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Abstract. Acute graft-versus-host disease (aGvHD) is a serious systemic 
complication of allogeneic hematopoietic stem cell transplantation (HSCT) that 
occurs when alloreactive donor-derived T cells recognize host-recipient antigens as 
foreign. The early events leading to GvHD seem to occur very soon, presumably 
within hours from the graft infusion. Therefore, when the first signs of aGvHD 
clinically manifest, the disease has been ongoing for several days at the cellular level, 
and the inflammatory cytokine cascade is fully activated. So, it comes as no surprise 
that to identify biomarker signatures for approaching this very complex task is a  
critical issue. In the past, we have already approached it through joint molecular and 
computational analyses of gene expression data proposing a computational framework 
for this disease. Notwithstanding this, there aren’t in literature quantitative 
measurements able to identify patterns or rules from these biomarkers or from 
aGvHD data, thus this is the first work about the issue. In this paper first we have 
applied different feature selection techniques, combined with different classifiers to 
detect the aGvHD at onset of clinical signs, then we have focused on the aGvHD 
scenario and in the knowledge discovery issue of the classification techniques used in 
the computational framework. 
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1   Introduction 

Recently, there have been major advances in our knowledge of basic immunology. In 
parallel, although much of information has been obtained from preclinical models and 
far less from correlations with clinical observations or treatment, our awareness of the 
complexity of the pathophysiology of aGvHD is significantly increased [1].  
At the same time, the interplay with bioinformatics, defined as the branch of 
information sciences for the analysis, modelling, simulation and knowledge discovery 
of biological phenomena, such as genetic processes, has stimulated synergistic 
research in many cross-disciplinary areas. 



Identifying a compact set of informative genes from microarray data (gene expression 
data) is critical in the construction of an efficient clinical decision support system. 
The potential applications of microarray technology are numerous and include 
identifying markers for classification, diagnosis, disease outcome prediction, target 
identification and therapeutic responsiveness [2]. Microarray analysis might help to 
identify unique markers (e.g. a set of gene) of clinical importance. Diagnosis and 
prediction of a biological state/disease is likely to be more accurate by identifying 
clusters of gene expression profiles (GEPs) performed by macroarray analysis. Based 
on a genetic profile, it is possible to set a diagnostic test, so a sample can be taken 
from a patient, the data related to the sample processed, and a profile related to the 
sample obtained [2]. This profile can be matched against existing gene profiles and 
based on similarity, it can be confirmed with a certain probability the presence or the 
risk for a disease. We apply this approach here to detect acute graft-versus-host 
disease (aGvHD) in allogeneic hematopoietic stem cell transplantation (HSCT), a 
curative therapy for several malignant and non malignant disorders. Acute GvHD 
remains the major complication and the principal cause of mortality and morbility 
following HSCT [3]. At present, the diagnosis of aGvHD is merely based on clinical 
criteria and may be confirmed by biopsy of one of the 3 target organs (skin, 
gastrointestinal tract, or liver) [4]. There is no definitive diagnostic blood test for 
aGvHD. We have already published a review paper about classification and predictive 
strategies for validating a novel and not invasive method to confirm the diagnosis of 
aGvHD in HSCT patients at onset of clinical symptoms [1]. In previous works we 
have employed global and local models [9][18] and obtained good results using 
personalized modelling for selecting genes and other important informative 
biomarkers from clinical, biological and genetic data collected [1][5]. In this paper we 
want to focus onto another aspect of aGvHD scenario analysis not still approached 
from anyone. Here we want to extract knowledge and rules from modelling of this 
disease, so we approached this issue with an incremental adaptive modelling with 
preliminaries but significant  results. 
The organization of the rest of this paper is as follows: section 2 explains the data 
analyzed; two feature selection techniques are applied in pre-processing step in 
section 3; section 4 describes results obtained with our incremental- adaptive- 
knowledge based- learning method; section 5 discusses the results of the diagnostic 
method and section 6 gives conclusions inferred with possible future applications. 

