
Efficiency and robustness of three metaheuristics
in the framework of structural optimization

Nikos D. Lagaros1 and Dimos C. Charmpis2

1 Institute of Structural Analysis & Seismic Research,

National Technical University Athens
Zografou Campus, Athens 15780, Greece

nlagaros@central.ntua.gr

2 Department of Civil and Environmental Engineering,
University of Cyprus,

75 Kallipoleos Str., P.O. Box 20537, 1678 Nicosia, Cyprus
charmpis@ucy.ac.cy

Abstract. Due to the technological advances in computer hardware and
software tools, structural optimization has been gaining continuously increasing
interest over the last two decades. The purpose of the present work is to
quantitatively compare three metaheuristic optimization algorithms, namely the
Differential Evolution, Harmony Search and Particle Swarm Optimization
methods, in the framework of structural optimization. The comparison of the
optimizers is performed with reference to their efficiency (overall computing
demands) and robustness (capability to detect near-optimal solutions). The
optimum design of a real-world overhead traveling crane is used as the test bed
application for conducting optimization test runs.

Keywords: Structural Optimization, Metaheuristics, Differential Evolution,
Harmony Search, Particle Swarm Optimization.

1 Introduction

Structural optimization typically aims in detecting the optimum design by minimizing
the cost (or weight) of a structure subject to certain behavioral constraints imposed by
relevant design codes. Structural optimization applications are associated with
multiple local minima, large and non-convex search spaces and several (usually
conflicting) constraints to be satisfied. As a result, such applications do not favor the
use of Mathematical Programming (gradient-based) algorithms, which exhibit a
satisfactory local rate of convergence to the nearest optimum, but they cannot assure
that the global optimum can be found when confronted with complex optimization
problems. Therefore, various heuristic probabilistic-based search algorithms, which
present a better global behavior and are less vulnerable to local optima, have been
applied during the last decades to meet the high demands of structural optimization
problems.

Several structural optimization applications have been reported, which utilize
algorithms inspired by natural phenomena, such as Evolutionary Programming [1],
Genetic Algorithms [2] and Evolution Strategies [3], among others. More recently,
new metaheuristic optimizers have been developed based on the simulation of social
interactions among members of a specific species looking for food or resources in
general. One such method is Particle Swarm Optimization (PSO) [4], which is based
on the behavior reflected in flocks of birds, bees and fish that adjust their physical
movements to avoid predators and seek for food. Two other metaheuristics with
growing interest within the structural optimization community are Differential
Evolution (DE) [5,6] and Harmony Search (HS) [7,8].

The purpose of the present work is to provide quantitative comparison results on
the performance of the three aforementioned metaheuristics (DE, HS and PSO) in the
framework of structural optimization. A typical overhead traveling crane (the crane
bridge span, the trolley, the end carriages and the runway beam span) was selected
from the catalogues of GH Cranes SA (a manufacturer of elevation systems) as the
test bed problem for conducting optimization test runs. A 3D CAD model was
developed for the crane and its cross-sectional dimensions have been optimized using
DE, HS and PSO subject to constraints imposed by Eurocode Standards.

2 The Metaheuristic Algorithms

This section provides a short description of the three metaheuristic optimization
algorithms (DE, HS and PSO) assessed in the present work. All three algorithms are
applied to an optimization problem, which can be formulated as follows:

min ()

 () 0.0
∈

≥

f

subject to g
x

x

x
F (1)

where f denotes the objective function, x is the vector of design (decision) variables, F
represents the design (search) space and g are the constraint functions of the problem.

