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Abstract. Acute graft-versus-host disease (aGvHD) is a sericsystemic
complication of allogeneic hematopoietic stem detinsplantation (HSCT) that
occurs when alloreactive donor-derived T cells gaize host-recipient antigens as
foreign. The early events leading to GvHD seem ¢ouo very soon, presumably
within hours from the graft infusion. Therefore, avhthe first signs of aGvHD
clinically manifest, the disease has been ongaingéveral days at the cellular level,
and the inflammatory cytokine cascade is fully \atid. So, it comes as no surprise
that to identify biomarker signatures for approaghthis very complex task is a
critical issue. In the past, we have already apgred it through joint molecular and
computational analyses of gene expression dataopiagpa computational framework
for this disease. Notwithstanding this, there areim literature quantitative
measurements able to identify patterns or rulesnftbese biomarkers or from
aGvHD data, thus this is the first work about thsue. In this paper first we have
applied different feature selection techniques, lwoed with different classifiers to
detect the aGvHD at onset of clinical signs, them vave focused on the aGvHD
scenario and in the knowledge discovery issue etthassification techniques used in
the computational framework.
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1 Introduction

Recently, there have been major advances in ounlkdge of basic immunology. In
parallel, although much of information has beeraot#td from preclinical models and
far less from correlations with clinical observatsoor treatment, our awareness of the
complexity of the pathophysiology of aGvHD is sifigantly increased [1].

At the same time, the interplay with bioinformaticdefined as the branch of
information sciences for the analysis, modellinmuation and knowledge discovery
of biological phenomena, such as genetic procedsas, stimulated synergistic
research in many cross-disciplinary areas.



Identifying a compact set of informative genes franicroarray data (gene expression
data) is critical in the construction of an effitieclinical decision support system.
The potential applications of microarray technologse numerous and include
identifying markers for classification, diagnosiisease outcome prediction, target
identification and therapeutic responsiveness J8groarray analysis might help to
identify unique markers (e.g. a set of gene) oficéll importance. Diagnosis and
prediction of a biological state/disease is likedybe more accurate by identifying
clusters of gene expression profiles (GEPs) peddrisy macroarray analysis. Based
on a genetic profile, it is possible to set a dasiit test, so a sample can be taken
from a patient, the data related to the samplegased, and a profile related to the
sample obtained [2]. This profile can be matchedireg} existing gene profiles and
based on similarity, it can be confirmed with ataier probability the presence or the
risk for a disease. We apply this approach hereldtect acute graft-versus-host
disease (aGvHD) in allogeneic hematopoietic steth tcansplantation (HSCT), a
curative therapy for several malignant and non gmaint disorders. Acute GvHD
remains the major complication and the principalseaof mortality and morbility
following HSCT [3]. At present, the diagnosis of\a@ is merely based on clinical
criteria and may be confirmed by biopsy of one bé t3 target organs (skin,
gastrointestinal tract, or liver) [4]. There is definitive diagnostic blood test for
aGvHD. We have already published a review papeutatiassification and predictive
strategies for validating a novel and not invasivethod to confirm the diagnosis of
aGvHD in HSCT patients at onset of clinical sympsofh]. In previous works we
have employed global and local models [9][18] arndamed good results using
personalized modelling for selecting genes and rotheportant informative
biomarkers from clinical, biological and genetidalaollected [1][5]. In this paper we
want to focus onto another aspect of aGvHD sceramalysis not still approached
from anyone. Here we want to extract knowledge anées from modelling of this
disease, so we approached this issue with an imer&inadaptive modelling with
preliminaries but significant results.

The organization of the rest of this paper is dos: section 2 explains the data
analyzed; two feature selection techniques areiegpgh pre-processing step in
section 3; section 4 describes results obtainedh witir incremental- adaptive-
knowledge based- learning method; section 5 digsuige results of the diagnostic
method and section 6 gives conclusions inferretl pitssible future applications.

2 Experimental Data

The goal of this study is to design a model todedecompact set of genes that can
profile the pattern of objective microarray data.

