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Abstract. This communication aims to propose a two stepracté/e aiding
system dealing with product configuration and piithin planning. The first
step assists interactively and simultaneously tirdiguration of a product and
the planning of its production process. Then a isécstep complete the two
previous tasks thanks to a constrained multi-¢ateptimisation that proposes
to the user a set of solutions belonging to a Bdrent minimizing cost and
cycle time. The first section of the paper introeltiche problem. The second
one proposes a solution for the first step relyangconstraint filtering for both
configuration and planning. The following ones pep an evolutionary
optimisation process and first computation results.
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1 Introduction

This paper presents an integrated support tool twlat first allows interactive
configuration of a product and interactive plannargl scheduling of its production
process, and then minimizes conflicting criteriastccand cycle time. The
configuration of a private aircraft will be usedasexample to illustrate our research
work.

In literature, most of the research into produchfiguration and production
planning treats them independently. However, thasitins of product configuration
obviously have strong consequences on the planoiirits production process (for
example, a luxury finish requires at least two #ddal months. On the other hand,
planning decisions can provide hard constraintsptoduct configuration (for
example, such assembly duration forbids the useidf a kind of engine). Therefore,
we propose to associate these two problems so(ijh#tie consequences of each
decision of product configuration can be propagdiedard the planning of its
production process and (ii) the consequences df peacess planning or scheduling
decision can be propagated towards the productigiomfion. As we target
interactive assistance in order to allow some lohdwhat if” operating mode, we
need to be able to show the consequences of eacls eeementary requirement. A



user’'s elementary requirement can be defined asstigtion of the domain of a

variable involved in configuration (for example,miber of seats belongs to [6, 12]) or
in planning (for example, due date is prior to 812010). We consequently do not
intend to process all the requirements simultarigans single shot to get a solution
for both problems but rather to progressively l¢he user to a solution for both

product configuration and planning of its productio

In the field of configuration, many authors, amosigom [1] or [2], showed that
product configuration can be efficiently modeled @ided when it is considered as a
Constraints Satisfaction Problem (CSP). In a samg authors interested in planning
and scheduling as [3] or [4] have shown that thggseblems could be also modeled
and aided when considered as a CSP. We therefopege to consider configuration
and planning problems as two constraint satisfacfooblems. We assume that a
constraint based model of a generic product andahee kind of model for a generic
production plan can be established and we resticfiguration and planning tasks to
the instantiation of these two models. We alsotlimé scope of this paper to infinite
capacity planning. To support interactive assigange only use the filtering or
constraint propagation capabilities of the CSP &awrk. We finally link the two
problems (configuration and planning) and the cimgptonstraints proposed in [5]
together to propagate the consequences in botttidins.

In the previous system, a product can be entirelyfigured and its production
process entirely planned. “Entirely” means to fiestthe solution space to a single
solution, each problem variable having a singlei@aBut we are not interested in this
operating mode. We assume that it is possible twompose the set of user’s
requirements in two sub-sets: non-negotiable requénts and negotiable ones. Our
idea is to process interactive configuration andnping with the first sub-set or
requirements only (non negotiable) and achievesarfeduction of the solution space.
Remaining variable affectations (remaining solutipace) are kept for multi-criteria
considerations in the second step of our propasitio

In most industrial cases, the resulting productsfigared are characterized by
criteria such as performance and product cost wiglevant production plans are
associated with cycle time and production costolition is always a compromise of
somehow contradictory criteria. In this presentative only consider two criteria:
cost (product cost and production cost) and cyatee tfor production planning.
Hence, the next step is to find solutions that bglto the Pareto front (time/cost)
among the solution space restricted during the §irsp. Multi-criteria optimization
techniques and more accurately Evolutionary Algonit(EA) (see [6] and [7]) have
the advantage to avoid the aggregation of critarid can provide solutions on a
Pareto front in a rather simple way. Thanks to awlwionary approach, the second
step will perform a second reduction of the solutsgpace for both product and plan
and provide solutions on the Pareto front. Findlhg user can finish the process by
selecting the solution that fits his specific tiowst compromise. The next section
describes our proposition for the first step withexample, then our proposition for
the second step with an evolutionary approachtziled.



