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Abstract. A typical approach to software fault location is to pinpoint buggy
statements by comparing the failing program runs with some successful runs.
Most of the research works in this line require a large amount of failing runs
and successful runs. Those required execution data inevitably contain a large
number of redundant or noisy execution paths, and thus leads to a lower
efficiency and accuracy of pinpointing. In this paper, we present an improved
fault localization method by statistical analysis of difference between reduced
program runs. To do so, we first use a clustering method to eliminate the
redundancy in execution paths, next calculate the statistics of difference
between the reduced failing runs and successful runs, and then rank the buggy
statements in a generated bug report. The experimental results show that our
algorithm works many times faster than Wang's, and performs better than
competitors in terms of accuracy.
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1 Introduction

A typical thinking in fault localization is to compare successful runs and failing runs
[2, 3, 4,5, 6, 7]. There are different ways of comparison, and can be divided into
distance measures-based methods [2, 3, 4] and characteristic statistics-based methods
[5, 6, 7]. But both methods require a lot of failing runs and successful runs. Our
analysis found that many characteristics of the runs are same.

Figure 1.1 shows a program example with a bug in the assignment statement on
line 11, which should be "max = x;” In order to locate this buggy statement by using
Wang [3] method, we run manual design of 12 test cases, and obtain 8 successful runs
and 4 failing runs, in which there exists exactly same paths, such as max (4, 2, 3) and
max (8, 5, 7). To be fair, for sorting methods students write, we execute randomly
generated test cases, and statistics showed that the proportion of redundant paths is so
much as 20% ~50%.

Redundancy leads to many problems: (1) Redundancy contributes nothing to the
fault location calculations. If two failing runs are with the same path, it means that
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they contributions same to fault localization, so there is no need to separately
calculate the difference between each of them and successful runs, the same applies
two successful runs with two paths the same. (2) Computational efficiency of the
system is reduced. Because the system may spend a lot of time doing pointless things.
(3) The calculation of too much redundant data may lead to biased results. Thus
removing the path redundancy is necessary.

Measures-based method returns executing differences as bug report, however the
statements in differences are not ordered by their importance in literature [3].
Techniques based on characteristics statistics rank the statements or predicates in
order of suspicious, but it is so many
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Section 2 summarizes the related work; Section 3 introduces our fault localization
method based on statistical differences between reduced runs; Section 4 shows
comparative analysis of experimental results. Section 5 and gives the next step.

Fig.1.A small program

2 Related Work

Program runs statistical method is in essence a statistical intelligent method, how to
make statistics and compare successful runs and failing runs attracted interest of many
researchers [2, 3, 4, 5, 6, 7]. According to different type of comparison techniques,
these methods can be divided into distance measures-based method and feature-based
statistical approach.

Distance measures-based method is to find a successful run which is the most
similar to the failing run through a certain distance measure technique, and then
calculate the difference between it and failing run for fault location. A typical work of
these methods is that Renieris [2] et al proposed the "Nearest Neighbor" and Wang [3]
et al proposed calculating difference of two runs through alignment based-on control
flow information.



In contrast, feature-based statistical approach locates fault-relevant statements (or
faulty statements directly) by comparing the statistical information of program
elements in these two kinds of run. Such program elements can be statements [5] or
predicates [6, 9, 7]. Tarantula [5] statistics the frequency of every statement occurs in
failing runs and successful runs, and by analyzing them to get and rank the suspicious
statements. Predicate-based statistical techniques, such as CBI [6, 9] and SOBER [7],
locate the program predicates related to faults. CBI [6, 9] measures the increase from
the probability of a predicate to be evaluated to be true in all failed runs to that in all
the runs, This increase is used as the ranking score, which indicates how much the
predicate is related to a fault. SOBER [7] defines evaluation bias to estimate the
chance that a predicate is evaluated to be true in each run. In brief, CBI and SOBER
use similar kinds of statistical mean comparison.

3  Fault Localization With Reduced Run

3.1 Clustering Execution Paths

Next we define execution paths and their clustering.

Definition 1. (Event) An event denotes an execution of a statement of a given
program. As [6] we use the line number i of a statement to label the event e;
associated with the statement, and the statement is thus denoted as stmt(e;). A test case
that executes a given program provides the values of input variables and the expected
values of output variables.

Definition 2. (Run) A run 7 of a program is a sequence of events <ey, e;, ey,...,
e,.;> that are sequentially associated with statements executed by a given test case.
Moreover, we denote the ith event of a run « as e¢,” and number of events of 7 as |7].

