damage) of the building suffered during the seismic 
event. The examined set of 450 artificial accelerograms generates a wide spectrum 
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of structural damage from negligible to severe. The values of damage indices of 
each accelerogram are divided into four damage categories (low-medium-large-
total) according to Table 2. These classes correspond to non damage or minor 
damage, repairable damage, irreparable damage and partial or total collapse of the 
building, respectively. According to this classification of the structural damages it 
seems at first sight that the classification is unequivocal. However, from the engi-
neer’s point of view, a damage index value close to the class limits cannot be 
classified unequivocally to a specific damage category. For example, a structural 
damage ratio of 0.499 cannot unequivocally classify the accelerogram in the low 
class, because the option to belong in the medium class should be possible. Thus, 
the set of damage indices can be considered as a fuzzy set and fuzzy methods are 
appropriate to be applied to such classification procedures.  

Table 2.  Damage Degree. 

Damage Degree Structural Damage 

Indicators Low Medium Large Total 

Park/Ang DIG [-] ≤ 0.3  0.3 < DIG ≤ 0.6  0.6 < DIG ≤ 0.8 DIG > 0.8 

MISDR [%] ≤ 0.5 0.5< MISDR ≤ 1.5 1.5< MISDR ≤ 2.5 > 2.5 

  
Previous studies [4-6] attempt to classify the structural damages in buildings. 

The first approach is based on the shape similarity of accelerograms. However, 
due to the random nature of seismic signals this approach led to a poor classifica-
tion rates. The second approach is based on seismic parameters which can express 
the damage potential of an earthquake [1]. These seismic parameters were graphi-
cally used to represent the seismic load instead of the accelerogram itself. The ex-
tracted classification results based on artificial neural networks (ANNs) were bet-
ter than the results of the first approach. Nevertheless, it was desirable to test the 
accuracy of the system using an additional damage index and a wide set of seismic 
signals. This has been achieved by the third technique using a combination of ge-
netic algorithm and ANNs.  

This paper studies the potential of two alternate soft computing techniques for 
earthquake damage classification based on fuzzy logic. Fuzzy classifiers have 
been successfully and widely applied to many fields. Moreover, recently the 
evolving fuzzy rule based classifiers have been proved promising tools that offer 
high performance (classification rates) and computational efficiency [7, 8]. The 
ability of fuzzy logic to model nonlinear functions of arbitrary complexity makes 
it even more important to investigate its ability to estimate the earthquake damage 
in buildings. The classification results show that these systems are able to estimate 
the seismic vulnerability of buildings avoiding complex mathematical processes. 
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2 Proposed Method 

2.1 The Mamdani-Type Fuzzy Inference System 

The proposed fuzzy system has twenty inputs corresponding to the twenty 
seismic parameters that result from the processing of seismic signals. These values 
can represent seismic accelerograms and are normalized into a range [0, 1]. The 
FIS has one output that indicates the level of earthquake damage in structure. A 
model of the system is shown in Fig. 1. 

The fuzzyfication of the inputs is realized using four Gaussian-shaped member-
ship functions (mfs), namely low, medium, large and total. On the other hand the 
output consists of four triangular-shaped mfs, namely low, medium, large and to-
tal. The number and shape of the mfs were selected after an extensive set of pre-
liminary tests. These tests involved simulations with different types and numbers 
of mfs such as triangular, trapezoidal and Gaussian. The tests confirmed that the 
below mfs presents good qualitative results. The following equations define the 
membership functions. 

The Gausian function depends on two parameters σ and c as given by:  

 

2-(x-c)
22σf(x,σ, c) = e                                                                                             (1) 

where c and σ  are the mean value and the variance, respectively.  