2 Configuration and planning models and constraint processing

The configuration model (left part of figure 1) yats product descriptive variables
(for example: aircraft range, number of enginepetyf finish...) and product cost
variables (finish cost, engine cost...) that are exittymbols or discrete numbers.
Configuration constraints (for example black sdiites that can link aircraft range
and engine type together) and cost definition cairgt (for example grey solid lines
that can link engine type and number of engineh wafitgine cost) correspond most of
the time with discrete tables showing allowed camabons of allowed values. In this
discrete problem, the associated CSP is discredettan filtering provided by arc

consistency technique [8] allows interactive counfagion and cost estimation.

The planning model (right part of figure 1) gatherset of planning operations
(like manufacturing, assembling...) linked with ornder constraints. Each operation
is defined with three operation temporal varialfiarting date, ending date, possible
duration) and eventually resource variables (reguiresource, quantity of required
resource). We assume that the three temporal Vesialoe real variables defined with
intervals while resource type is symbolic and resewguantity a real variable. The
cost of an operation is a real variable that depemdthe resource type or quantity
and the operation duration. As we consider plannivith infinite capacity of
resource, the constraints are as follows. Ordecmgstraints between operations (if
task Y is after task X then starting date of Y tisajer than or equal to ending date of
X) and operation duration constraints (ending a@sfeals starting date plus possible
duration) are numerical constraints (black solided). The constraints that link
possible duration with required resource and/omtjtyaof required resource and/or
cost are mixed constraints (black and grey sotidd). Our numerical constraints are
simple calculations (+,-,*, /, =, >, <), therefdiey respect the hypothesis of bound
Consistency proposed by Lhomme in [9]. Based owrrwal arithmetic, bound
consistency is gathered with arc consistency atalval interactive planning and
scheduling.

A mixed constraint between product description alalés and planning operation
variables (black doted lines) allows to propagatxriglon consequences from
configuration to planning and from planning to dgofation. [5] can be referred for
more details. The first global criterion, i.e. fotost, is calculated thanks to a
numerical constraint as the sum of product costagragtation cost (grey doted lines of
figure 1). The second one, the production cycletoarresponds with the ending date
of the last operation.
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Fig. 1: Configuration and planning model



3 Optimization problem to assign

3.1 Definition of the optimization problem

The first interactive filtering step leads to thestriction of the initial feasible space
(noted (a) on figure 2) to a restrained area (n{¢an figure 2). This corresponds to
the filtering of a customer’'s non-negotiable reqoients. The filtering system
provides domain bounds for every criteria varialoienimal and maximal values for
cost and cycle time). The restrained area consohgions corresponding to different
remaining decisions to fulfil according to the reénirgg requirement. Notice that this
area also contains unfeasible space where theesgslution due to the constraints of
the problem to solve. The aim of the optimizatisagess is to find a selection of the
closest solutions to the Optimal Pareto front. Wasi metaheuristics may be used to
solve this problem. In this research work, we foousevolutionary algorithms for
their ability to propose multiple solutions whilelgng a multiobjective problem. But
classical evolutionary algorithms have to be adhpte take into account the
constraints of the problem.
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Fig. 2: lllustration of the reduced search space to opéni® from the initial feasible space (a)
after the filtering process on non-negotiable regments. Optimization process aims finding
the Pareto-Optimal solutions in this restrictechare

3.2 Formal definition of optimization problem:

The constrained optimization problem (O-CSP) idrdef by the quadruplet <V, D,

C, f >, where V is the set of decision variablesthb set of domains linked to each
variable of V, C the set of constraints on variadfi&/ and f the multi-valuated fitness
function. Here the aim is to minimize both cost aydle time. The set V gathers: the
product descriptive variables and the resourcesablas (required resource and
choice or quantity of required resource). Constsaias seen in section 2, link the
variables of V with all the variables of the twaptems. The filtering system allows
dynamically computing modification on the domain wHriables. This OCSP is a
difficult problem to solve. The existing methodshi@ndle constraints in EA are often
computationally expensive. The next section bripflgsents existing.



