
Knowledge-Based Support for Software Engineering

Dencho Batanov
Department of Computer Science and Engineering

Frederick University, 7 Frederickou Str., Pallouriotisa,
Nicosia 1036, Cyprus, com.bd@fit.ac,cy

Abstract. The existing ambiguity of the notion of software engineering is
mainly due to the fact that it is based on and depends on knowledge. The new
definition of the term “software engineering”, proposed in this paper,
encounters that fact. The main subject of discussion in the paper is how three
different types of knowledge, namely declarative explicit, declarative
structured (ontologies) and tacit can be used for effective support of software
engineering as both practice and academic subject. Illustrative examples are
shown along with some trends for more intensive use of knowledge for support
of software engineering.

Keywords: Knowledge, Software Engineering, Software Development Life
Cycle (SDLC), Ontology, Expert System.

1 The Software Engineering Paradigm
Technology has two different but inseparable meanings – as tools and processes [1].
Although the technological tools (products) are more popular and attractive in our
everyday life they could not be created and produced without respective processes.
Good examples are engineering of any product in general and software engineering in
particular. To understand the software engineering paradigm, which we are interested in,
it would be helpful to briefly trace back the ambiguity and evolution of the meaning of
the term “software engineering” since its inventing at the 1968 NATO Conference on
Software Engineering [2]. Numerous definitions of the term have been given over time
emphasizing diverse aspects of the notion and more than forty years still there are
differences and disagreements. Most of those definitions are centered on the point that
the development of software from the initial phase of requirements analysis and
specification to the maintenance of software product is strongly linked to the notion of
engineering as both academic discipline and profession.

Engineering is a mix of craft and sciences [3] with more dominating and increasing
role of sciences in the last centuries because of the demands for more complex
functionalities, higher qualities and greater quantities of the products as well as for more
complicated management of the process. For some more specific products however
crafts, which are characterized by learning by doing, idiosyncratic approach and
production of handmade artifacts [4], are the basis of engineering process. Software is
without any doubt quite specific product – unique, invisible, getting better over time,
flexible and therefore easily modifiable, scaleable in large boundaries, etc., and it is not
surprising that engineering of such products requires specific term – “software
engineering”. There are a lot of publications regarding the nature of this term with
speculations, discussions, agreements and disagreements with existing definitions, the
place of software engineering in science, practice and education and possible ways of its
evolution. The objective of this paper is not to survey those publications but it is worth
noting that they vary from emphasizing the absence of fundamental theory [5] through
the need of a theory for software engineering [6] and the differences between software
engineering and computer science [7] to even looking for some similarities and
differences between fashion, politics and software engineering [8]. Central point in all
these publications is that software engineering is not a rigorous discipline comparing to
the core subjects constituting computer science as area of research, education and
practice, such as data structures and algorithms, queuing theory, complexity, languages
syntax and semantics, machine learning, etc. Analysis of the nature of those disciplines
leads to an interesting thesis, expressed by Chuck Connell in [8]: Software engineering
will never be rigorous discipline with proven results, because it involves human activity.
And even more: We should stop trying to prove fundamental results in software
engineering and accept that the significant advance in this domain will be general

guidelines. Such a thesis is valid at least to some extent for al engineering disciplines but
having in mind the specifics of software products and the existing practice of developing
software systems of any size, it could be accepted in full for software engineering
although, as the author states, the statements cannot be proved. The problem with this
thesis is that the term “human activity” is too broad and vague that obviously cannot be
used to clearly define the term of “software engineering”. On the other hand the activities
which distinguish distinctly the humans from the other forms of life are based on
creating and continuous use of knowledge. There are different types of knowledge and
different approaches to its classification, for example one is to classify knowledge as
static, dynamic, declarative, procedural, heuristic, knowledge of methods and knowledge
of equipment and tools; another is to separate knowledge in three different levels –
surface, domain and deep; and as another option knowledge in classified in two large
groups – explicit (objective) and tacit (subjective). No matter how the knowledge is
classified the practice of software engineering shows that knowledge of different types is
intensively used in all its phases. This can be expressed by the following definition of the
term of software engineering:

Software engineering is a systematic approach to the management and development
of software systems based on use of all kinds of knowledge, which is embedded in the
final software product.
Fig. 1 shows the basic idea of the above definition.