Low:

2(x 0)
22*(0.1416)

1mf (x; 0.1416, 0) e

− −

=                                                                  (2) 

Medium: 

2(x 0.333)
22*(0.1416)

2mf (x; 0.1416, 0.333) e

− −

=                                                  (3) 

Large: 

2(x 0.667)
22*(0.1416)

e3mf (x; 0.1416, 0.667)

− −

=                                                   (4)  

Total:

2(x 1)
22*(0.1416)

4mf (x;0.1416,1) e

− −

=                                                               (5) 
The triangular function depends on two parameters m and σ as given by:  

m x1 for m x m

x m1 for m x m

0 otherwise

f (x;m, )

−⎧ ⎫− −σ≤ ≤⎪ ⎪σ⎪ ⎪
⎪ ⎪−
− ≤ ≤σ+⎨ ⎬

σ⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

σ =

                                                                (6)  
where m and σ  are the center and width of the triangular-shaped function, re-

spectively.  
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Low: 1

0 x1 for 0.3333 x 0
0.3333

x 01 for 0 x 0.3333
0.3333

0 otherwise

mf (x;0,0.3333)

−⎧ ⎫− − ≤ ≤⎪ ⎪
⎪ ⎪
⎪ ⎪−
− ≤ ≤⎨ ⎬

⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

=                                                 (7) 

Medium: 2

0.3333 x1 for 0 x 0.3333
0.3333

x 0.33331 for 0.3333 x 0.6667
0.3333

0 otherwise

mf (x;0.3333,0.3333)

−⎧ ⎫− ≤ ≤⎪ ⎪
⎪ ⎪
⎪ ⎪−
− ≤ ≤⎨ ⎬

⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

=                         (8)  

Large:  3

0.6667 x1 for 0.3333 x 0.6667
0.3333

x 0.66671 for 0.6667 x 1
0.3333

0 otherwise

mf (x;0.6667,0.3333)

−⎧ ⎫− ≤ ≤⎪ ⎪
⎪ ⎪
⎪ ⎪−
− ≤ ≤⎨ ⎬

⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

=                            (9) 

  

Total: 4

1 x1 for 0.6667 x 1
0.3333

x 11 for 1 x 1.3333
0.3333

0 otherwise

mf (x;1,0.3333)

−⎧ ⎫− ≤ ≤⎪ ⎪
⎪ ⎪
⎪ ⎪−
− ≤ ≤⎨ ⎬

⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

=                                                (10) 

 

 
Fig. 1. The Mamdani inference system. 

 
The inputs are routed to the output through a Mamdani [9] type of fuzzy infer-

ence that uses a set of rules which is not unique and depends on the number of the 
training samples. In this study two DIs have been used so the structure of the 
model has a different set of rules for each damage indicator. Knowing the training 
data points it is possible to extract fuzzy rules [10]. In an effort to generate fuzzy 
rules the following steps have been considered: 

Step 1: Divide the input/output space into fuzzy regions and assign each region 
a fuzzy membership function. In this approach the number of regions for each 
variable is equal to four since four are the aforementioned membership functions. 

Step 2: Generate fuzzy rules using the training samples. First determine the de-
gree of the given training input X for each membership function, and assign the 
input to the region with the maximum degree of membership. The extracted rule is 
as follows: 
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R1: If X1 is Low ^ X2 is Large . . . X20 is Medium, THEN Y is Low 
Step 3: Assign a degree to each rule: For each data point a fuzzy rule is gener-

ated. The degree of the fuzzy rule is: 
 D(R1)=min(μLow(X1),μLarge(X2),…μMedium(X20))                        (11) 
In this model the antecedent of each rule has more than one part. The antece-

dent consists of twenty terms since twenty are the seismic parameters. The fuzzy 
operator AND (min) is applied to obtain a number that represents the result of the 
antecedent of each rule. In Mamdani type of fuzzy inference, the fuzzy sets from 
the consequent of each rule are combined through the aggregation operator and the 
resulting fuzzy set is defuzzified to yield the output of the system. The aggregation 
operator, in this case, is set to maximum and the defuzzification method is that of 
the center of gravity (CoG) [10]. 

2.2 The Tagaki–Sugeno–Kang (TSK)-Type Fuzzy Inference System 

In the present study a (TSK) fuzzy system was used for the classification of 
earthquake damage in the examined structure. This methodology was introduced 
in 1985 [11], and it is similar to the Mamdani method in many respects. The first 
two parts of the fuzzy inference process, fuzzifying the inputs and applying the 
fuzzy operator, are exactly the same. The main difference between Mamdani and 
Sugeno is that the Sugeno output membership functions are either linear or con-
stant. 