For this purpose fifty-nine HSCT patients were detbin our study between March
2006 and July 2008 in Transplants Regional CenfeStem Cells and Cellular
Therapy "A. Neri" Reggio Calabria, Italy, duringzmvernative Research Program of
minister of the Health with the title'Project of Integrated Program: Allogeneic
Hemopoietic Stem Cells Transplantation in Malignademopathy and Solid
Neoplasia Therapy - Predictive and prognostic valae graft vs. host disease of
chimerism and gene expressiomBecause experimental design plays a crucialirole
a successful biomarker search, the first step indasign was to choose the most



informative specimens and achieve adequate matdi@tvgeen positive cases aGvHD
(YES) and negative controls aGvHD (NO) to avoidsbifihis goal is best achieved
through a database containing high-quality sampilgeed to quality controlled
clinical information. Patients with clinical sigiw$ aGvHD (YES) were selected, and
in more than 95% of them aGvHD was confirmed bypbioincluding those with
grade |. We used 25 samples from aGvHD (YES) pettithrat were taken at the time
of diagnosis and we selected 60 samples from gatibat didn't experienced aGvHD
(NO). All together YES/NO patient groups compriseedralidation set. Total RNA
was extracted from whole peripheral blood samplsiagia RNA easy Mini Kit
(Qiagen) according to the manufacturer’'s instrutioReverse transcription of the
purified RNA was performed using Superscript Il veese Transcriptase
(Invitrogen). A multigene expression assay to ¢esturrence of aGvHD were carried
out with TagMafi Low Density Array Fluidic (LDA-macroarray card) $&d on
Applied Biosystems 7900HT comparative dd Cifiethod, according to
manufacturer’s instructions. Expression of eachegeas measured in triplicate and
then normalized to the reference gene 18S mRNA, we included in macroarray
card. About the project of macroarray card, wectetk 47 candidate genes from the
published literature, genomic databases, pathwayysis. The 47 candidate genes
were involved in immune network and inflammationhpaenesis.

3 Gene Sdection Methods

The advent of microarray technology emphasizegtbblem to identify which genes
are most important for diagnosing different dissage.g. cancer diagnosis) and
prognosis task. Feature selection is the processhobsing the most appropriate
features (variables) when creating a computationatiel [2][6]. Generally, most
developed gene selection methods can be categoiritedwo groups: filter and
wrapper methods. In this paper we consider two g¢m@@proaches to feature subset
selection, more specifically, wrapper and filtepagaches, for gene selection.
Wrappers and filters differ in the way the featiggbsets are evaluated. Filter
approaches remove irrelevant features accordiggneral characteristics of the data,
measuring the intrinsic characteristic of genesapger approaches, by contrast,
apply machine learning algorithms to feature subseid use cross-validation to
evaluate the score of feature subsets. In theorpppers should provide more
accurate classification results than filters [6][Wrappers use classifiers to estimate
the usefulness of feature subsets.

The use of “tailor-made” feature subsets sthoptovide better classification
accuracy for the corresponding classifiers, siheef¢atures are selected according to
their contribution to the classification accuradythe classifiers. The disadvantage of
the wrapper approach is its computational requirdm&hen combined with
sophisticated algorithms such as support vectohimas.

As a filter approach, CFS was proposed by FIB]. The rationale behind this
algorithm is “a good feature subset is one thataions features highly correlated with
the class, yet uncorrelated with each other.” & baen shown by Hall[8] and by
some of the authors that CFS gave comparable setsulthe wrapper and executes
many times faster [10]. It will be shown later st paper that combining CFS with a
suitable classifier, provides a good classificaigouracy for diagnosis of aGvHD.



3.1 Gene Selection: CFS

Feature Selection is a technique used in machiasitey of selecting a subset of
relevant features to build robust learning mod&rse assumption here is that not all
genes measured by a macroarray method are reta@@uHD classification. Some
genes are irrelevant and some are redundant frerm#thine learning point of view
[2], [11]. It is well-known that the inclusion ofrelevant and redundant information
may harm performance of some machine learning iflgons. Feature subset selection
can be seen as a search through the space ofefeatsets. CFS evaluates a subset of
features by considering the individual detectollighof each feature along with the
degree of redundancy between them.
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 CF% is the score of a feature subSatontainingk features,
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is the average feature to feature correlation.

The distinction between normal filter algorithmsda@FS is that while normal filters
provide scores for each feature independently, @feSents a heuristic “merit” of a
feature subset and reports the best subset it. firdselect the genes with CFS, we
have:

a) Choose a search algorithm;

b) Perform the search, keeping track of the bebsetuencountered according to
CFS

c¢) Output the best subset encountered.

The search algorithm we used was the best-firgt faitward selection, which starts
with the empty set of genes. The search for the¢ fudsset is based on the training
data only. Once the best subset has been deterna@ndda classifier has been built
from the training data (reduced to the best featdfioeind), the performance of that
classifier is evaluated on the test data. The I®gaelected by CFS are reported in
Table 1. A leave-one-out cross validation proceduss performed to investigate the
robustness of the feature selection procedure®9 Iruns, the subset of 13 genes was
selected 28 times (96%) by CFS. Now it is posdsiblase a classifier to estimate the
usefulness of feature subsets, and to extract déssribing knowledge about pattern
disease.

