
Aiding interactive configuration and planning:
a constraint and evolutionary approach

Paul Pitiot1, Michel Aldanondo1, Elise Vareilles1, Paul Gaborit1,
Meriem Djefel1&2, Claude Baron2,

1
 Toulouse University Mines Albi,

 2
 Toulouse University INSA - France

{paul.pitiot, michel.aldanondo, elise.vareilles, paul.gaborit, meriem.djefel}@mines-albi.fr
{meriem.djefel, claude.baron}@insa-toulouse.fr

Abstract. This communication aims to propose a two step interactive aiding
system dealing with product configuration and production planning. The first
step assists interactively and simultaneously the configuration of a product and
the planning of its production process. Then a second step complete the two
previous tasks thanks to a constrained multi-criteria optimisation that proposes
to the user a set of solutions belonging to a Pareto front minimizing cost and
cycle time. The first section of the paper introduces the problem. The second
one proposes a solution for the first step relying on constraint filtering for both
configuration and planning. The following ones propose an evolutionary
optimisation process and first computation results.

Keywords: product configuration, process planning, constraint satisfaction
problem, evolutionary algorithm

1 Introduction

This paper presents an integrated support tool which at first allows interactive
configuration of a product and interactive planning and scheduling of its production
process, and then minimizes conflicting criteria cost and cycle time. The
configuration of a private aircraft will be used as an example to illustrate our research
work.

In literature, most of the research into product configuration and production
planning treats them independently. However, the decisions of product configuration
obviously have strong consequences on the planning of its production process (for
example, a luxury finish requires at least two additional months. On the other hand,
planning decisions can provide hard constraints to product configuration (for
example, such assembly duration forbids the use of such a kind of engine). Therefore,
we propose to associate these two problems so that (i) the consequences of each
decision of product configuration can be propagated toward the planning of its
production process and (ii) the consequences of each process planning or scheduling
decision can be propagated towards the product configuration. As we target
interactive assistance in order to allow some kind of “what if” operating mode, we
need to be able to show the consequences of each user’s elementary requirement. A

user’s elementary requirement can be defined as a restriction of the domain of a
variable involved in configuration (for example, number of seats belongs to [6, 12]) or
in planning (for example, due date is prior to 31/10/2010). We consequently do not
intend to process all the requirements simultaneously in a single shot to get a solution
for both problems but rather to progressively lead the user to a solution for both
product configuration and planning of its production.

In the field of configuration, many authors, among whom [1] or [2], showed that

product configuration can be efficiently modeled and aided when it is considered as a
Constraints Satisfaction Problem (CSP). In a same way, authors interested in planning
and scheduling as [3] or [4] have shown that theses problems could be also modeled
and aided when considered as a CSP. We therefore propose to consider configuration
and planning problems as two constraint satisfaction problems. We assume that a
constraint based model of a generic product and the same kind of model for a generic
production plan can be established and we restrict configuration and planning tasks to
the instantiation of these two models. We also limit the scope of this paper to infinite
capacity planning. To support interactive assistance, we only use the filtering or
constraint propagation capabilities of the CSP framework. We finally link the two
problems (configuration and planning) and the coupling constraints proposed in [5]
together to propagate the consequences in both directions.

In the previous system, a product can be entirely configured and its production

process entirely planned. “Entirely” means to restrict the solution space to a single
solution, each problem variable having a single value. But we are not interested in this
operating mode. We assume that it is possible to decompose the set of user’s
requirements in two sub-sets: non-negotiable requirements and negotiable ones. Our
idea is to process interactive configuration and planning with the first sub-set or
requirements only (non negotiable) and achieve a first reduction of the solution space.
Remaining variable affectations (remaining solution space) are kept for multi-criteria
considerations in the second step of our proposition.