Table 1. Test cases and execution runs of program in fig.1

output [SuccO [Succl [Succ2 [Succ3 [FailO [Faill [Succ4 |Succ5 [Succ6 |Succ7 |Fail2 [Fail3
TCinputs | 2,34 | 2,43 | 3,24 | 3,42 42343.2|5,78 58,7 (758|785 85,7]8,7,5

Program 11, 1, ] 11, 11, 1, ] 11,
runs 15, | 154 15, 15, | 154 15,
175 | 175 | 175 | 175 | 17s ] 175 175 | 17s | 175 | 17s | 175 ] 175
19, 19, 19, 19, 19, 19,

217 216 214 216 | 215 | 216 | 214 216 21, 21 | 215 | 216

Consider the program in Fig.1, we can get successful and failing runs showed in
Table 1 by executing a set of test cases, where the 7C inputs row sequentially put
down the input values of variables x, y, and z within test cases (e.g., "2,3,4" means a
test case having inputs {x=2, y=3, z=4}), while the output row describes that fact
whether the TC inputs leads to a successful run or a failing run (The indexed Succ for
successful runs, and Fail for failing runs), and program runs are put sequentially in
columns below the corresponding test cases. For example, the TC inputs “2,3,4”
yields a run <6y, 8, 9;, 154, 175, 19¢, 21,>, where the subscripts denotes the event
indices (e.g., 8, means that the statement on line 8 is executed once and is the second




event of this run). Note that some cells in program runs are empty because we align
statements for highlighting the difference in program runs.

Definition 3. (Dependence): Given a program P, let a variable v; be defined in
statement S; and is used in statement S, defining value of a variable v,. v, is
dependent on v, if changes to v; in the execution will is likely to influence the
definition and value of v,. Equivalently, we also say statement S, is dependent on S;.
Moreover, v, is control dependent on v,, if v; occurs in a condition the truth of which
controls the execution from S; to S,; otherwise, we say that variable v, is data
dependent on v;. Equivalently, we raise control/data dependence to the level of
statements [8].

Definition 4. (Dynamic Control Dependence) Given a program run 7, an event
e/ is dynamically control dependent on another event ¢;" if ¢/ is the nearest event
coming before ¢;" in 7 such that stm#(e;") is control dependent on stmt(e/"). Moreover,
we use dep(e;”, ) to denote the events on which e/ is dynamically control dependent
inarun 7.

Definition 5. (Alignment [3]) For any pair of events e and ¢’ (e in run 7 and €’ in
run 7), we say e and ¢’ are aligned, denoted as align(e, e')=true, iff (1)
stmt(e)=stmt(e"), and (2) either e and ¢’ are the first events appearing in 7 and 7'
respectively, or align(dep(e, n), dep(e', n'))=true.

Definition 6. (Alignment Vector) Given ]
two program runs 7' and z, a alignment Algor'thm I: delta(m, )
vector, denoted as A(w, 7'), is an array of INpUL: two program runs ; and 7,
marks for all events in 7’ and z, obtained as output: an alignment vector Az, 72)
follows: for each event e of z, mark is 1 if t=1;j=0; //temporarily store the index
there exists ¢’ of 7’ which can aligned to e, /fof events of 7,
otherwise mark is 0. A={}; //the return result

By definition 6, the following corollary is outer:
obvious: for (i=1; i<=lm); i++){

Corollary 1. Given two program runs 7z’ if alignExist(i, n1, m) {
and 7, A(x, n')= A(x', ) holds. Jj=alignindex(i, n;, m);

We use Algorithm 1 to compute k=j — temp2 — 1;
alignment  vectors, where predicate for (n=0; n<k; n++) A.add(0);
alignExist(i, m;, ) is used to check whether A.add(1); //adda"1"
there exists an event of 7, that can be } else {//otherwise add a "0"
aligned to some e; of m;, and function A.add(0); }
alignindex(i, m;, my) is used to get the index =
of such event of z,. Moreover, function continue outer;

A.add(i) adds a mark i in the alignment 1
vector A. return A:

Definition 7. (Alignment Matrix) An
alignment matrix of a program run 7 is a matrix composed of all alignment vectors
A(z, 7') such that 7’ is any run distinguish from =&, and Os are appended for padding if
the length of alignment vectors are not constant.

By Table 1 and definition 6, we have (1) A(fail0,fail0)= <I1,1,1,1,1,1,1>, (2)
A(fail0,faill)= <1,1,1,1,1,0,1>, (3) A(fail0, fail2)= <1,1,1,1,1,1,1>, and (4)



A(failo,fail3)= <1,1,1,1,1,0,1>. With such an alignment matrix, we cluster the matrix
by column and thus four failing runs in Table I can be divided into two classes:

F: faily(4,2,3), faily(8,5,7); Fy: fail;(4,3,2), fail3(8,7,5)

where failj(4,2,3) is abbreviated for the ith failing run with a TC inputs (4,2,3)). In
the same manner, eight successful runs are

divided into three classes:

Srsucey(2,3,4), succy(5,7,8); Sisucc(2,4,3),
succs(3,4,2), succs(5,8,7) and succ(7,8,5);

Sur: succy(3,2,4), succy(7,5,8).