3.2 Gene Selection: Wrapper methods

While CFS assigns a score to subset of featureappér approaches take biases of
machine learning algorithms into account when smigcfeatures. The wrapper
method applies a machine learning algorithm foeatire subset selection and uses
cross-validation to compute a score for themn gdneral, filters are much faster than
wrappers. However, as far as the final classificaticcuracy is concernegrappers
normally provide better results. The general argunethat the classifier that will be
built from the feature subset should provide advedstimate of accuracy than other
methods. The main disadvantagevafapper approaches is that during the feature
selection process, the classifier must be repeatadled to evaluate a subset.



To select the genes using a wrapper method, wetbave

(a) Choose a machine learning algorithm to evaltieescore of a feature subset.

(b) Choose a search algorithm.

(c) Perform the search, keeping track of the ha@sset encountered.

(d) Output the best subset encountered.

As a machine learning algorithm, here we used tlotassifier techniques: simple
Bayesian classifier naive Bayes, a SVM, and an \Ewgl Fuzzy Neural Network
(EFUNN) as knowledge discovery connectionist apghof]. The naive Bayes
classifier assumes that features are independeeh dhe class. Its performance on
data sets with redundant features can be improyedetmoving such features. A
forward search strategy is normally used with ndages as it should immediately
detect dependencies when harmful redundant featueeadded. SVMs use a kernel
function to implicitly map data to a high dimensibispace. Then, they construct the
maximum margin hyperplane by solving an optimizatjgroblem on the training
data. Sequential minimal optimization (SMO) [10]used in this paper to train a
SVM with a Linear Kernel after several test emply&/Ms have been shown to
work well for high dimensional microarray data sgt$]. However, due to the high
computational cost it is not very practical to dise wrapper method to select genes
for SVMs. Also here the search algorithm was thstfiest with forward selection,
starting with the empty set of genes. We reporetiee accuracy of classifiers built
from the best feature subset found during the kediee search for the best subset is
based on the training data only. Once the bestesutms been determined, and a
classifier has been built from the training datad(rced to the best features found), the
performance of that classifier is evaluated ontéls¢ data. The 5 Genes selected using
the wrapper method are shown in table 1. Most efgbnes selected are also similar
to those of the 13 genes selected using the CFBochetnd the only two genes that
are different are actually correlated to other gefnem the set of 13 genes. A leave-
one-out cross validation procedure was performdduestigate the robustness of the
method over the training set: in 29 runs, the subs& genes was selected 26 times
(90%) by the naive Bayes wrapper and the groupgdries, 29 times (100%) by the
SMO. Section 5 has shown the performance of tlisrigue estimated on the testing
data.

4 Connectionist Model proposed for Knowledge Discovery using
the Selected Gene Diagnostic Markers

EFuNNSs are learning models that can learn in arementally adaptive mode any
dataset, regardless of the problem (function appratton, time-series prediction,
classification, etc.) in a supervised, unsupervisedybrid learning mode, subject to
appropriate parameter values selected and a certaiimum number of examples
presented. Some well-established Neural NetworkdésjNand Artificial Intelligence

(Al) techniques have difficulties when appliedriiorementally adaptive, knowledge-
based learning, for example catastrophic forgetfibg], local minima problem,

difficulties to extract rules [2][13], are typicalroblems in multilayer perceptrons
(MLP) and in backpropagation learning algorithmt being able to adapt to new
data without retraining on old ones, and too lorajning when applied to large
datasets. The radial basis function RBF neural owksvrequire clustering to be



performed first and then the backpropagation allgoriapplied. They are not efficient
for incrementally adaptive learning unless they aignificantly modified. Many
neurofuzzy systems, such as ANFIS [14], FUNN [1&jd neofuzzy neuron [16]
cannot update the learned rules through contintrausing on additional data without
suffering catastrophic forgetting. Several analgsid experiments [2] shows that the
EFuUNN evolving procedure leads to a similar looarementally adaptive error of
other techniques e.g. Resource Allocation NetwWBA&N) and its modifications, but
EFuNNSs allow for rules to be extracted and insegedny time of the operation of
the system thus providing knowledge about the rmobdnd reflecting changes in its
dynamics. In this respect the EFuNN is a flexiliherementally adaptive, knowledge
engineering model. One of the advantages of EFudNMhat rule nodes in EFUNN
represent dynamic fuzzy-2 clusters. Despite thaaihges of EFUNN, there are some
difficulties when using them, the major is thatrthare several parameters that need
to be optimised in an incrementally adaptive wawcls parameters are: error
threshold Err; number, shape, and type of the meshigefunctions; type of learning;
aggregation threshold and number of iterations reefmggregation, etc. A possible
way for solving this problem is a genetic algoritf®A) use, better a cGA more
faster [17]. In the next future an interesting essould be a study about performance
of optimization approach for solving this and otdevantages.