In most industrial cases, the resulting products configured are characterized by

criteria such as performance and product cost while relevant production plans are
associated with cycle time and production cost. A solution is always a compromise of
somehow contradictory criteria. In this presentation we only consider two criteria:
cost (product cost and production cost) and cycle time for production planning.
Hence, the next step is to find solutions that belong to the Pareto front (time/cost)
among the solution space restricted during the first step. Multi-criteria optimization
techniques and more accurately Evolutionary Algorithm (EA) (see [6] and [7]) have
the advantage to avoid the aggregation of criteria and can provide solutions on a
Pareto front in a rather simple way. Thanks to an evolutionary approach, the second
step will perform a second reduction of the solution space for both product and plan
and provide solutions on the Pareto front. Finally, the user can finish the process by
selecting the solution that fits his specific time/cost compromise. The next section
describes our proposition for the first step with an example, then our proposition for
the second step with an evolutionary approach is detailed.

2 Configuration and planning models and constraint processing

The configuration model (left part of figure 1) gathers product descriptive variables
(for example: aircraft range, number of engines, type of finish…) and product cost
variables (finish cost, engine cost…) that are either symbols or discrete numbers.
Configuration constraints (for example black solid lines that can link aircraft range
and engine type together) and cost definition constraints (for example grey solid lines
that can link engine type and number of engines with engine cost) correspond most of
the time with discrete tables showing allowed combinations of allowed values. In this
discrete problem, the associated CSP is discrete and the filtering provided by arc
consistency technique [8] allows interactive configuration and cost estimation.

The planning model (right part of figure 1) gathers a set of planning operations
(like manufacturing, assembling…) linked with ordering constraints. Each operation
is defined with three operation temporal variables (starting date, ending date, possible
duration) and eventually resource variables (required resource, quantity of required
resource). We assume that the three temporal variables are real variables defined with
intervals while resource type is symbolic and resource quantity a real variable. The
cost of an operation is a real variable that depends on the resource type or quantity
and the operation duration. As we consider planning with infinite capacity of
resource, the constraints are as follows. Ordering constraints between operations (if
task Y is after task X then starting date of Y is greater than or equal to ending date of
X) and operation duration constraints (ending date equals starting date plus possible
duration) are numerical constraints (black solid lines). The constraints that link
possible duration with required resource and/or quantity of required resource and/or
cost are mixed constraints (black and grey solid lines). Our numerical constraints are
simple calculations (+,-,*, /, =, >, <), therefore they respect the hypothesis of bound
Consistency proposed by Lhomme in [9]. Based on interval arithmetic, bound
consistency is gathered with arc consistency and allows interactive planning and
scheduling.

A mixed constraint between product description variables and planning operation
variables (black doted lines) allows to propagate decision consequences from
configuration to planning and from planning to configuration. [5] can be referred for
more details. The first global criterion, i.e. total cost, is calculated thanks to a
numerical constraint as the sum of product cost and operation cost (grey doted lines of
figure 1). The second one, the production cycle time corresponds with the ending date
of the last operation.

Fig. 1: Configuration and planning model

3 Optimization problem to assign

3.1 Definition of the optimization problem

The first interactive filtering step leads to the restriction of the initial feasible space
(noted (a) on figure 2) to a restrained area (noted (b) on figure 2). This corresponds to
the filtering of a customer’s non-negotiable requirements. The filtering system
provides domain bounds for every criteria variable (minimal and maximal values for
cost and cycle time). The restrained area contains solutions corresponding to different
remaining decisions to fulfil according to the remaining requirement. Notice that this
area also contains unfeasible space where there is no solution due to the constraints of
the problem to solve. The aim of the optimization process is to find a selection of the
closest solutions to the Optimal Pareto front. Various metaheuristics may be used to
solve this problem. In this research work, we focus on evolutionary algorithms for
their ability to propose multiple solutions while solving a multiobjective problem. But
classical evolutionary algorithms have to be adapted to take into account the
constraints of the problem.

Fig. 2: Illustration of the reduced search space to optimize (b) from the initial feasible space (a)
after the filtering process on non-negotiable requirements. Optimization process aims finding
the Pareto-Optimal solutions in this restricted area.