2 Experimental Data 

The goal of this study is to design a model to select a compact set of genes that can 
profile the pattern of objective microarray data. 
For this purpose fifty-nine HSCT patients were enrolled in our study between March 
2006 and July 2008 in Transplants Regional Center of Stem Cells and Cellular 
Therapy "A. Neri" Reggio Calabria, Italy, during a Governative Research Program of 
minister of the Health with the title: “Project of Integrated Program: Allogeneic 
Hemopoietic Stem Cells Transplantation in Malignant Hemopathy and Solid 
Neoplasia Therapy - Predictive and prognostic value for graft vs. host disease of 
chimerism and gene expression”. Because experimental design plays a crucial role in 
a successful biomarker search, the first step in our design was to choose the most 



informative specimens and achieve adequate matching between positive cases aGvHD 
(YES) and negative controls aGvHD (NO) to avoid bias. This goal is best achieved 
through a database containing high-quality samples linked to quality controlled 
clinical information. Patients with clinical signs of aGvHD (YES) were selected, and 
in more than 95% of them aGvHD was confirmed by biopsy including those with 
grade I. We used 25 samples from aGvHD (YES) patients that were taken at the time 
of diagnosis and we selected 60 samples from patients that didn’t experienced aGvHD 
(NO). All together YES/NO patient groups comprised a validation set. Total RNA 
was extracted from whole peripheral blood samples using a RNA easy Mini Kit 
(Qiagen) according to the manufacturer’s instructions. Reverse transcription of the 
purified RNA was performed using Superscript III Reverse Transcriptase 
(Invitrogen). A multigene expression assay to test occurrence of aGvHD were carried 
out with TaqMan® Low Density Array Fluidic (LDA-macroarray card) based on 
Applied Biosystems 7900HT comparative dd CT method,  according to 
manufacturer’s instructions. Expression of each gene was measured in triplicate and 
then normalized to the reference gene 18S mRNA, who was included in macroarray 
card. About the project of macroarray card, we selected 47 candidate genes from the 
published literature, genomic databases, pathway analysis. The 47 candidate genes 
were involved in immune network and inflammation pathogenesis. 

3   Gene Selection Methods 

The advent of microarray technology emphasized the problem to identify which genes 
are most important for diagnosing different diseases (e.g. cancer diagnosis) and 
prognosis task. Feature selection is the process of choosing the most appropriate 
features (variables) when creating a computational model [2][6]. Generally, most 
developed gene selection methods can be categorized into two groups: filter and 
wrapper methods. In this paper we consider two general approaches to feature subset 
selection, more specifically, wrapper and filter approaches, for gene selection. 
Wrappers and filters differ in the way the feature subsets are evaluated. Filter 
approaches remove irrelevant features according to general characteristics of the data, 
measuring the intrinsic characteristic of genes. Wrapper approaches, by contrast, 
apply machine learning algorithms to feature subsets and use cross-validation to 
evaluate the score of feature subsets. In theory, wrappers should provide more 
accurate classification results than filters [6][7]. Wrappers use classifiers to estimate 
the usefulness of feature subsets.  
     The use of “tailor-made” feature subsets should provide better classification 
accuracy for the corresponding classifiers, since the features are selected according to 
their contribution to the classification accuracy of the classifiers. The disadvantage of 
the wrapper approach is its computational requirement when combined with 
sophisticated algorithms such as support vector machines. 
     As a filter approach, CFS was proposed by Hall [8][9]. The rationale behind this 
algorithm is “a good feature subset is one that contains features highly correlated with 
the class, yet uncorrelated with each other.” It has been shown by Hall[8] and by 
some of the authors that CFS gave comparable results to the wrapper and executes 
many times faster [10]. It will be shown later in this paper that combining CFS with a 
suitable classifier, provides a good classification accuracy for diagnosis of aGvHD. 