3.3 Overview of existing constrained optimisation approach

Initially, EA deal with large combinative unconstrad problem. They are used to
solve multiple problems like project planning opject configuration. But real world
problems are generally constrained. Many resedtaties try to integrate constraints
in EA. C. Coello Coello comprehensively surveys state of the art of these methods
[10] (more than eight hundred references). It sedms classical EA performance
decreases while the number of constraints incre&@sstraints imply feasible and
un-feasible areas in search space. Then the ratwekn the size of feasible and un-
feasible space guides the choice of specific methodiandle constraints in EA [11].
Four kinds of methods deal with this problem: pgn&inctions [12], repair methods
[13], approaches that separate objectives and reamist (Multiobjective Optimization
(MO) techniques) [14] and specific representationsperators [15], [16].

The first one, penalty functions, is the most comm@y to integrate violation of
constraints in the objective function. For eachiiitthal, the level of violation of
constraint is added to the fitness function dutimg evaluation phase. The aim is to
increase the probability of selection for feasibtenear feasible solutions. The main
drawback of such an approach is that the boundatween feasible and unfeasible
regions is usually difficult to grasp. Furthermoierequires the definition of the
weights needed to aggregate the violation of déffieiconstraints. The repair methods
only try to deal with feasible individuals. As so@as an unfeasible individual is
generated, a specific operator redirects it tow#ndsfeasible space. The difficulty is
thus to elaborate a performing repairing algorittivat preserves the diversity of
individuals. The same problem appears with MO apgines. These ones integrate the
satisfaction of each constraint (or a group of tramsts) as a specific objective.

Finally, the specific operators or representatiapproaches aim at preserving the
feasibility of the individuals during their consttion. Kowalczyk previously
proposed in [15] the use of constraint consisteiocprevent variable instantiations
which are not consistent with the constraints & groblem. However, his study
suggests that the supplementary computing time eteéor constraint propagation
may be very expensive in comparison with optim@aprocess.

In this paper, we will focus on specific evolutiopaperators that prune search
space using constraints filtering (with our ownefilng system named Cofiade while
Kowalczyk used llog-solver, a commercial softwasee [17] for a software
comparison). The arc-consistence is less time c¢oimgu than other CSP solving
system but it doesn’t guaranty global coherendb@imnodel.

3.4 Proposed Approach

Overview of modified EA used. EA used is adapted from the SPEA2 method [18]
with classical evolutionary steps (initialisatiomyvaluation, selection, stopping
criterion and perturbation operators). It is onetbé most useful Pareto-based
methods founded on preservation of a selectiorest bolutions in a separate archive.
It includes performing evaluation strategy witchinigra well-balanced population
density on each area of search space, and useelimeatruncation process that
preserve boundary solution. It ensures both a gomavergence speed and the



preservation of diversity of solutions. Zitzler simthat the maximal complexity of
the overall algorithm is O(N,) with N, the number of solutions in current
population. We completed this method with specifiwolutionary operators

(initialisation, uniform mutation and uniform cras®r) presented in next sections.
Finally, the stopping criterion is a fixed numbéigenerations.

Initialisation operator. Thanks to this operator, a well-diversified set initial
individuals is obtained. For each individual toates every gene (decision variable) is
randomly instantiated into its current domain. Imler to avoid the generation of
unfeasible individuals, the domain of every gendyisamically updated by filtering
after each instantiation. If an individual is inevént, a limited backtrack process
cancels one of the previous choice, then the iddaliis filtered again until the values
of the remaining variable are consistent with thastraints. If the backtrack limit is
reached, the individual is abandoned to bound theber of backward step and thus
the computational time spent by the filtering. Tpiscess (random instantiation then
filtering) is repeated until all the genes of eviergividual are instantiated.