3.2 Formal definition of optimization problem:

The constrained optimization problem (O-CSP) is defined by the quadruplet <V, D,
C, f >, where V is the set of decision variables, D the set of domains linked to each
variable of V, C the set of constraints on variable of V and f the multi-valuated fitness
function. Here the aim is to minimize both cost and cycle time. The set V gathers: the
product descriptive variables and the resources variables (required resource and
choice or quantity of required resource). Constraints, as seen in section 2, link the
variables of V with all the variables of the two problems. The filtering system allows
dynamically computing modification on the domain of variables. This OCSP is a
difficult problem to solve. The existing methods to handle constraints in EA are often
computationally expensive. The next section briefly presents existing.

3.3 Overview of existing constrained optimisation approach

Initially, EA deal with large combinative unconstrained problem. They are used to
solve multiple problems like project planning or project configuration. But real world
problems are generally constrained. Many research studies try to integrate constraints
in EA. C. Coello Coello comprehensively surveys the state of the art of these methods
[10] (more than eight hundred references). It seems that classical EA performance
decreases while the number of constraints increases. Constraints imply feasible and
un-feasible areas in search space. Then the ratio between the size of feasible and un-
feasible space guides the choice of specific methods to handle constraints in EA [11].
Four kinds of methods deal with this problem: penalty functions [12], repair methods
[13], approaches that separate objectives and constraints (Multiobjective Optimization
(MO) techniques) [14] and specific representations or operators [15], [16].

The first one, penalty functions, is the most common way to integrate violation of
constraints in the objective function. For each individual, the level of violation of
constraint is added to the fitness function during the evaluation phase. The aim is to
increase the probability of selection for feasible or near feasible solutions. The main
drawback of such an approach is that the boundary between feasible and unfeasible
regions is usually difficult to grasp. Furthermore, it requires the definition of the
weights needed to aggregate the violation of different constraints. The repair methods
only try to deal with feasible individuals. As soon as an unfeasible individual is
generated, a specific operator redirects it towards the feasible space. The difficulty is
thus to elaborate a performing repairing algorithm that preserves the diversity of
individuals. The same problem appears with MO approaches. These ones integrate the
satisfaction of each constraint (or a group of constraints) as a specific objective.

Finally, the specific operators or representations approaches aim at preserving the
feasibility of the individuals during their construction. Kowalczyk previously
proposed in [15] the use of constraint consistency to prevent variable instantiations
which are not consistent with the constraints of the problem. However, his study
suggests that the supplementary computing time needed for constraint propagation
may be very expensive in comparison with optimization process.

In this paper, we will focus on specific evolutionary operators that prune search
space using constraints filtering (with our own filtering system named Cofiade while
Kowalczyk used Ilog-solver, a commercial software, see [17] for a software
comparison). The arc-consistence is less time consuming than other CSP solving
system but it doesn’t guaranty global coherence of the model.

3.4 Proposed Approach

Overview of modified EA used. EA used is adapted from the SPEA2 method [18]
with classical evolutionary steps (initialisation, evaluation, selection, stopping
criterion and perturbation operators). It is one of the most useful Pareto-based
methods founded on preservation of a selection of best solutions in a separate archive.
It includes performing evaluation strategy witch bring a well-balanced population
density on each area of search space, and uses an archive truncation process that
preserve boundary solution. It ensures both a good convergence speed and the

preservation of diversity of solutions. Zitzler shows that the maximal complexity of
the overall algorithm is O(Npop

3) with Npop the number of solutions in current
population. We completed this method with specific evolutionary operators
(initialisation, uniform mutation and uniform crossover) presented in next sections.
Finally, the stopping criterion is a fixed number of generations.