2.1 Differential Evolution (DE)

In 1995, Storn and Price [6] proposed a new floating point evolutionary algorithm for
global optimization and named it Differential Evolution (DE). DE has a special kind
of differential operator, which is invoked to create new offspring from parent
chromosomes instead of the classical crossover or mutation. DE is a novel parallel
direct search method which utilizes NP parameter vectors xi,G (i=1,..,NP) as a
population for each generation G. The initial population is generated randomly. As a
rule, a uniform probability distribution for all random decisions is assumed. In case a
preliminary solution is available, the initial population is often generated by adding
normally distributed random deviations to the nominal solution xnom,0. The crucial
idea behind DE is a new scheme for generating new vectors. DE generates new
vectors by adding the weighted difference vector between two population members to

a third member. If the resulting vector yields a lower objective function value than a
predetermined population member, then the newly generated vector replaces the
vector with which it was compared. The comparison vector can - but needs not to be -
part of the generation process mentioned above. The best parameter vector xbest,G is
evaluated for every generation G in order to keep track of the progress made during
the optimization process. The extraction of distance and direction information from
the population to generate random deviations results in an adaptive scheme with
excellent convergence properties. Several variants of DE have been proposed so far,
the two most popular of which are presented below as schemes DE1 and DE2.

Scheme DE1. The first variant of DE works as follows: for each vector xi,G, a trial
vector v is generated according to:

1, 2, 3,(-)= + ⋅r G r G r GFv x x x (2)

The integers r1, r2 and r3 are chosen randomly from the interval [1,NP] and are
different from the running index i. F is a real and constant factor, which controls the
amplification of the differential variation (xr2,G−xr3,G). In order to increase the
diversity of the parameter vectors, the vector u = [u1,u2,…,uD]T is defined as follows:

,

 , 1 ..., 1
()

= + + −⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

j D D D
j

i G j

v for j n n n L
u

x otherwise
 (3)

where the acute brackets D denote the modulo function with modulus D.

Scheme DE2. In the second variant of DE, the trial vector v for each vector xi,G is
generated through the expression:

(), , , 2, 3,(-) - = + × + ×i G best G i G r G r GFλv x x x x x (4)

which introduces an additional control variable λ. The idea behind λ is to provide a
means to enhance the greediness of the scheme by involving the current best vector
xbest,G. This feature can be useful for non-critical objective functions. The construction
of u from v and xi,G, as well as the decision process, are identical to those of DE1.

2.2 Harmony Search (HS)

The Harmony Search (HS) algorithm was originally inspired by the improvisation
process of Jazz musicians. Each musician corresponds to a decision variable; musical
instrument’s pitch range corresponds to decision variable’s value range; musical
harmony at certain time corresponds to the solution vector at certain iteration; and
audience’s aesthetics corresponds to the objective function. Just like musical harmony
is improved as time passes, the solution vector is improved iteration by iteration.

HS utilizes a number of parameters: harmony memory size (HMS), harmony
memory considering rate (HMCR), pitch adjusting rate (PAR), maximum
improvisation (MI) and fret width (FW). HMS is the number of solution vectors

simultaneously handled by the algorithm. HMCR is the probability of choosing one
value from the musician’s memory (0 ≤ HMCR ≤ 1). Thus, (1-HMCR) is the rate with
which HS picks one value randomly from the total value range. PAR is the rate with
which HS tweaks the value originally picked from memory (0 ≤ RAR ≤ 1). Thus, (1-
PAR) is the rate with which HS keeps the original value obtained from memory. MI is
the number of iterations. HS improvises one harmony (= vector) at each iteration.
Finally, FW refers to the term fret, which is the metallic ridge on the neck of a string
instrument dividing the neck into fixed segments; each fret represents one semitone.
In the context of the HS algorithm, frets are arbitrary points which divide the total
value range into fixed segments and fret width (FW) is the length between two
neighboring frets. Uniform FW is normally used in HS. Mahdavi et al. [7] suggested
that PAR increases linearly and FW decreases exponentially with iterations:

min max min
1() (-)= + ×PAR I PAR PAR PAR

MI
 (5)

min
max

max

 () exp ln

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

FW IFW I FW
FW MI

 (6)

Once the optimization problem is formulated and the parameter values are set, a
random tuning process is performed. The HS algorithm initially improvises many
random harmonies. The number of random harmonies is at least HMS (this number
can be more than HMS, such as two or three times HMS [8]). Then, top-HMS
harmonies are selected as starting vectors. Musician’s harmony memory (HM) can be
considered as a matrix.

()
()

()

1
1 1 1 1
1 2 3

22 2 2 2
1 2 3

1 2 3

...
...

...
...