Knowledge

Explicit Tacit

Management Development

Software Product

Ontologies

Fig.1. The Software Engineering Pyramid

 Central point of the definition is the focus on use of all kinds of knowledge, which

in this particular case is classified in three groups: explicit (declarative knowledge),
ontologies (declarative structured knowledge) and tacit (individual-related knowledge,
which is result of accumulated experience and expressed mainly in a form of rules). It is
worth noting at least three interesting properties of the definition: (a) it deals with the
two meanings of technology – tools (software products) and processes (management and
development); (b) it covers the two major activities in engineering of software systems –
management (team organization, choosing the strategy, planning, scheduling, budgeting,
cost estimation, maintenance, etc.) and development (use of models, methods,
techniques and tools as elements of the chosen methodology), and (c) the quality of the
tool (software system) strongly depends on the quality of the processes (management
and development).

 The software development life cycle (SDLC) consists of well defined phases that
developers carry out during the process of software system development and which are
subject of research and education. The above definition adds some new aspects of he
development, research and education regarding: (a) the necessity of identifying the
specific kind of knowledge, which is appropriate for a given phase of SDLS, and (b) use
of existing or creating new methods, techniques and tools for gathering, representing
and manipulating knowledge for support of the respective phase of SDLC.

The next sections of the paper represent illustrative examples of using the three
types of knowledge from the definition for support of software engineering. The use of
declarative explicit knowledge in well-known forms as description of models, methods,
techniques and tools, manuals, documentation, standards, etc., is briefly mentioned in
Section 2. Section 3 is dedicated to one promising way to use structured declarative
knowledge in a form of ontology for supporting some of the phases of software

development life cycle. In Section 4 an approach of using tacit knowledge for building
expert system for supporting requirements analysis phase is described. Conclusions are
outlined and some recommendations for further work are made in Section 5.

2 Use of declarative explicit knowledge

Without doubt this is the kind of knowledge, which is most well known, popular and
available. For more than forty years a lot of specialized knowledge has been created,
accumulated and disseminated in form of collections of models, methods, techniques and
tools, related books, papers, reports on good and bad practices, curricula, training and
certification programs with respective teaching and learning materials, manuals,
standards and so on. This valuable repository of knowledge is a great and widely used
opportunity for practitioners, educators, students and scientists to learn and know more in
the field of software engineering. This kind of knowledge, as it is shown in [4] is the
basis of transition of the software engineering discipline from craft to profession.

Declarative explicit knowledge, although usually thematically classified, is non-
structured in nature. To use such type of knowledge the users need guidance by
experienced people to be able to navigate among the numerous sources of related
information. That is why this knowledge is used mostly in education, including training
and certification. Software engineering education is of primary importance for preparing
software developers and is a subject of teaching in all academic institutions all over the
world. A good example of accumulated knowledge for creating and applying software
engineering curricula for universities is the model, proposed by the Joint Task Force on
Computing Curricula of IEEE Computing Society and ACM [2]. The curricula seem to
be developed for major of MSc in software engineering but the model can be definitely
used for creating the content of related courses at bachelor degree level. We should not
forget however that software engineering is based on knowledge and skills from a
number of basic courses in Computer Science, such as data structures and algorithms,
principles of programming languages, object-oriented programming, databases, etc.,
which constitute the necessary body of knowledge. In this regard the role of lecturers in
software engineering is vital for advising students what to select and read. For example,
is not enough to state in the beginning of the course that “software engineering is
systematic and disciplined approach to software development” – it is absolutely
necessary to support this statement through the entire course with relevant readings, case
studies, analyses of good and bad practices and so on. Another good example is to
include Software Engineering Project as a separate credited subject in the curriculum
giving the students the opportunity to apply their knowledge and skills to development of
real software systems. For this purpose they are required to find themselves a lot of
additional sources of information about the methods, techniques and tools to be used,
analytically compare them and finally to make decision what to be chosen. This is the
only way to convert knowledge into practice.

Another useful example of relying on explicit declarative knowledge is the so
called codified body of knowledge [4], represented by two significant projects – SEEKA
(Software Engineering Education Knowledge Areas) and SWEBOK (SoftWare
Engineering Body of Knowledge). SEEKA is more oriented to the knowledge areas that
should be covered in an undergraduate curriculum in software engineering while
SWEBOK concerns knowledge and practices, which can be applied to most projects
most of the time. Although the slight differences both of them offer extremely helpful
information about software engineering as a subject of learning and practice.