3.1   Gene Selection: CFS 
Feature Selection is a technique used in machine learning of selecting a subset of 
relevant features to build robust learning models. The assumption here is that not all 
genes measured by a macroarray method are related to aGvHD classification. Some 
genes are irrelevant and some are redundant from the machine learning point of view 
[2], [11]. It is well-known that the inclusion of irrelevant and redundant information 
may harm performance of some machine learning algorithms. Feature subset selection 
can be seen as a search through the space of feature subsets. CFS evaluates a subset of 
features by considering the individual detector ability of each feature along with the 
degree of redundancy between them. 
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Where:  

• CFSS  is the score of a feature subset S containing k features,  

• cfr
 is the average feature to class correlation (f ∈S),  

• ffr
 is the average feature to feature correlation.  

The distinction between normal filter algorithms and CFS is that while normal filters 
provide scores for each feature independently, CFS presents a heuristic “merit” of a 
feature subset and reports the best subset it finds. To select the genes with CFS, we 
have:  
a) Choose a search algorithm;  
b) Perform the search, keeping track of the best subset encountered according to 
CFSS,  
c) Output the best subset encountered. 
The search algorithm we used was the best-first with forward selection, which starts 
with the empty set of genes. The search for the best subset is based on the training 
data only. Once the best subset has been determined, and a classifier has been built 
from the training data (reduced to the best features found), the performance of that 
classifier is evaluated on the test data. The 13 genes selected by CFS are reported in 
Table 1. A leave-one-out cross validation procedure was performed to investigate the 
robustness of the feature selection procedures. In 29 runs, the subset of 13 genes was 
selected 28 times (96%) by CFS. Now it is possible to use a classifier to estimate the 
usefulness of feature subsets, and to extract rules describing knowledge about pattern 
disease. 

3.2   Gene Selection: Wrapper methods 
While CFS assigns a score to subset of features, Wrapper approaches take biases of 
machine learning algorithms into account when selecting features. The wrapper 
method applies a machine learning algorithm for a feature subset selection  and uses 
cross-validation to compute a score for them.     In general, filters are much faster than 
wrappers. However, as far as the final classification accuracy is concerned, wrappers 
normally provide better results. The general argument is that the classifier that will be 
built from the feature subset should provide a better estimate of accuracy than other 
methods. The main disadvantage of wrapper approaches is that during the feature 
selection process, the classifier must be repeatedly called to evaluate a subset.  



To select the genes using a wrapper method, we have to:  
(a) Choose a machine learning algorithm to evaluate the score of a feature subset. 
(b) Choose a search algorithm. 
(c) Perform the search, keeping track of the best subset encountered. 
(d) Output the best subset encountered. 
As a machine learning algorithm, here we used three classifier techniques: simple 
Bayesian classifier naïve Bayes, a SVM, and an Evolving Fuzzy Neural Network 
(EFUNN) as knowledge discovery connectionist approach [2]. The naïve Bayes 
classifier assumes that features are independent given the class. Its performance on 
data sets with redundant features can be improved by removing such features. A 
forward search strategy is normally used with naïve Bayes as it should immediately 
detect dependencies when harmful redundant features are added. SVMs use a kernel 
function to implicitly map data to a high dimensional space. Then, they construct the 
maximum margin hyperplane by solving an optimization problem on the training 
data. Sequential minimal optimization (SMO) [10] is used in this paper to train a 
SVM with a Linear Kernel after several test emplyed. SVMs have been shown to 
work well for high dimensional microarray data sets [11]. However, due to the high 
computational cost it is not very practical to use the wrapper method to select genes 
for SVMs. Also here the search algorithm was the best-first with forward selection, 
starting with the empty set of genes. We report here the accuracy of classifiers built 
from the best feature subset found during the search. The search for the best subset is 
based on the training data only. Once the best subset has been determined, and a 
classifier has been built from the training data (reduced to the best features found), the 
performance of that classifier is evaluated on the test data. The 5 Genes selected using 
the wrapper method are shown in table 1. Most of the genes selected are also similar 
to those of the 13 genes selected using the CFS method and the only two genes that 
are different are actually correlated to other genes from the set of 13 genes. A leave-
one-out cross validation procedure was performed to investigate the robustness of the 
method over the training set: in 29 runs, the subset of 7 genes was selected 26 times 
(90%) by the naïve Bayes wrapper and the group of 5 genes, 29 times (100%) by the 
SMO. Section 5 has shown the performance of this technique estimated on the testing 
data. 