Initialisation operator. Thanks to this operator, a well-diversified set of initial
individuals is obtained. For each individual to create, every gene (decision variable) is
randomly instantiated into its current domain. In order to avoid the generation of
unfeasible individuals, the domain of every gene is dynamically updated by filtering
after each instantiation. If an individual is incoherent, a limited backtrack process
cancels one of the previous choice, then the individual is filtered again until the values
of the remaining variable are consistent with the constraints. If the backtrack limit is
reached, the individual is abandoned to bound the number of backward step and thus
the computational time spent by the filtering. This process (random instantiation then
filtering) is repeated until all the genes of every individual are instantiated.

Uniform mutation operator. This operator introduces a random perturbation on the
evolutionary process that allows escaping from sub-optimal areas and thus the
exploration of search space. It modifies the instantiation of some genes on individuals
selected according to the mutation probability. Every individual and their genes
selected for the mutation are beforehand chosen randomly. The individuals are
selected then selected genes are un-instantiated. The filtering system updates the
domain of these variables according to the instantiation of others genes. Finally, the
mutation of the selected genes is achieved in the same way as during the initialisation
(instantiation, filtering and backtrack limit). When every gene is instantiated, the
mutation process end and the individuals are added to the next generation.

Uniform crossover operator. This operator allows to shuffle randomly and
uniformly the genes of two individuals (named parents) selected according to the
crossover probability. As for the mutation operator, couple of parents and crossover
of their genes are randomly selected before the crossover operation. To achieve this
task, a crossover table (table of crossover flags for every gene) is filled. It allows to
select beforehand which genes will be exchange between parents. Indeed, the
crossover corresponds to a selected way on a binary tree where each branch is linked
to the crossover of a particular gene. An instantiation of the crossover table is
equivalent to the selection of a path on the crossover tree. Notice that position of a
specific gene is chosen randomly to avoid dominance of genes by their position in
chromosome. During crossover operation, the system tries to achieve random
crossover. At every gene instantiation, the filtering system updates the domain of
remaining genes. The crossover table is initially filled identically for both child, but if
an individual become unfeasible, a specific backtrack is done by changing some
crossover flag in the table. A supplementary flag is added to the crossover table that
memorise unfeasible way on the tree in case of backtrack. Then a backtrack counter
limits the number of backward steps. If the backtrack limit is reach, the corresponding
child is abandoned. Finally, every feasible child is added to the next generation.

4 Preliminary results

We perform various tests on the aircraft problem1 (42 variables, ten of whom are
taken into account in EA, 42 constraints, about two millions feasible solutions) to
evaluate the proposed approach. Various evolutionary settings were investigated. In
most runs, the modified EA was able to provide very good solutions, near Pareto-
optimal solutions. Figure 3 presents the Pareto-optimal front and the archive founded
after one run of the proposed EA (10 generations, population size: 20, archive size:
21, crossover rate: 0.7, mutation rate: 0.3). During this run, 71.4% of the optimal
Pareto front is reach for a computation time of 1730 seconds (around 28 minutes).
This result is very interesting, because it clearly shows that in a reasonable amount of
time, it is possible to propose a set of solutions that permit the user to decide about his
own compromise cost/cycle time. This is much more accurate than solutions
frequently proposed in industrial configuration software that are based on the
selection of default values that try to minimize either cost or cycle time.

130

150

170

190

210

230

250

20 70 120 170

Every known individuals Optimal Pareto Final Archive

Fig. 2: Detail of archive resulting from one run of modified EA (triangles) and best known
Pareto Front (squares) and every individual founded for this problem (points).

5 Conclusions

In this paper, we present an efficient aiding system for coupled product configuration
and project planning, using an interactive constraint filtering system then a modified
evolutionary optimization system. The modified EA is based on interaction with the
filtering system that prunes the search space and thus reduces the search effort by

1 Aircraft model could be investigated on-line, select model Aircraft-CSP-EA at :

http://cofiade.enstimac.fr/cgi-bin/cofiade.pl

limiting it to the feasible individuals. Standard evolutionary operators are adapted to
take advantage of filtering. First experiments indicate that this method is well adapted
for an interactive aiding system. It generates near-optimal Pareto-solutions in
reasonable computing time. It allows the user to decide efficiently about his
cost/cycle-time compromise when dealing simultaneously with configuration and
planning.