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

v

v

HMS HMS HMS HMS HMS
v

f xx x x x
x x x f xHM

x x x x f x

χ
 (7)

Once the HM is prepared, a new vector (=harmony) is improvised based on the
following operators:

Memory Consideration: When HS determines the new value xi, it randomly picks the
j-th value from HM = {xi

1 … xi
HMS} with probability HMCR. The appendix j is taken

from a uniform distribution U (0, 1):

j int(U(0,1) . HMS) +1← (8)

Pitch Adjustment: Once the value xi
new is randomly picked from HM in the above

memory consideration process, it can be further adjusted to neighboring values by
adding a certain amount to the value, with probability of PAR. For a discrete variable,
if xi(k) = xi

new, the pitch-adjusted value becomes xi(k+m), where m є {−1, 1}
normally; and for a continuous variable, the pitch-adjusted value becomes xi

new + Δ,

where Δ = U(0,1) * FW(i) normally. The above-mentioned three basic operations
(random selection, memory consideration and pitch adjustment) can be expressed as
follows:

() () (){ }
()

{ } ()
() ()

1 2

1 ,.....,
. . 1

,

xj , ,..., . . 1

..
. . *

... ..

⎧ ⎫⎧ ⎫∈⎪ ⎪⎪ ⎪−⎨ ⎬
⎪ ⎪⎡ ⎤∈⎪ ⎪⎣ ⎦⎩ ⎭⎪ ⎪⎪ ⎪← ∈ = −⎨ ⎬
⎪ ⎪

+ ∈⎧ ⎫⎪ ⎪
⎨ ⎬⎪ ⎪+ Δ ∈⎩ ⎭⎪ ⎪⎩ ⎭

L U

HMS

xi xi xi k xi Ki
w p HMCR

xu xi xi

xi HM xi xi xi w p HMCR PAR

xi k m if xi k HM
w p HMCR PAR

xi if xi HM

 (9)

2.3 Particle Swarm Optimization (PSO)

In Particle Swarm Optimization (PSO), multiple candidate solutions coexist and
collaborate simultaneously. Each solution is called a ‘particle’ that has a position and
a velocity in the multidimensional design space. A particle ‘flies’ in the problem
search space looking for the optimal position. As ‘time’ passes during its quest, a
particle adjusts its velocity and position according to its own ‘experience’, as well as
the experience of other (neighbouring) particles. Particle's experience is built by
tracking and memorizing the best position encountered. As every particle remembers
the best position it has visited during its ‘flight’, the PSO possesses a memory. A PSO
system combines local search method (through self experience) with global search
method (through neighbouring experience), attempting to balance exploration and
exploitation.

Each particle maintains two basic characteristics, velocity and position, in the
multi-dimensional search space that are updated as follows:

() ()Pb, Gb
1 1 2 2(1) () () ()+ = + − + −o oj j j j jt w t c t c tv v r x x r x x (10)

(1) () (1)+ = + +j j jt t tx x v (11)

where w is the inertia weight parameter, vj(t) denotes the velocity vector of particle j
at time t, xj(t) represents the position vector of particle j at time t, vector xPb,j is the
personal best ever position of the j-th particle, and vector xGb is the global best
location found by the entire swarm. The acceleration coefficients c1 and c2 indicate
the degree of confidence in the best solution found by the individual particle (c1 -
cognitive parameter) and by the whole swarm (c2 - social parameter), respectively,
while r1 and r2 are two random vectors uniformly distributed in the interval [0,1]. The
symbol “o ” of Eq. (10) denotes the Hadamard product, i.e. the element-wise vector or
matrix multiplication.

Fig. 1 depicts a particle’s movement in a two-dimensional design space. The
particle’s current position xj(t) at time t is represented by the dotted circle at the lower
left of the drawing, while the new position xj(t+1) at time t+1 is represented by the
dotted bold circle at the upper right hand of the drawing. The figure shows how the

particle’s movement is affected by: (i) it’s velocity vj(t); (ii) the personal best ever
position of the particle, xPb,j, at the right of the figure and (iii) the global best location
found by the entire swarm, xGb, at the upper left of the figure.

Fig. 1. PSO: Visualization of the particle’s movement in a two-dimensional design space.