Software engineering in practice is different from software engineering in
education. The differences are in the size and complexity of the projects, the number of
people involved, the organization and management of the teams, the required quality of
the software product and related compliance with standards, the time and budget
constraints, etc. Accordingly, along with the traditional descriptions and manuals of
models, methods, techniques and tools, there are additional sources of explicit declarative
knowledge, which support the work of practitioners in software engineering. Examples
of such sources are the large number of approved and working standards for software
quality assurance, the regular publications of professional societies like IEEE and ACM
and their special interest groups in software engineering, specialized journals and

proceedings of conferences and workshops, analytical reviews of good and bad practices,
project reports and so on. Another well known for specialists example is the so-called
“Capability Maturity Model” (CMM) [4], created in the Software Engineering Institute at
Carnegie Mellon University. The model helps evaluating the software products in a
standardized way, which contributes to improving the working processes and the quality
of the product as a whole.

In fact all necessary sources of explicit declarative knowledge are available
somewhere in the world repository. Is it enough for more effective and efficient software
product development? Not, of course, simply because the access to those resources is
difficult and time consuming especially when the developers need the information online.
Recent Web technologies however offer solution of this problem through Web services
and currently emerging cloud computing. This can be considered as a challenging
research and implementation topics for knowledge-based support of software
engineering.

3 Use of declarative structured knowledge (ontologies)
Ontology here is defined as declarative structured knowledge because it can be derived
from the structural representation of concepts (entities, objects, classes) linked through
existing or established relationships in a given problem domain. This is another
interpretation of the definition of ontology as a specification of a representational
vocabulary for a shared domain of discourse: definitions of classes, relations, functions,
and other objects [9] or, more generally, a specification of conceptualization [10]. In this
section I will show as illustrative example how ontologies as form of knowledge can be
used to support some of the most difficult phases of SDLC in object-oriented software
engineering. The readers who would be interested in this example as complete
representation can find more detailed description of respective models, methods and
techniques in [11], [12].

 The motto of classical object-oriented software development may be formulated
in different ways, but its essence can be stated simply: “Identify and concentrate on
objects in the problem domain description first. Think about the system function later.”
At the initial analysis phase, however, identifying the right objects, which are vital to the
system’s functionality, seems to be the most difficult task in the whole development
process from both theoretical and practical point of view. Object-oriented software
development is well supported by a huge number of working methods, techniques, and
tools, except for this starting point - object identification and building the related system
object model. Converting the text description of system problem domain and respective
functional requirements into an object model is usually left to the intuition and
experience of developers. One commonly accepted rule of thumb is, “If an object fits
within the context of the system’s responsibilities, then include it in the system.”
However, since the members of the development team are likely to have different views
on many points, serious communication problems may occur during the later phases of
the software development process. Here is the place where the knowledge represented by
ontologies can help. It is worth noting that an ontology is either built already for a given
problem domain or, if not, can be created using respective methods, techniques and tools
(languages) specific for the field of ontology development, which is not objective of this
paper. Fig. 2 illustrates the way in which ontology can be used as a supporting tool for
the process of building the object model of the software system and converting its
elements (objects) into abstract data types (ADTs). As far as the implementation of
ADTs are classes and they are the basic building modules of object-oriented software, it
becomes clear that actually the ontologies can help the entire analysis and design phases
of SDLC.

Ontology

System Requirements
Analysis & Specification

Problem Domain
System Object Model

ADT

Fig. 2. Ontologies and Building Object Model (ADT)

 Models are inseparable and one of the most significant parts of any methodology. They help
developers to better understand complex tasks and represent in a simpler way the work they
should do to solve those tasks. Fig. 3 shows the models, which we use to transform
requirements specification to object model of the system. The starting point of transformation
is the text model (T-model), which represents a concise description of the problem domain,
where the software system under development will work, written in a natural language,
usually English. If not available, the T-model should be created by the developer describing
the general user requirements for the system functionality. The presumption is that this
problem domain description contains the main objects, which will participate in ensuring the
system’s functionality. Of course, at this level the objects are represented by their natural
names only and as such are very far from the form we need to reach - represented as
ADTs.

