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Abstract. The use of Neural Networks for modeling systems has been
widespread, in particular within areas where the great amount of avail-
able data and the complexity of the systems keeps the problem very
unfriendly to treat following traditional data analysis methodologies. In
the last two decades, small strain shear modulus became one of the most
important geotechnical parameters to characterize soil stiffness. Finite
element analysis have shown that in-situ stiffness of soils and rocks is
much higher than was previously thought, and that stress-strain be-
haviour of these materials is non-linear in most cases with small strain
levels, especially in the ground around retaining walls, foundations and
tunnels typically in the order of 1072 to 10™* of strain. Although the
best approach seems to be based in measuring seismic wave velocities,
deriving the parameter through correlations with in-situ tests is usually
considered very useful for design practice. In this work, a new approach
using Neural Networks is proposed for sedimentary soils and the results
are discussed and compared with some of the most common available
methodologies for this evaluation.

1 Introduction

Maximum shear modulus, Gg, has been increasingly introduced in stiffness eval-
uations for design purposes, for the last 10-15 years. At the present moment,
one of the best ways for measuring it is to evaluate compression and shear wave
velocities and thus obtain results supported by theoretical interpretations. The
advantages of this approach are widely known, mainly because test readings are
taken through intact soil in its in-situ stress and saturation levels, thus practi-
cally undisturbed, and also dynamic stiffness can be close to operational static
values [1, 2]. However, the use of seismic measures implies a specific test and so,
many atempts have been made to correlate other in-situ test parameters, such
as those obtained by Standard Penetration Test, SPT [3], Piezocone Test, CPTu
[4] or Marchetti Dilatometer Test, DMT [5-7] with GO, using cross calibrations
(e.g.,seismic or triaxial among others).



The DMT test is one of the most appropriated for this task (although some
relations can be settled using SPT or CPTu) since it uses a measurement of a
load range related with a specific displacement, which can be used to deduce
highly accurate stress-strain relationship (Ep), supported by Theory of Elastic-
ity. Moreover, the type of soil can be numerically represented by DMT Material
Index, Ip, while in situ density, overconsolidation ratio (OCR) and cementa-
tion influences can be represented by lateral stress index, Kp, allowing for high
quality calibration of the basic stress-strain relationship [7].

The present paper is organized as follows: In Section 2 an overview of the
most important correlations used in this subject is reported, in order to get a
clear view of the problem context. In Section 3 the data set is presented, as well
as the methodology used for the Neural Networks application on this subject
and its results and subsequent discussion. As usual, the last section will be used
for conclusions and final remarks.

2 Gy prediction by DMT

Marchetti dilatometer test or flat dilatometer, commonly designated by DMT,
has been increasingly used and it is one of the most versatile tools for soil charac-
terization, namely loose to medium compacted granular soils and soft to medium
clays, or even stiffer if a good reaction system is provided. The test was developed
by Silvano Marchetti [5] and can be seen as a combination of both Piezocone
and Pressuremeter tests with some details that really makes it a very interesting
test available for modern geotechnical characterization [7]. The main reasons for
its usefulness deriving geotechnical parameters are related to the simplicity (no
need of skilled operators) and the speed of execution (testing a 10 m deep profile
takes around 1 hour to complete) generating quasi-continuous data profiles of
high accuracy and reproducibility.