5 Resaults

The dataset described in section 2 that consistevof classes, GvHD(Yes) and
GvHD(No) (that is ~GvHD(Yes)) and a compact ingptace, has been used, the
expression values of 47 genes has been obtainddtiét applied biosystem (see
section 2). The whole dataset has been dividedtmioing and testing dataset for
validation of a classifier system. These two smEme from different patients in
different period. A suitable subset of samples B@logical peculiarities has been
chosen as training data set. The training datahset 29 patient samples (13
aGvHD(Yes) and 16 aGvHD(NO0)). The test data sesisted of 30 patient samples
(13 aGvHD(Yes) and 17 aGvHD(NO0)). The test set shavigher heterogeneity with
regard to tissue and age of patients making arsgifieation more difficult.

The task is: (1) to find a set of genes distingnighves and Not; (2) to construct a
classifier based on these data; and (3) to fin@gegrofile for each classes. After
having applied points 1 and 2 from the methodolabgve, different subset of genes
has been selected. Several EFUNNs are evolved ghroloe N-cross-validation
technique (leave one-out method) on the 59 datplesniEFUNN parameters as well
as are given in Table 2). In the case of data beiade available continuously over
time and fast adaptation on the new data need@dpgmve the model performance,
online modelling techniques would be more appraeriso that any new labelled data
will be added to the EFUNN and the EFUuNN will bedigo predict the class of any
new unlabelled data. This is an aim for future degweents.

Different EFUNN were evolved with the use of diffat sets of genes as input
variables. The question of which is the optimum banof genes for a particular task
is a difficult one to answer. Table 3 shows an gxenof the extracted rules after all
samples, each of them having only 13 genes filtdrgdCFS, are learned by the
EFuUNN. The rules are ‘local’ and each of them lesreaning of the dominant rule



in a particular subcluster of each class from tipaif space. Each rule covers a cluster
of samples that belong to a certain class. Thesplea are similar to a degree that is
defined as the radius of the receptive field of thie node representing the cluster.
For example, Rule 1 from Table 3 shows that 7 saspf class 1 (GvHD YES) are
similar in terms of having genes g1, g2 and g9 exeressed, and at the same time
genes g6 and g7 are underexpressed. One classemaypiesented by several rules,
profiles, each of them covering a subgroup of gimslamples. This can lead to a new
investigation on why the subgroups are formed ahg they have different profiles
(rules), even being part of the same class (in tiaise for the four grading of
aGvHD). The extracted rules for each class comgripeofile of this class, our next
issue will be visualize this pattern in a signifitavay.

6 Biomedical Conclusions and Future Work

We examined the immune transcripts to study thdicgiplity of gene expression
profiling (macroarray) as a single assay in earhgdosis of aGvHD. Our interest
was to select fewer number of molecular biomarkers an initial gene panel and
exploiting this to develop a fast, easy and noragive diagnostic test [1][5] [18],
being able to extract rules and knowledge for modglthe disease. The proposed
method provides a good overall accuracy to confi@vHD development in HSCT
setting. From a biological point of view, the rdsudre reliable. Others have reasoned
that Th2 cell therapy could rapidly ameliorate sevaGvHD via IL-4 and IL-10
mediated mechanisms [19][20]. It is noteworthy timatour study a set of genes,
indicated by computational analysis, included sanegliators of Th2 response such
as IL10, and signal transducer and activator ofsicaption 6, interleukin-4 induced
(STAT6). All these were strongly down-regulated aGvHD (YES) setting,
suggesting absence of control mediated by Th2.cEfisrefore, we highlight the fact
that defective expression of ICOS impaired the imenprotective effectors during
clinical aGvHD. This evidence is supported by avjes report about ICOS as
regulatory molecule for T cell responses during BV It has been showed that
ICOS signal inhibits aGvHD development mediateddD8 positive effector cells in
HSCT [20]. According to previous reports, mediatofsipoptosis cells and dendritic
cell activators were involved. In our study incrediexpression levels of CXCL10
and CCL7 were identify as informative biomarkeraibreactive disease. Altogether
our results strongly outlined the importance anilityitof non-invasive tool for
aGvHD diagnosis based on GEP. We believe thath®ae an advantage from GEP
performance, it is very important to know: a) thenscript levels of immune effector
cells in early time post-engraftment in order tettér understand polarization of Th2
cells; b) the CD8 positive cell action. As a clalictrial, tissue biopsies were
performed to confirm the above diagnostic resuhisconclusion, our models may
prevent the need for an invasive procedure asdyrdescussed in [1][5][9] and it is
possible to extract knowledge and rules after featiselection task with wrappers
and filters combined with a suitable classifierisTetudy demonstrated, for the first
time, that the proposed incremental- adaptive- kedge based learning procedure
used for integrating the framework tool for diagsas aGvHD [1][5][18] confirms a
satisfactory 97% accuracy over independent tetst st of HSCT population and
return rules for individuating gene profiles foristhicomplex disease. We plan to