Fig.3. Models for converting a text description into an object model

To help this process we refer to a tool of conceptualization - an ontological engine,
which applied to the T-model, generates an ontology model (O-model) of the problem
domain. The O-model is a straightforward and practically useful source of information for
identifying the participating objects. We use this information to build a so-called Full Matrix

T-
model

....
.......
.......
. The
doctoral
student
must
normally
have
.......
.

Text

descripti
on

mode

O-
model

<rdfs:s
ubClassOf
rdf:resour
ce="http:/
/web.mit.
edu#Top"

/>

<rdfs:s
ubClas
sOf
rdf:reso
urce="

Ontol

ogical
model

MF-
model

stu co app the app sup fac staf me dep exa req res deg per ter dea righ pro ow the the doc
O1 O2 O3 O4 O5 O6 O7 O8 O9O10O11 O12O13O14 O15O16O17 O18O19O20 O21O22O23

stude O1
commO2
appro O3
thesis O4
applic O5
super O6
facult O7
staff O8
mem O9
deparO10
examO11
requirO12
reseaO13
degreO14
permO15
term O16
deanO17
right O18
propoO19
own O20
thesi O21
thesi O22
doct O23
doct O24
appr O25
facul O26
staff O27
seni O28
full O29
full_tO30
final O31
geneO32
exa O33
intell O34
oral_O35
doct O36
stud O37
depaO38

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10O11 O12O13O14 O15O16O17 O18O19O20 O21O22O23

Full
Matrix
model

MR-
model

appr
ova l

thes
is

appl
icati

sup
ervi

dep
artm

exa
min

degr
ee

per
mis

dea
n

right
the
is p

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11

approval o1

thesis o2

application o3

supervisor o4

department o5

examination o6

degree o7

permission o8

dean o9

right o10

thesis_proposal o11

thesis_research o12

doctoral_student o13

staff_member o14

full_time_resident o15

fina l_term o16

examination_requirement o17

inte llectual_property o18

department_committee o19

5 8 2 3 3 1 4 2 4 3weight

Red

uced
Matrix
model

C-
model

Cla

ss-
object
model

XML
-model

<>…

….<>

<…….
…

…>

DF-
model

Data

and
Func

tion

dat

fu

UO-model

Use Case

Ontological
model

model (MF-model), which represents in a simple form objects along with the linkages
(relationships) between them. However, we should say that the processing of the MF-model
is semi-formal in nature. This means that at this phase the developer should take important
decisions about which objects could be considered as basic ADTs and which, and where,
could play a role of attributes of other ADTs. The idea is simple but not very easy for
implementation - to reduce the full object matrix to a reduced matrix (we call this model MR-
model), which contains only the basic objects represented later as ADTs containing other
ADTs as attributes. The implementation is not very easy because we need more information
here, which relates to expected functionality of participating objects. This information,
however, is available or can be extracted from the Use Case model of the system under
development. Note that at this phase we can also use the problem domain ontology. Along
with showing the concepts hierarchy (possible objects in the system) the ontologies also
analyze the verbs linking those concepts, which can be considered as functions (operations)
belonging to respective objects. We actually use the text descriptions of different Use Cases
to extract different functionality of the system by the ontological engine and as a result we get
the so-called Use Case Ontological model (UO-model). The functionality, expressed by the
UO-model, can be used at this phase along with the ontological information about the objects
in the MF-model to create the Data and Function model (DF-model). As a matter of principle
DF-model can be used for each of the objects in the DF-model but this would lead to a high
degree of redundancy and quite complicated matrix presentation even for relatively simple T-
models. To avoid this we propose to use so called business object patterns. The
representation of the C-model is significantly different from MR-model however, as far as the
former shows not only the object hierarchy but the objects' structure as well. In other words,
the C-model is a model representing ADTs. The last model, the XML-model is optional but
can be very important in practice because it allows the C-model to be published on the Web
in a unified (XML-based) format supporting in this way the collaborative work, which is a
commonly accepted technology nowadays.

The shown models and the process of their transformation can help developers of
complex object-oriented software systems to: (a) transform user requirements (represented as
text description) into an object model of the software system based on the use of ontologies;
(b) improve the existing methods and techniques for creating a specific ontology from a text
description of the system problem domain; (c) work out implementation techniques and tools
for semi-automated or automated generating and editing of ADTs for object-oriented
application software development, and (d) improve the effectiveness and efficiency of the
existing methodology for high-level system analysis in object-oriented software engineering.