In its essence, dilatometer is a stainless steel flat blade (14 mm thick, 95 mm
wide and 220 mm length) with a flexible steel membrane (60 mm in diameter) in
one of its faces. The blade is connected to a control unit on the ground surface
by a pneumatic-electrical cable that goes inside the position rods, ensuring elec-
tric continuity and the transmission of the gas pressure required to expand the
membrane. The gas is supplied by a connected tank/bottle and flows through the
pneumatic cable to the control unit equipped with a pressure regulator, pressure
gauges, an audio-visual signal and vent valves. The equipment is pushed (most
preferable) or driven into the ground, by means of a CPTu rig or similar, and the
expansion test is performed every 20cm. The (basic) pressures required for lift-
off the diaphragm (Fp), to deflect 1.1mm the centre of the membrane (P;) and
at which the diaphragm returns to its initial position (P, or closing pressure)
are recorded. Due to the balance of zero pressure measurement method (null
method), DMT readings are highly accurate even in extremely soft soils, and at
the same time the blade is robust enough to penetrate soft rock or gravel (in the
latter, pressure readings are not possible), supporting safely 250kN of pushing



force. The test is found especially suitable for sands, silts and clays where the
grains are smaller (typically 5 to 1) compared to the membrane dimension [8].

Four intermediate parameters, Material Index (Ip), Dilatometer Modulus
(Ep), Horizontal Stress Index (K p) and Pore Pressure Index (Up), are deduced
from the basic pressures Py, P; and P», having some recognizable physical mean-
ing and some engineering usefulness [5], as it will be discussed below. The deduc-
tion of current geotechnical soil parameters is obtained from these intermediate
parameters covering a wide range of possibilities. In the context of the present
work only Ep, Ip and Kp have a physical meaning on the determination of Gy,
so they will be succinctly described as follows [7]:

1. Material Index, Ip: Marchetti [5] defined Material Index, Ip, as the differ-
ence between P; and P, basic pressures measured normalized in terms of
the effective lift-off pressure. The Ip parameter is one of the most valuable
indexes deduced from DMT, due to its ability to identify soils throughout
a numerical value that can be easily introduced in specific formulae for de-
riving geotechnical parameters. In a simple form, it could be said that Ip
is a “fine-content-influence meter” 7], providing the interesting possibility of
defining dominant behaviours in mixed soils, usually very difficult to inter-
pret when only grain size is available, thus it may be associate to an index
reflecting an engineering behaviour.

2. Horizontal Stress Index, Kp: The horizontal stress index [5] was defined
to be comparable to the at rest earth pressure coefficient, Ky, and thus its
determination is obtained by the effective lift-off pressure (Py) normalized by
the in-situ effective vertical stress. Kp is a very versatile parameter since it
provides the basis to assess several soil parameters such as those related with
state of stress, stress history and strength, and shows dependency on several
factors namely cementation and ageing, relative density, stress cycles and
natural overconsolidation resulting from superficial removal, among others.
The parameter can be regarded as a Ky amplified by penetration effects [5]
and displays a typical profile very similar in shape to OCR profiles, giving
useful information not only about stress history but also on the presence of
cementation structures [7]. Since undrained shear strength of fine soils can
be related and obtained via OCR and the relation between K, and angle
of shearing resistance is well stated by soil mechanics theories, then the
parameter is also used with success in deriving shear strength.

3. Dilatometer Modulus, Ep: Stiffness behaviour of soils is generally repre-
sented by soil moduli, and thus the base for in-situ data reduction. Stiffness
behaviour of soils is generally represented by soil moduli, and thus the base
for in-situ data reduction. Theory of Elasticity is used to derive dilatometer
modulus, Ep [5] , by considering that membrane expansion into the sur-
rounding soil can be associated to the loading of a flexible circular area of an
elastic half-space, and thus the outward movement of the membrane centre
under a normal pressure (P, — Py) can be calculated. In short, Ep is a pa-
rameter that includes both Young modulus (E) and Poisson’s coefficient (v)



and can be expressed as follows:

FE
ED:I—V2

=34.7(P, — P)) (1)

Generally speaking, soil moduli depend on stress history, stress and strain
levels drainage conditions and stress paths. The more commonly used moduli
are constrained modulus (M), drained and undrained compressive Young
modulus (Ey and E,) and small-strain shear modulus (Gyp), this latter being
assumed as purely elastic and associated to dynamic low energy loading.