References

1. Soininen T., Tiihonen T., Männistö T. and Sulonen R.: Towards a General Ontology of
Configuration. AIEDAM vol. 12 - n° 4, pp 357-372, (1998).

2. Junker U.: Chap 26 of Handbook of Constraint Programming. Elsevier, (2006).
3. Dechter R., Meiri I. and Pearl J.: Temporal Constraint Satisfaction Problems. Artificial

Intelligence, n°49, pp 61-95, (1991).
4. Barták R., Salido M., Rossi F.: Constraint satisfaction techniques in planning and scheduling

- J Intell Manuf (2010) 21:5–15, (2010).
5. Vareilles E., Aldanondo M., Djefel M., Gaborit P.: Coupling interactively Product and

Project Configuration: a Proposal using Constraints Programming. IMCM PETO 2008,
Copenhagen, Denmark, ISBN: 978-87-90855-12-3, (2008).

6. Li, B., Chen, L., Huang, Z., Zhong, Y.: Product configuration optimization using a
multiobjective GA, I.J. of Adv. Manufacturing Technology, vol. 30, p. 20-29, (2006).

7. Chelouah R., Baron C., Zholghadri M., Gutierrez C.: Meta-heuristics for System Design
Engineering, Studies in Computational Intelligence, Springer, vol. 203, p. 387-423, (2009).

8. Bessiere C.: Chap 3 of Handbook of Constraint Programming. Elsevier, (2006).Richardson
J.T., Palmer M.R., Liepins G., Hilliard M.: Some guidelines for GA with penality functions.
J. D. Schaffer, editor, Proc. of 3rd int. conf. on G.A., p. 191-197, (1989).

9. Lhomme O.: Consistency techniques for numerical CSPs. IJCAI 93, Chambéry France, pp
232-238, (1993).

10.Computer science department : CINVESTAV, www.cs.cinvestav.mx/~constraint/.
11.Coello Coello C.: Theoretical and numerical constraint-handling techniques used with

evolutionary algorithms : A survey of the state of art. Computer Methods in Applied
Mechanics and Engineering, vol. 191, n°11-12, pp. 1245-1287, (2002).

12.Richardson J.T., Palmer M.R., Liepins G., Hilliard M.: Some guidelines for GA with
penality functions”, J.D. Schaffer, editor, Proc. of 3rd int. conf. on G.A., p. 191-197, (1989).

13.Salcedo-Sanz S.: A survey of repair methods used as constraint handling techniques in
evolutionary algorithms. Computer science review, pp. 175-192, (2009).

14.Clevenger L., Ferguson L., Hart W.E.: Filter-based Evolutionary Algorithm for Constrained
Optimization. Evolutionary Computation, vol. 13, issue 3, p. 329-352, (2005).

15.Kowalczyk R.: Constraint Consistent Genetic Algorithms. Proc. of IEEE conf. on
evolutionary computation, pp. 343-348, (1997).

16.Michalewicz Z., Nazhiyath G.: Genocop III: A co-evolutionary algorithm for numerical
optimization with non linear constraints. D. B. Fogel editor, Proc. of the second IEEE conf
on evolutionary computation, pp. 647-651, (1995).

17.Vareilles E., Carbonnel S., Djefel M., Aldanondo M., Rochet S., Auriol G., Baron C.:
Coupling Product and Project Configuration with Constraints: a CSP Software Comparison.
International Conference SKIMA'09, (2009).

18.Zitzler E., Laumanns M., Thiele L.:”SPEA2: Improving the Strength Pareto Evolutionary
Algorithm. Technical Report 103, Computer Engineering and Communication Networks
Lab (TIK), Swiss Federal Institute of Technology (ETH), Zurich, (2001).