4 Use of tacit knowledge
For all phases of SDLC without any exceptions the developers are forced to make decisions,
which are vital for the quality of the final product. Give one and the same user requirements
and specifications to, let us say ten different teams, and you will get certainly ten absolutely
different systems as result. Not different in required functionality but different as user
acceptance, performance, cost, reliability, etc., generally speaking different in quality. This is
not quite normal for other conventional products but for software the opposite would be not
normal. This is the uniqueness of software product. And this is because the people who make
decisions at some points of SDLC are different – as background, qualification, experience or
as knowledge and skills in the field of software engineering. Practically most of this
knowledge is tacit in nature – knowledge, which is hidden, difficult to express, explain, share
with others and formalize. Tacit knowledge exists usually in two forms [14]: (1) knowledge
embodied in people and social networks, and (2) knowledge embedded in the processes and
products that people create. We are interested here in the second form. Because the people
develop and use tacit knowledge before they are able to formalize or codify it the problem is
how to extract this knowledge from those who possess it and after that to represent and
process it in a computerized environment in order to implicitly embed it in the software
product. The artificial intelligence offers different representation schemes and respective
methods and techniques for manipulating such type of knowledge but the most popular and
relatively easy for implementation way remains the use of rule-based expert systems.
Unfortunately, especially in the field of software engineering there are only a few examples
of such systems, which are attempts to support some of the phases of SDLC. We used one of

these examples - CASSANDRA to support the phase of requirements analysis and
specification. This phase is one of the most difficult and ambiguous and at the same time of
vital importance for the success of the project. As it is stated in [13] “Research indicates that
nearly 50% of all software project defects originate in the requirements gathering process
and that 60% to 80% of project failures can be attributed directly to poor requirements
gathering.” Obviously any guidance during this phase would be extremely useful.

 CASSANDRA [15] is an ambitious project for developing an automated software
engineering coach and the name stands for Cassandra – an Assistant for System Specification
AND Requirements Analysis. The idea is the support to be in a style that resembles a human
coach – proactive, asks the user questions, gives advices and recommendations and explains
them in the case of users’ request. Everything in CASSANDRA is implemented in Prolog –
the user interface, knowledge base, persistency and CASE tool access. Having the framework
however, the contents of the inserted facts and questions asked can be easily changed, which
allows for adjusting the expert system to the needs of different categories of users. We, for
example, developed an expert tool for novice and junior developers with the idea to apply it
to the educational process. In addition we changed completely the user interface
implementing it in C# in .NET environment, which has connectivity to Prolog, giving in this
way an opportunity for more attractive and convenient interaction between the user and
system.

The architecture of CASSANDRA is quite complicated and it is not the aim of this
paper to consider it in more details. The generation of recommendations however follows the
classical mechanism of rule-based expert systems. All questions, facts and recommendations,
which are the basic elements of knowledge base, are organized in functionally well-defined
groups, such as goals of the system, system users, system constraints, system architecture,
functionality definitions, design, performance, maintenance and support. Below are two
examples of related fact and recommendation as illustration:

fact (es1,no):- fact ('present software', no), recommend ('The fact that the company is
not using any present software at the moment has both its advantages and its
disadvantages. That is, you are going to be the first one who will try to find out all the
needs of the company therefore more work should be done. On the other hand, it
means that you have no competitor to compete with on the functionality of the
software.').

recommendation (existing_software):- fact(es1,no), recommend ('You need to
develop very careful strategies from which you will retrieve information about how
the company is working and for what reason it needs the software for in order to be
able to provide the best possible software solution for it. Some of those methods and
techniques you can find out in the book of on page').

The inference engine first calls the recommendation rule which on its turn calls the fact
rule in order to be satisfied. The fact rule then starts the process to satisfy itself. That is, it
starts calling all the facts that are included in its rule.

There are a good number of environments for development of rule-based expert
systems. It seems to me however that the problem with having so small number of working
examples of expert systems for support of software engineering is to find experts for different
phases of SDLC ready for sharing their tacit knowledge. On the other hand the process of
creating a solid knowledge base is costly and very time consuming. The decision maybe is the
leading organizations in computing as IEEE and ACM to start coordinating this hard work as
well as collaboration between universities and respective funding at national level.