4 Connectionist Model proposed for Knowledge Discovery using 
the Selected Gene Diagnostic Markers 

EFuNNs are learning models that can learn in an incrementally adaptive mode any 
dataset, regardless of the problem (function approximation, time-series prediction, 
classification, etc.) in a supervised, unsupervised, or hybrid learning mode, subject to 
appropriate parameter values selected and a certain minimum number of examples 
presented. Some well-established Neural Networks (NNs) and Artificial Intelligence 
(AI)  techniques have difficulties when applied to incrementally adaptive, knowledge-
based learning, for example catastrophic forgetting [12], local minima problem, 
difficulties to extract rules [2][13], are typical problems in multilayer perceptrons 
(MLP) and  in backpropagation learning algorithm, not being able to adapt to new 
data without retraining on old ones, and too long training when applied to large 
datasets. The radial basis function RBF neural networks require clustering to be 



performed first and then the backpropagation algorithm applied. They are not efficient 
for incrementally adaptive learning unless they are significantly modified. Many 
neurofuzzy systems, such as ANFIS [14], FuNN [15], and neofuzzy neuron [16] 
cannot update the learned rules through continuous training on additional data without 
suffering catastrophic forgetting. Several analysis and experiments [2] shows that the 
EFuNN evolving procedure leads  to a similar local incrementally adaptive error of 
other techniques  e.g. Resource Allocation Network (RAN) and its modifications, but 
EFuNNs allow for rules to be extracted and inserted at any time of the operation of 
the system thus providing knowledge about the problem and reflecting changes in its 
dynamics. In this respect the EFuNN is a flexible, incrementally adaptive, knowledge 
engineering model. One of the advantages of EFuNN is that rule nodes in EFuNN 
represent dynamic fuzzy-2 clusters. Despite the advantages of EFuNN, there are some 
difficulties when using them, the major is that there are several parameters that need 
to be optimised in an incrementally adaptive way. Such parameters are: error 
threshold Err; number, shape, and type of the membership functions; type of learning; 
aggregation threshold and number of iterations before aggregation, etc. A possible 
way for solving this problem is a genetic algorithm (GA) use, better a cGA more 
faster [17]. In the next future an interesting issue could be a study about performance 
of optimization approach for solving this and other disvantages. 

5 Results 

The dataset described in section 2 that consists of two classes, GvHD(Yes) and 
GvHD(No)  (that is ~GvHD(Yes)) and a compact input space, has been used, the 
expression values of 47 genes has been obtained with the applied biosystem (see 
section 2). The whole dataset has been divided into training and testing dataset for 
validation of a classifier system.  These two sets came from different patients in 
different period. A suitable subset of samples for biological peculiarities has been 
chosen as training data set. The training data set had 29 patient samples (13 
aGvHD(Yes) and 16 aGvHD(No)). The test data set consisted of 30 patient samples 
(13 aGvHD(Yes) and 17 aGvHD(No)). The test set shows a higher heterogeneity with 
regard to tissue and age of patients making any classification more difficult. 
The task is: (1) to find a set of genes distinguishing Yes and Not; (2) to construct a 
classifier based on these data; and (3) to find a gene profile for each classes. After 
having applied points 1 and 2 from the methodology above, different subset of genes 
has been selected. Several EFuNNs are evolved through the N-cross-validation 
technique (leave one-out method) on the 59 data samples (EFuNN parameters as well 
as are given in Table 2). In the case of data being made available continuously over 
time and fast adaptation on the new data needed to improve the model performance, 
online modelling techniques would be more appropriate, so that any new labelled data 
will be added to the EFuNN and the EFuNN will be used to predict the class of any 
new unlabelled data. This is an aim for future developments. 
Different EFuNN were evolved with the use of different sets of genes as input 
variables. The question of which is the optimum number of genes for a particular task 
is a difficult one to answer. Table 3 shows an example of the extracted rules after all 
samples, each of them having only 13 genes filtered by CFS, are learned by the 
EFuNN. The rules are ‘local’ and each of them has the meaning of the dominant rule 