Maximum shear modulus, Gy, is indicated by several investigators [2,7, 9] as
the fundamental parameter of the ground. If properly normalized, with respect
to void ratio and effective stress, could be seen as independent of the type of
loading, number of loading cycles, strain rate and stress/strain history [9]. It can
be accurately deduced through shear wave velocities,

Go = pv? (2)

where p stands for density and v for shear wave velocity.

However, the use of a specific seismic test imply an extra cost, since it can only
supply this geotechnical parameter, leaving strength and insitu state of stress
information dependent on other tests. Therefore, several attempts to model the
maximum shear modulus as a function of DMT intermediate parameters for
sedimentary soils have been made in the last decade. Hryciw [10] proposed a
methodology for all types of sedimentary soils, developed from indirect method of
Hardin & Blandford [11]. Despite its theoretical base, references on this method
are scarce and in general it is not applied for practical analysis due to some scat-
ter around the determination, as illustrated by the results obtained in Portuguese
normally consolidated clays [6]. The reasons for this scatter may be related to an
expectable deviation of Ky due to the important disturbance effects generated
by penetration. On the other hand, this methodology ignores dilatometer mod-
ulus, Fp, commonly recognized as a highly accurate stress-strain evaluation,
and also lateral stress index, Kp, and material index, Ip, which are the main
reasons for the accuracy in stiffness evaluation offered by DMT tests [6]. Being
50, the most common approaches [12-14] with reasonable results concentrated in
correlating directly Go with Ep or Mpasr (constrained modulus), which have
revealed linear correlations with slopes controlled by the type of soil. In 2006,
Cruz [6] proposed a generalization of this approach, trying to model the ratio
Rg = g—g as a function of Ip. In 2008, Marchetti [15] using the commonly ac-
cepted fact that maximum shear modulus is influenced by initial density and
considering that this is well represented by Kp, studied the evolution of both
R and Go/Mppyr with Kp and found different but parallel trends as function
of type of soil (that is Ip), recommending the second ratio to be used in deriving
Gy from DMT, as consequence of a lower scatter. In 2010, using the Theory of
Elasticity, Cruz [7] approximate Gy as a non-linear function of Ip, Fp and Kp,
from where a promising median of relative errors close to 0.21 with a mean(std)



around 0.29(0.28) were obtained. It is worth mention that comparing with the
previous approach - Rg - this approximation, using the same data, lowered the
mean and median of relative errors in more than 0.05 maintaining the standard
deviation (Table 2).

In this work, to infer about the results quality it will be used some of the same
indicators used by Hryciw, Cruz and others that are: the median, the arithmetic
mean and standard deviation of the relative errors

i _1Go() = Go(i)l . _
56*0* GolD)] 1=1,2,...,.N (3)

where Gy (i) stands for the predicted value and Go(i) for the measured value
seismic wave velocities (which is assumed to be correct). A final remark to point
out that since in this work the no-intercept regression is sometimes used, the R?
values will not be presented as they can been meaningfull in this case [16]. It
is also worth to remark that in the context of DMT and from the engineering
point of view, median is the parameter of choice for assessing the model quality
[7] since the final value for maximum shear modulus relies on all set of results
obtained in each geotechnical unit or layer.

3 Data Set, Experiments and Results

The data set used in the model is exactly the same used in the development
of the non-linear Gy approximation used by Cruz [7], resulting from 860 DMT
measurements performed in Portugal by Cruz and world wide by Marchetti et
al. [15] (data kindly granted by Marchetti for this purpose), which included data
obtained in all kinds of sedimentary soils, namely clays, silty clays, clayey silts,
silts, sandy silts, silty sands and sands. The main statistical measures of Ip, Ep,
Kp and G parameters are given in Table 1 as well as in Figure 1.