3 Test Case

The three metaheuristic algorithms described in the previous section have been
applied for the sizing optimization of a travelling Overhead Crane (Fig. 2). The design
variables (11 in total) are web, top and bottom flange sizes both of the box girder and
the runway beams and the thickness (Fig. 3). The design variables of the box girder
are the breadth of the top flange (DV1), the distance of the webs (DV2), the height of
the girder (DV3) and the thicknesses of top flange, bottom flange, webs (DV4, DV5
and DV6, respectively). The design variables of the runway beams are the breadth of
the bottom flange (DV7), the height of the beams (DV8) and the thicknesses of top
flange, bottom flange, web (DV9, DV10 and DV11, respectively). The objective
function of the optimization problem corresponds to the total mass of the crane
system. The constrains of the problem are imposed based on the Structural Eurocodes
(Chapter 2): (i) the von Misses equivalent stress must not exceed the prescribed stress
limit state of the selected material used for the crane (S235) divided by the coefficient
1.1; (ii) the vertical deflection must not exceed 15mm (=L/600, where L is the span of
the bridge); (iii) the vertical deflection must not exceed 15mm (=L/600). Constraints
violation is taken into account by penalizing the objective function.

Each of algorithms DE (scheme DE2), HS and PSO was executed 1,000 times. The
performance results obtained are summarized in Tables 1 and 2 (CoV is defined as the
standard deviation divided by the mean).

DE was found to give the minimum mass for the test example considered, while
PSO also yielded almost the same minimum result. In general, DE and PSO appear to
be rather robust algorithms, since they yield solutions close to the best result achieved
with low variance when compared between several test runs. HS provides solutions of
lower quality and with larger variation between several test runs.

Fig. 2. Views of the crane and its finite element mesh.

Fig. 3. The 11 design variables.

Table 1. Minimum objective function value achieved by the three metaheuristics.

Optimization Minimum mass achieved (Kg)
Method mean (CoV) min max
PSO 2007.3 (0.33%) 1999.8 2071.7
DE 2001.1 (0.41%) 1998.1 2084.1
HS 2286.2 (2.43%) 2076.8 2322.3

Table 2. Computational cost induced by the three metaheuristics (a time-consuming
structural analysis of the crane is performed at each iteration of the optimization algorithms).

Optimization Number of iterations
Method mean (CoV) min max
PSO 60912.0 (33.8%) 33000 157500
DE 95613.8 (80.5) 5000 371000
HS 5477.5 (72.6) 4422 20100

In terms of computing demands, HS seems to be the most inexpensive of the three

meatheuristics. DE appears to be the computationally most demanding algorithm,
while PSO performance lies between the ones of HS and DE.

5 Conclusions

Differential Evolution (DE) is the optimization method that was found to give the best
design vector, but required the largest amount of iterations for convergence. Harmony
Search (HS) is the optimization method that provided the worst design vector, but
converged faster than both DE and PSO. PSO yielded solutions of almost the same
quality as DE, but with less iteration demands.

In general, it can be stated that efficiency is inversely proportional to robustness. A
fast algorithm (HS) cannot provide the solution quality of a robust yet
computationally expensive algorithm (DE). PSO seems to be a good compromise
between HS and DE, although it exhibits substantially larger computational demands
that HS.

References

1. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated Evolution.
John Wiley (1966).

2. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning.
Addison Wesley (1989).

3. Rechenberg, I.: Evolutionsstrategie – Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution. (1971). Reprinted by Fromman-Holzboog (1973).

4. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. Proceedings of IEEE International
Conference on Neural Networks IV (1995).

5. Price, K., Storn, R., Lampinen J.: Differential Evolution - A Practical Approach to Global
Optimization. Springer, Berlin (2005).

6. Storn, R., Price, K.: Differential Evolution - a Simple and Efficient Adaptive Scheme for
Global Optimization over Continuous Spaces". Technical Report TR-95-012, International
Computer Science Institute (1995).

7. Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for
solving optimization problems. Applied Mathematics and Computation 188, 1567--1579
(2007).

8. Degertekin, S.: Optimum design of steel frames using harmony search algorithm. Structural
and Multidisciplinary Optimization 36, 393--401(2008).