in a particular subcluster of each class from the input space. Each rule covers a cluster 
of samples that belong to a certain class. These samples are similar to a degree that is 
defined as the radius of the receptive field of the rule node representing the cluster. 
For example, Rule 1 from Table 3 shows that 7 samples of class 1 (GvHD YES) are 
similar in terms of having genes g1, g2 and g9 overexpressed, and at the same time 
genes g6 and g7 are underexpressed. One class may be represented by several rules, 
profiles, each of them covering a subgroup of similar samples. This can lead to a new 
investigation on why the subgroups are formed and why they have different profiles 
(rules), even being part of the same class (in this case for  the four grading of 
aGvHD). The extracted rules for each class comprise a profile of this class, our next 
issue will be visualize this pattern in a significant way. 

6 Biomedical Conclusions and Future Work 

We examined the immune transcripts to study the applicability of gene expression 
profiling (macroarray) as a single assay in early diagnosis of aGvHD. Our interest 
was to select fewer number of molecular biomarkers from an initial gene panel and 
exploiting this to develop a fast, easy and non-invasive diagnostic test [1][5] [18], 
being able to extract rules and knowledge for modelling the disease. The proposed 
method provides a good overall accuracy to confirm aGvHD development in HSCT 
setting. From a biological point of view, the results are  reliable. Others have reasoned 
that Th2 cell therapy could rapidly ameliorate severe aGvHD via IL-4 and IL-10 
mediated mechanisms [19][20]. It is noteworthy that in our study a set of genes, 
indicated by computational analysis, included same mediators of Th2 response such 
as IL10, and signal transducer and activator of transcription 6, interleukin-4 induced 
(STAT6). All these were strongly down-regulated in aGvHD (YES) setting, 
suggesting absence of control mediated by Th2 cells. Therefore, we highlight the fact 
that defective expression of ICOS impaired the immune protective effectors during 
clinical aGvHD. This evidence is supported by a previous report about ICOS as 
regulatory molecule for T cell responses during aGvHD. It has been showed that 
ICOS signal inhibits aGvHD development mediated by CD8 positive effector cells in 
HSCT [20]. According to previous reports, mediators of apoptosis cells and dendritic 
cell activators were involved. In our study increased expression levels of CXCL10 
and CCL7 were identify as informative biomarker of alloreactive disease. Altogether 
our results strongly outlined the importance and utility of non-invasive tool for 
aGvHD diagnosis based on GEP. We believe that to achieve an advantage from GEP 
performance, it is very important to know: a) the transcript levels of immune effector 
cells in early time post-engraftment in order to  better understand polarization of Th2 
cells; b) the CD8 positive cell action. As a clinical trial, tissue biopsies were 
performed to confirm the above diagnostic results. In conclusion, our models may 
prevent the need for an invasive procedure as already discussed in [1][5][9] and it is 
possible to extract knowledge and rules after features selection task with wrappers 
and filters combined with a suitable classifier. This study demonstrated, for the first 
time, that the proposed incremental- adaptive- knowledge based learning procedure 
used for integrating the framework tool for diagnosis of aGvHD [1][5][18] confirms a 
satisfactory 97% accuracy over independent  test data set of HSCT population and 
return rules for individuating gene profiles for this complex disease. We plan to 



extend the system as a personalized model [18][21] including all clinical and genetic 
variables, testing with new data samples this method and for a larger group of patients 
to capture their  peculiarity. Moreover a visualization technique for distinguishing 
different profiles needed and at last novel classifiers can be explored. The authors are 
engaged in this direction.  