Values Ip Ep Kp Go
min 0.0507 0.3644 0.9576 6.4300
max 8.8143 94.2600 20.5000 529.2000

median 0.5700 13.4450 3.5750 77.9100

mean 0.9134 18.8282 4.9161 92.5165
std 1.0739 18.8264 3.6079 69.6096

Table 1. Sample statistical measures.

Several types of neural networks (NN) were used in order to improve the
results obtained with traditional approaches and to achieve the best results with
this kind of tool. The purpose was to find the best NN algorithm for the DMT
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Fig. 1. Sample values for Ip,Ep,Kp and Go

problem. This process started by performing some experiments with traditional
Multi Layer Perceptrons (MLP’s) with different learning algorithms, namely
Quasinewton, Conjugated Gradient and Scaled Conjugated Gradient (SCG) but,
as it will be shown latter, the results were not as good as expected, and so
Radial Basis Function (RBF), Bayesian and Fitting neural networks were then
applied. The results obtained with this neural networks were slightly better than
those with MLP’s but still not significantly better. The last approach was to use
Support Vector Regression in order to improve the results with the previous NN.
For all the experiments the 10 fold cross validation method with 20 repetitions
was used, since this is the most common and widely accepted methodology to
guarantee a good neural network generalization. For each NN a huge set of
experiments was performed, varying the involved parameters such as the number
of neurons in the MLP hidden layer, the number of epochs or the minimum error
for stopping criteria. The results presented in Tables 3 to 7 are therefore the
best ones for each regression algorithm and represents the mean of the 10 x 20
performed tests for each best configuration. It is important to stress the fact
that, when compared to traditional approaches where all the data is used to
build the model, this methodology tends to produce higher standard deviations
since in each experiment only a fraction of the available data is used to evaluate
the model.

As stated in Section 2, Cruz [7] was able to improve older results applying
non-linear function approximation. In Table 2 the median and mean (standard
deviation) of the relative errors obtained by that approaches are presented.

Table 3 shows the best results for the first performed experiments with com-
mon MLP regression using three different learning algorithms: Quasinewton,
Conjugated Gradient and SCG. It can be seen that there was a small improve-
ment in the results when compared to those of Table 2 but not very significant.



Type Median/Mean(std)
Non-Linear Go=aEp(Ip)° 0.28/0.34(0.29)
Regression Go = Ep + Ep (@1 #Ip +7log(Kp)) 0.21/0.29(0.28)

Table 2. The results obtained with non-linear regression [7].

Type Hidden = — (1)), p, Kp)
neurons
Quasinewton 50 0.20/0.38(0.72)
NN Conj.Grad. 100 0.19/0.30(0.38)
Nele 40 0.20/0.28(0.33)

Table 3. The results (Median/Mean(std)) obtained with Multi Layer Perceptrons.

The second set of experiments was performed using Bayesian, RBF’s (with
thin plate spline activation function) and Fitting neural networks regression,
by applying several combinations for the number of iterations in RBF’s or the
number of inner and outer loops for the Bayesian NN’s. The best obtained results
with these algorithms are presented in Table 4.

Hidden

Type GO:f(IDvED7KD)
neurons
MLP-Bayesian 20 0.20/0.29(0.30)
NN RBF 200 0.20/0.31(0.39)
Fitting 60 0.17/0.27(0.29)

Table 4. The results (Median/Mean(std)) obtained with Bayesian, RBF and Fitting
neural networks.

These results are not significantly better than those obtained with common
MLP’s, with the exception of the fitting neural network that shows a signif-
icant improvement when compared with the others and also with traditional
approaches.

An attempt to improve the quality of results was carried out by using Sup-
port Vector Regression (SVR). Support Vector Machines [17] are based on the
statistical learning theory from Vapnik and are specially suited for classification.
However, there are also algorithms based in the same approach for regression
problems known as Support Vector Regression (SVR). Two different kinds of



SVR algorithms: e-SVR, from Vapnik [18] and v-SVR from Schélkopf [19] were
applied, which differ in the fact that »-SVR uses an extra parameter v € (0, 1]
to control the number of support vectors. For these experiments different values
for the parameter C (cost) and for parameters ¢ and v were used.