5 Conclusion and recommendations
The long time existing ambiguity of the notion of software engineering is mainly due to the
fact that it is based on and depends on knowledge. A new definition of the term is proposed in
this paper, which states: “Software engineering is a systematic approach to the management
and development of software systems based on use of all kinds of knowledge, which is
embedded in the final software product”. More specifically, three types of knowledge are
identified as basic for support of developers’ activities in software engineering: explicit
declarative knowledge, which are unstructured in nature, ontologies as representatives of
declarative structured knowledge and tacit knowledge. The main body of the paper is

dedicated to illustrative examples of and respective comments on the use of each one of those
kinds of knowledge in the education and practice of software engineering.

Using explicit declarative knowledge, accumulated and disseminated in form of
collections of models, methods, techniques and tools, related books, papers, reports on good
and bad practices, curricula, training and certification programs with respective teaching and
learning materials, manuals, standards and so on, is still dominant. Nowadays Web
technologies and more specifically Web services and currently emerging cloud computing
can open new opportunities for more efficient and effective use of world repository in the
field of software engineering. This can be considered as a challenging research and
implementation topics for knowledge-based support of software engineering.

Most interesting, challenging and promising approach to knowledge-based support of
practically all phases of SDLC is using ontologies. They either exist or can be created for
different specific problem domains and offer good opportunities for merging with software
engineering. The example shown and briefly discussed in the paper is dedicated to creating
the object model of the software system from a given textual description of the problem
domain and system functionality. It is expected more research to be carried out in this
promising area.

Finally, an example of using tacit knowledge in an expert system serving as an
automated coach in software engineering, and particularly in the requirement analysis phase,
and built on the basis of CASSANDRA environment, is shown and discussed. Such type of
expert systems could be very helpful for both education and practice in software engineering
but their development requires collaborative work and availability of solid resources.

Acknowledgements. My thanks go to the hundreds of my students, who during the years

have always inspired me to teach and supervise them better in the fields of software
engineering and knowledge-based systems.

References

1. Dencho Batanov, Eero Eloranta, Advanced Web technologies for industrial applications, Guest

Editorial, in Computers in Industry, Volume 50 (Special Issue), Number 2, pp.123--125 (2003)
2. Computing Curriculum – Software Engineering, Public Draft 1, The Joint Task Force on Computing

Curricula, IEEE Computer Society, ACM (2003)
3. Gary Shute, The Nature of Software Engineering,

http://www.d.umn.edu/~gshute/softeng/nature.html (2007)
4. Richard E. (Dick) Fairley, Leonard L. Tripp, Software Engineering: from Craft to Profession,

http://cs.wm.edu/~coppit/.../papers/CraftToProfession.pdf (2002)
5. Phillipe Kruchten, The Nature of Software: What’s So Special About Software Engineering?,

http://www.ibm.com/developerworks/rational/library/4700.html (2004)
6. Ivar Jacobson and Ian Spence, Why We Need A Theory for Software Engineering, Dr. Dobb’s

Digest, October (2009)
7. Chuck Connel, Software Engineering ≠ Computer Science, Dr. Dobb’s Digest, June (2009), Ivar

Jacobson and Bertrand Meyer, Dr. Dobb’s Digest, August (2009)
8. Gruber T.R., A translation approach to portable ontology specifications. Knowledge Acquisition 5,

pp. 199-220 (1993)
9. Gruber T.R., Towards Principles for the Design of Ontologies Use for Knowledge Sharing. In

Proceedings of IJHCS-1994, 5 (6), pp. 907--928 (1994)
10. Dencho N. Batanov, Merging ontologies and object-oriented technologies for software development,

Proceedings of the 20th International Conference SAER-2006, Plenary paper, 23-24 September,
Varna, Bulgaria (2006)

11. Dencho N. Batanov and Waralak Vongdoiwang, Using Ontologies to Create Object Model for
Object-Oriented Software Engineering, Chapter 16, Part 3 in “Ontologies. A Handbook of
Principles, Concepts and Applications in Information Systems”, Editors Raj Charman, Rajiv
Kishore and Ram Ramesh, ISBN: 978-0-387-37019-4 and 978-0-387-37022-4 (online), Springer
US, pp. 461-487 (2007)

12. A Practical Guide to Effective Requirements Development, SearchSoftwareQuality.com, E-guide
(2007)

13. Joseph A. Horvath, http://providersedge.com/docs/km_articles/, (2000)
14. Marcus. Schaher, CASSANDRA: An Automated Software Engineering Coach, KnowGravity Inc,

(2001)