Table 1.  The 13 genes selected from CFS with their names and meaning, the 7 genes selected 
through the wrapper- naïve Bayes method are marked with °, the 5 genes selected with SVM 
are marked with *. 

 
 
Table 2. (a)EFuNN-1: Experimental results of wrapper with EFuNN as classifier and EFuNN-
2: Experimental results of a CFS with EFuNN classifier. The parameter values and error results 
of N-cross-validation (leave-one-out method) EFuNN models for dataset described in section 
2.(b)Experimental results of a CFS with EFuNN classifier and a wrapper method combined 
with SVM. The starting set has been divided in training set and test set, a leave one-out cross-
validation has been calculated for the two subsets. 

(a) 
Model Errthr Rmax Rule 

Nodes 
Classification Accuracy 
– Training data 

Classification Accuracy 
– Test data 

EFuNN-1 0.9 0.4 6.3 97.4 97.0 
EFuNN-2 0.9 0.5 4.0 95.0 97.2 

Gene Name Official full name Immune function 
BCL2A1 BCL2-related protein A1 Anti- and pro-apoptotic regulator. 
CASP1°* Caspase 1, apoptosis-

related cysteine peptidase 
Central role in the execution-phase of cell apoptosis. 

CCL7 chemokine (C-C motif) 
ligand 7 

Substrate of matrix metalloproteinase 2 

CD83 CD83 molecule Dendritic cells regulation. 
CXCL10° chemokine (C-X-C motif) 

ligand 10 
Pleiotropic effects, including stimulation of 
monocytes, natural killer and T-cell migration, and 
modulation of adhesion molecule expression. 

EGR2° Early growth response 2 transcription factor with three tandem C2H2-type 
zinc fingers. 

FAS TNF receptor superfamily, 
member 6) 

Central role in the physiological regulation of 
programmed cell death. 

ICOS°* Inducible T-cell co-
stimulator 

Plays an important role in cell-cell signaling, 
immune responses, and regulation of cell 
proliferation. 

IL4 Interleukin 4 Immune regulation. 
IL10°* Interleukin 10 Immune regulation. 
SELP selectin P Correlation with endothelial cells.  
SLPI° Stomatin (EPB72)-like 1 Elemental activities such as catalysis. 
STAT6 transducer and activator of 

transcription 6, 
interleukin-4 induced 

Regulation of IL4- mediated biological responses. 

Foxp-3 * forkhead box P3 
 

Regulatory T cells play important roles in the 
maintenance control of transplantation tolerance. 

CD52 °* CD52 antigen B-cell activation. 



 
(b) 

Method Training set Test set 

CFS-EFuNN 28(29) 29(30) 
Wrapper-SVM 29(29) 29(30) 
Wrapper-NaiveB. 26(29) 29(30) 
Wrapper- EFuNN 28(29) 29(30) 

 
 
Table 3.  7 samples of class 1 (GvHD YES) are similar in terms of having genes g1, g2 and g9 
overexpressed, and at the same time genes g6 and g7 are underexpressed. 
_____________________________________________________________________ 
Rule 1: 
if [g1] is  (1 0.8) & [g2] is (1 0.96) & [g6] is (2 0.7) & [g7] is (2 0.9) & [g9] is (1 0.89) receptive field = 0.1 
(radius of cluster), then class 1, accomodated training samples =  7/30 
Rule 4:  
[g3] is  (2 0.87) & [g5] is (1 0.83) & [g6] is (2 0.8) & [g7] is (1 0.9) & [g9] is (1 0.78) & [g11] is (2 0.95)   
receptive field = 0.102 (radius of cluster), then class 2, accomodated training samples =  9/30 
_____________________________________________________________________ 
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Figure 1. Absolute error and desidere output plots for aGvHD data after filtering dataset with 
CFS. EFuNN-1 has been applied for obtaining these results. 
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