The best results obtained with both e-SVR and v-SVR are shown in Ta-
ble 5 reveling slightly better results when compared with those obtained with
the fitting neural network and better than those obtained with MLP’s and the
traditional regression algorithms.

Type Cost/e(v) Go= f(Ip,Ep,Kp)

eSVR  200/0.1 0.16/0.27(0.43)
v»-SVR  200/0.8 0.16/0.27(0.41)

Table 5. The results (Median/Mean(std)) obtained with Support Vector Regression.

In all the previous experiments it was tried to estimate Gy as a function of
Ip, Ep and Kp. Following the same strategy as Cruz [7], other experiments
were performed which results are presented in Table 6. In these experiments G
was estimated only as a function of two of the three available variables. As last
option Fp was used as a single input variable but the results were worst than
those obtained using more input variables (due to lack of space they are not
shown here). In these experiments only SVR’s were used, as they presented the
best results in the previous experiments.

Type Go = f(Ep,Kp) Go = f(Ip, ED) Go = f(Ip,KDp)

SVR 0.19/0.32(0.46) 0.20/0.32(0.42) 0.29/0.55(0.88)
v-SVR 0.19/0.32(0.47) 0.20/0.32(0.44) 0.30,/0.55(0.96)

Table 6. The results (Median/Mean(std)) obtained with Support Vector Regression
using only two input variables.

After the last set of experiments it can be seen that the best results are
still those presented in Table 5, the ones that were obtained by using the three
available parameters Kp, Ip and Ep.

The final experiments were conducted splitting Ip values in coherent groups,
namely those related with clay, silt and sandy soils, respectively represented by
the following Ip intervals: Ip < 0.6,0.6 < Ip < 1.8 and Ip > 1.8. This operation
made a partition of the original 860 data set elements in subsets with 449, 259



and 152 elements respectively. Experiments with these data sets (subsets) were
performed using only SVR algorithms since they were the ones with better results
in the previous experiments. Results are presented in Table 7.

Subsets Go = f(Ip,Ep,Kp)
Ip <06 0.16/0.29(0.41)
eSVR 0.6 <Ip<1.8 0.15/0.24(0.35)
Ip>18 0.15/0.39(0.57)
Ip <06 0.17/0.29(0.37)
V»-SVR  0.6<Ip <18 0.15/0.24(0.38)
Ip>18 0.16/0.37(0.60)

Table 7. The results (median/mean(std)) obtained using the subsets of the original
data set and for the estimation of Gy as a function of Ip, Ep and Kp.

Although these final results can be pointed as very interesting, specially with
e-SVR, it can not be concluded that these are better than those obtained with
the complete data set (Table 5) once there are one larger subset with a result
slightly higher and two smaller subsets with a slightly lower result (remember
Ip-values distribution in Figure 1). This indicates that the methodology can
produce interesting results in some particular cases, deserving a more detailed
study. Nevertheless from a geotechnical point of view it may be considered a
very promising result.

4 Conclusions

A new approach was applied to predict maximum shear modulus by DMT using
Neural Networks. Based on performed experiments it is possible to outline the
following considerations:

— Neural Networks improve the current state-of-the-art in terms of Gy predic-
tion through DMT intermediate parameters.

— The results show that, in general, NN lead us to much smaller medians,
equivalent means and higher standard deviations in respect to relative errors,
when compared to traditional approaches.

— Regarding the problem characteristics the SVR approach gives the best re-
sults considering the median as the main quality measure as discussed earlier.

— The Fitting NN seems to be the most robust in terms of the three quality
control parameters used, improving the results of traditional approaches.

— The unbalanced data distribution, regarding the Ip partition, postpone a
final conclusion about the improvement of model quality to the availability
of a more balanced sample.
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