Algorithm II: diff(z;, )
input: two program runs z; and 7,
output: a set T'of event indices
representing
difference between 7; and 7,
r={}
A=delta(7z;, m);

n=0; //to store the total number

3.2 Difference Metric

Definition 8. (Difference Metric [3]) Given
two program runs sz and 7. The difference
between 7 and 7, denoted as diff(zn’), is
defined as diff(z,7')=<e;", e;",..., ex™, such
that (1) each event e in diff{z,7) is a branch
event occurrence drawn from run 7z, (2) the
events in diff{ z,7') appear in the same order as in
7, that is, for all 1<5j<<k, #;<<i/+l (event e;"
appears before event e, ;" in 7), (3) for each e in
diff(m,7'), there exists another branch occurrence }

//of 0s coming before 1
for (i=0; i <JA| - 1; i++) {
if (A.get(i)=0) nt++;
if (A.get(i))=1AA.get(i+1)=0) {
//if the ith event can be aligned, while
//the next event can’t be aligned
T.add(i+1-n+I)); }

e’ in run 7’ such that align(e,e’)=true (i.e. e and
' can be aligned). Furthermore, the outcome of ¢ in 7 is different from the outcome
of ¢’ in 7. (4) All events in 7 satisfying (1) and (2) are included in diff{ 7,7'). (5) As a
special case, if execution runs 7 and 7’ have the same control flow, then we define
diff( m, 7' )=<e,">.

By Definition 8, the statements in the difference are all branching statements from
which two runs separately go to different branches. So if there are two adjacent values
in the vector such that the former is a "1" and the latter a "0", then the event that "1"
represents is added to the difference. In Algorithm II, Note that A.ge#(7) returns the ith
bit of the alignment vector A, while I'.add(i) adds a mark i in the alignment matrix I'.
Regarding our running example, differences are summarized in Table2 and Table 3:

Table 3. Difference between each class of
failing runs

Table 2. Difference between each class of
failing runs and successful runs

Si Su S Fi Fu
Fl 93 93,175 null F] null 175
F” 93,175 93 175 F[[ 175 null

3.3  Fault Localization

For each predicate p in a program P, LIBLIT [6] estimates two conditional
probabilities: (1) Pr1=Pr(P fails| p is ever observed); (2) Pr2=Pr(P fails| p is ever
observed as true). LIBIT then thinks the difference Pr2—Prl as an indicator of how
relevant p is to the fault. So we conclude that difference between failing runs and
successful runs indicates that faults are more likely to appear in these positions, while



difference between failing runs and failing runs indicates that the probability that fault
appears in these position is very small, that is, the predicate being true can not increase
the possibility of failure. Let P(e,x,S) be the probability that event e of run z appears in
the difference between 7 and successful runs, and P(e,r,F) between z and failing runs.
Then for any event e in a failing run 7, we define the following Score(e,r) to indicate
the suspiciousness of statements stmt(e). the formulas are as follows:

P (e P S) _ times that e appear in difference between m and successful runs (2)
277 " the total number of events in difference between & and successful runs
times that e appear in difference between z and failing runs
P(e,7,F) = e in difere s (3
the total number of events in difference between m and failing runs

Seoreter) - {P(e, 7,8)/P(e,x, F), P(e,m,F)#0 @
otherwise

Given Table 1, Table 2 and (2), (3), and (4), we have:

P(95,F1,8)=2/3, P(9;,F,F)=0, and Score(9;,F)=x;

P(175,F.,8)=1/3, P(175,F,F)=1, and Score(17s,r)=1/3;

P(93,F]1,S):1/2, P(93,F]1,}7):0, and SCOV@(93,FH):OO;

P(175,F;,S=1/2, P(175,F;,F)=1, and Score(175,F;)=1/2.

Then we get the rank score of suspiciousness that each event in the differences is
the real cause of each failure. We summarize them in Table 4, where «(2/3) and the
like denote the case of P(e,7,F)=0, P(e,7,S)=2/3, in which we compare suspiciousness
by P(e,r,S). If the rank score of two events are equal, we consider event that appears
later has a larger suspiciousness score and will be ranked in the top [3].Assume a
certain statement is responsible for a failure; it may be executed several times and
appears several times in the differences. So we compute ranking scores of each
statement for each failure as (5). So by (5), we get Table 5 of suspicious statements
for each class of failures in our running example.