Let D be the set of input–output data pairs (training data), X={x1,…,xn} p⊂  be 
the set of p-dimensional input vectors, and Y={y1,…,yn}⊂  be the associated set 
of output vectors. The set Z with input–output vectors taken together can be de-
noted by: 

      
p

p 1k
k

k

x
Z z , k 1,..., n

y
+∈ℜ

= = ∈ℜ =
∈ℜ

⎧ ⎫⎛ ⎞
⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
                                                    (12) 

The TSK model comprises of a set of IF-THEN fuzzy rules having the follow-
ing form: 

R1 : If x1 is Ai1 and ... and xp is Aip Then yi=bi0+bi1x1+…+bipxp 
where i=1,…,M, Aij=(j=1,…,p) are antecedent fuzzy sets, yi is the output of the 

ith rule, and bil (l=0,1, ...,p) are the consequent parameters. The overall output 
yoverall of the model is computed as follows: 

( )M M

i i i i0 i1 1 ip p
overall i 1 i 1

M M

i i
i 1 i 1

y b b x ... b x
y = =

= =

τ τ + + +∑ ∑
= =

τ τ∑ ∑
                                          (13) 

where τi is the firing strength of Ri. 
In our approach the proposed model is a zero-order TSK system. The conse-

quent parameters are set to 0 (except bi0) and the outputs of rules are constant. The 
rule base is the same with the Mamdani fuzzy model. The mfs of the input vector 
are set using the previous equations (2-5). All consequent mfs from Mamdani are 
replaced by singleton spikes. The firing strength of each rule is computed using 
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the AND operator, in this case, is set to minimum. The TSK model is shown in 
Fig. 2. 

    

 
Fig. 2. The TSK fuzzy system. 

3 Results 

After the nonlinear dynamic analysis of the structure, two DIs, namely, the DI 
of Park/Ang, and the MISDR have been computed.  According to these DIs, the 
damages caused by seismic excitations, were classified into four classes. The next 
step of our method was to pass the seismic signals through the proposed fuzzy 
models and examine their effectiveness. Artificial accelerograms were used in or-
der to simulate natural earthquakes. Table 3 presents the classification results for 
the examined FIS. As it can be seen, from Table 3 the same set of training samples 
provide different number of rules for each DI. The correct classification rates were 
better in the case of Park/Ang DI than in the case of MISDR. Moreover, the 
Mamdami system presents better classification rates than the TSK model. How-
ever, both of these systems are able to evaluate the seismic damage potential and 
produce the same level of correct classification rates.  

Table 3.  Classification Results Using Mamdani and TSK Fuzzy Systems. 

Type of FIS Mamdani TSK 

 MISDR DI of Park/Ang MISDR DI of Park/Ang 
Number of training samples  300 300 300 300 
Number of Rules 193 179 193 179 
Number of unknown samples 450 450 450 450 
Number of well recognized samples 392 407 388 393 
Total % of the classification  87.10% 90,44% 86,22% 87,33% 

 

4 Conclusions 

The utility of fuzzy logic in pattern classification problems is nowadays quite 
extensive. This paper attempts to design diagnostic systems with high classifica-
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tion accuracy in the scientific area of earthquake engineering. First a set of 450 ar-
tificial accelerograms with known damage effects was required in order to derive 
the parameters which are able to describe the seismic intensity. Two FIS (Mam-
dani-type, TSK-type) are presented. The Mamdani-type is slightly better. Experi-
mental results show that the systems developed herein, presents the same level of 
classification rates (up to 90%). These promising results are the starting point for 
further exploration with more seismic events applied also to other types of struc-
tures. Until today, survey is performed with on-site examination by expert engi-
neers. With the proposed technique engineers will have an additional tool which 
can guide them to a fast and confident estimation of the post-seismic damage con-
dition of interested structures. Moreover, they can be used by the public admini-
stration for the adequate post-seismic distribution of financial and other resources 
in the case of severe earthquakes.  
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