Uniform mutation operator. This operator introduces a random perturbationhen t
evolutionary process that allows escaping from gptimal areas and thus the
exploration of search space. It modifies the ingsion of some genes on individuals
selected according to the mutation probability. igvandividual and their genes

selected for the mutation are beforehand chosedoraly. The individuals are

selected then selected genes are un-instantiateel.filfering system updates the
domain of these variables according to the inst#ioi of others genes. Finally, the
mutation of the selected genes is achieved indhgesvay as during the initialisation
(instantiation, filtering and backtrack limit). Wiheevery gene is instantiated, the
mutation process end and the individuals are atlnléte next generation.

Uniform crossover operator. This operator allows to shuffle randomly and
uniformly the genes of two individuals (named pé#sgrselected according to the
crossover probability. As for the mutation operatmuple of parents and crossover
of their genes are randomly selected before thesoner operation. To achieve this
task, a crossover table (table of crossover flagetery gene) is filled. It allows to
select beforehand which genes will be exchange dmriwparents. Indeed, the
crossover corresponds to a selected way on a biregywhere each branch is linked
to the crossover of a particular gene. An instéiotia of the crossover table is
equivalent to the selection of a path on the cramstree. Notice that position of a
specific gene is chosen randomly to avoid dominasfcgenes by their position in
chromosome. During crossover operation, the systaes to achieve random
crossover. At every gene instantiation, the fittigrisystem updates the domain of
remaining genes. The crossover table is initidllgd identically for both child, but if
an individual become unfeasible, a specific backtrss done by changing some
crossover flag in the table. A supplementary flagdded to the crossover table that
memorise unfeasible way on the tree in case oftbaddk Then a backtrack counter
limits the number of backward steps. If the baa&rimit is reach, the corresponding
child is abandoned. Finally, every feasible chidddded to the next generation.



4 Preliminary results

We perform various tests on the aircraft probigd2 variables, ten of whom are
taken into account in EA, 42 constraints, about twitlions feasible solutions) to
evaluate the proposed approach. Various evolutjosattings were investigated. In
most runs, the modified EA was able to provide vgopd solutions, near Pareto-
optimal solutions. Figure 3 presents the Paretarv@htfront and the archive founded
after one run of the proposed EA (10 generationpufation size: 20, archive size:
21, crossover rate: 0.7, mutation rate: 0.3). Dutimis run, 71.4% of the optimal
Pareto front is reach for a computation time of @3&conds (around 28 minutes).
This result is very interesting, because it cleaHpws that in a reasonable amount of
time, it is possible to propose a set of solutithrag permit the user to decide about his
own compromise cost/cycle time. This is much morzueate than solutions
frequently proposed in industrial configuration te@fre that are based on the
selection of default values that try to minimizther cost or cycle time.
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Fig. 2: Detail of archive resulting from one run of modifiEA (triangles) and best known
Pareto Front (squares) and every individual fourfdethis problem (points).

5 Conclusions

In this paper, we present an efficient aiding syster coupled product configuration
and project planning, using an interactive constrfiitering system then a modified
evolutionary optimization system. The modified EsAbased on interaction with the
filtering system that prunes the search space hns teduces the search effort by

! Aircraft model could be investigated on-line, selemodel Aircraft-CSP-EA at:
http://cofiade.enstimac.fr/cgi-bin/cofiade.pl



limiting it to the feasible individuals. Standardotutionary operators are adapted to
take advantage of filtering. First experiments dadié that this method is well adapted
for an interactive aiding system. It generates -‘ogdimal Pareto-solutions in
reasonable computing time. It allows the user taidie efficiently about his
cost/cycle-time compromise when dealing simultasgowith configuration and
planning.
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