(X)’

Score(stmt, ) = Z Score(e, 7) (e € m and stmt(e) = stmt) %)

Table 4. Score of suspicious events for Table.5. Score of suspicious statements for
failures failures

Score of suspicious events of F,

93 175 Statement

Fi 0(2/3) 1/3 s 9 oy

Score of suspicious events of F; F 0(2/3) 1/3

F 93 175 Fy 0(1/2) 172

Fy o0(1/2) 1/2

We can now locate faults through the analysis of Table 5. Each row of the table
represents the ranking scores of each statement for a certain failing run, if there are
some statements the value of which is significantly larger than others, the statements
are the real cause of such failures. Similarly each column represents the ranking
scores of a certain statement for each failing run,, the relevant statements with
significantly larger values are the cause of these failures. As for our example,
statement 9 has a large effect on both F; and F, indicating that statement 9 leads to
the failure with respect to these two classes of failing runs. So we use the following
equation to compute the suspiciousness of any statement.

Scorep (stmt) = ZScore(stmt, 7)(F is the set of all failing nuns)  (6)

7eF



4  Experiment Results

We chose four middle-sized programs with branches, by manually injecting different
errors (some programs injected with an error and some with two errors). In this way,
we get 43 buggy programs and 79 failing runs. Table 6 shows the description of
buggy programs generated from the original four programs.

Table 6. Description of experiment data

Progr nested Buggy Versions

ams level of | having one _Kinds of having _Kinds of
branches bug failing runs two bugs failing runs

P1 0 5° 14 3 11

P2 1 4 4 4 7

P3 2 8 9 8 16

P4 3 5 5 7 13

To evaluate our algorithm and compared it with Wang’s, we consider three cases
for each failing run: (1) case "1": for ours the largest suspiciousness statement or for
Wang’s the whole bug report exactly indicates the actual fault position, (2) case "-1":
for two methods the actual faulty location is missed in the bug report, and (3) case "0":
for ours the most suspicious statement is not the actual fault position, but the actual
fault location is under suspicion. Statistical results obtained from experiments are
shown in Fig.2, where the vertical axis is the number of failing runs.
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Figure.2. Comparison of the bug report of two methods

Wang's algorithm returns the smallest difference as the bug report, ignoring that
the position of the fault may not be in this minimal difference but in other differences.
In contrast, we use statistical methods taking into account all the circumstances, and
also rank the suspicious statements according to suspiciousness. The faulty statements
are bound to occur in our report unless they do not appear in any of the differences.

For programs with multiple bugs, we use the evaluation criteria in [3] to calculate
the pgm_score(P):instead of using each failing run and successful run, we use each
class of failing runs and each class of successful runs. The pgm_score(P) measures
the percentage of code that can be ignored for debugging, the algorithm calculates the
score of the most suspicious statement and statement with its suspicious in the second
place, and finally calculate pgm_score(P), as shown in Table 7.

According to table 7, when there are two errors in the program, the most suspicious
statement in our bug report has higher score than that by Wang’s algorithm. The
second suspicious statement also has a higher score, indicating that it is also likely to
be the actual fault position, that is, there are more likely two errors in the program



It can be seen from Fig.3, the time Wang spending grows exponentially as the
redundant data increases since it spends much on calculating differences between
each failing run and each successful run. While our algorithm eliminates redundancy
by clustering all the runs, and the next difference computation is less time-consuming,
so the time grows slightly. Moreover, we not only consider the suspiciousness for
each failing run, but also that for the entire program through statistical analysis of all
failing runs and rank statements in bug report based on their overall suspiciousness.

Table 7. Comparison of two methods when there Figure.3 Comparison of run time
are two errors in the program of two methods
The first The second 1000
Score Wang lace of our lace of our %0
algorithm P - p - 70
algorithm algorithm 2 o0
0.8-1.0 13.3 333 46.7 E 200
0.7-0.79 60.0 26.7 6.7 0
0.6-0.69 6.7 6.7 20.0 “
0.5-0.59 133 26.7 6.7 PR LT R
0-049 67 67 200 ——Wang Algorithm ——Our Algorithm

5 Conclusion

In this paper, we present an improved fault localization method using a clustering
method to eliminate the path redundancy first and then by statistical analysis of
differences between classes of runs to get and rank suspicious statements.
Experimental results show the great improvement in terms of efficiency and accuracy
in fault localization. The next step we will consider to rank all suspicious statements
and do further experimental study of our techniques running against large software.
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