extend the system as a personalized model [18if#lQiding all clinical and genetic
variables, testing with new data samples this nekth for a larger group of patients
to capture their peculiarity. Moreover a visudiiaa technique for distinguishing
different profiles needed and at last novel cléasifcan be explored. The authors are
engaged in this direction.

Table 1. The 13 genes selected from CFS with their namdsra@aning, the 7 genes selected
through the wrapper- naive Bayes method are mankgd®, the 5 genes selected with SVM
are marked with *.

Gene Name  Official full name Immune function

BCL2A1 BCL2-related protein A1 Anti- and pro-apoptatgulator.
CASP1°* Caspase 1, apoptosis€Central role in the execution-phase of cell apoptosi
related cysteine peptidase

CCL7 chemokine (C-C motif) Substrate of matrix metalloproteinase 2
ligand 7
CD83 CD83 molecule Dendritic cells regulation.
CXCL10° chemokine (C-X-C motif) Pleiotropic effects, including stimulation of
ligand 10 monocytes, natural killer and T-cell migration, and
modulation of adhesion molecule expression.
EGR2° Early growth response 2 transcription factoth whree tandem C2H2-type
zinc fingers.
FAS TNF receptor superfamily, Central role in the physiological regulation of
member 6) programmed cell death.
ICOS°* Inducible  T-cell co- Plays an important role in cell-cell signaling,
stimulator immune responses, and regulation of cell
proliferation.
IL4 Interleukin 4 Immune regulation.
IL10°* Interleukin 10 Immune regulation.
SELP selectin P Correlation with endothelial cells.
SLPI° Stomatin (EPB72)-like 1 Elemental activitiesls as catalysis.
STAT6 transducer and activator ofRegulation of IL4- mediated biological responses.
transcription 6,
interleukin-4 induced
Foxp-3 * forkhead box P3 Regulatory T cells play important roles in the
maintenance control of transplantation tolerance.
CD52 °* CD52 antigen B-cell activation.

Table 2. (a)EFUNN-1: Experimental results of wrapper withulIN as classifier and EFUNN-

2: Experimental results of a CFS with EFUNN classiflThe parameter values and error results
of N-cross-validation (leave-one-out method) EFuhiNdels for dataset described in section
2.(b)Experimental results of a CFS with EFUNN dfiessand a wrapper method combined
with SVM. The starting set has been divided innireg set and test set, a leave one-out cross-
validation has been calculated for the two subsets.

@
Model Errthr Rmax Rule Classification AccuracyClassification Accuracy
Nodes  — Training data — Test data
EFUNN-1 0.9 0.4 6.3 97.4 97.0

EFuNN-2 0.9 0.5 4.0 95.0 97.2




(b)

Method Training setTest set
CFS-EFuNN 28(29) 29(30)
Wrapper-SVM 29(29) 29(30)
Wrapper-NaiveB. 26(29) 29(30)
Wrapper- EFUNN 28(29) 29(30)

Table3. 7 samples of class 1 (GvHD YES) are similar imteof having genes g1, g2 and g9
overexpressed, and at the same time genes g6 aare gnderexpressed.

Rule 1:

if [g1] is (1 0.8) & [g2] is (1 0.96) & [g6] is (B.7) & [g7] is (2 0.9) & [g9] is (1 0.89) recepéivfield = 0.1
(radius of cluster), then class 1, accomodateditrgisamples = 7/30

Rule 4:

[g3]is (2 0.87) & [g5] is (1 0.83) & [g6] is (2.8) & [g7] is (1 0.9) & [g9] is (1 0.78) & [g11] i€ 0.95)
receptive field = 0.102 (radius of cluster), théass 2, accomodated training samples = 9/30
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Figure 1. Absolute error and desidere output plots for aG\Eailia after filtering dataset with
CFS. EFuNN-1 has been applied for obtaining thesate
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