
NNIGnets, Neural Networks Software

Tânia Fontes1, Vânia Lopes1, Luís M. Silva1, Jorge M. Santos1,2,
Joaquim Marques de Sá1

1 INEB - Instituto de Engenharia Biomédica, Campus FEUP (Faculdade de Engenharia da

Universidade do Porto), Rua Dr. Roberto Frias, s/n, 4200-065 Porto, Portugal

2 ISEP - Instituto Superior de Engenharia do Porto
Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal

{trfontes, vaniadlopes, lmsilva, jmfs, jmsa} @ fe.up.pt

Abstract. NNIGnets is a freeware computer program which can be used for
teaching, research or business applications, of Artificial Neural Networks
(ANNs). This software includes presently several tools for the application and
analysis of Multilayer Perceptrons (MLPs) and Radial Basis Functions (RBFs),
such as stratified Cross-Validation, Learning Curves, Adjusted Rand Index,
novel cost functions, and Vapnik–Chervonenkis (VC) dimension estimation,
which are not usually found in other ANN software packages. NNIGnets was
built following a software engineering approach which decouples operative
from GUI functions, allowing an easy growth of the package. NNIGnets was
tested by a variety of users, with different backgrounds and skills, who found it
to be intuitive, complete and easy to use.

Keywords: artificial neural networks, software application, freeware tool.

1 Introduction

NNIGnets includes several state-of-art tools of Artificial Neural Networks (ANNs)
training and analysis, namely stratified Cross-Validation [1] with train/test statistics,
Learning Curves, novel cost functions such as Generalized Exponential [2], Cross
Entropy [3] and Shannon Entropy of the Error [4], [5], Adjusted Rand Index [6], [7]
and Vapnik–Chervonenkis (VC) dimension estimation [8], [9], among others that are
not usually covered by other software implementations. NNIGnets can be used for
teaching, research or, under certain conditions, business applications. Over the last
five years, this software has been used as a support tool for the practical sessions of
the Neural Networks Summer School yearly held at Porto (http://www.isep.ipp.pt/nn/)
and was tested by many users with different backgrounds and skills, who showed
great interest in the functionalities available and agreed that it was a very complete
package and easy to use. In the following sections we describe NNIGnets in detail.

2 Model description

NNIGnets is a freeware computer program developed in C# at INEB (PSI/NNIG) -
Instituto de Engenharia Biomédica and is available for download from
http://paginas.fe.up.pt/~nnig. It is composed by a number of menus that allow ANN
(presently only Multilayer Perceptrons (MLPs) and Radial Basis Functions (RBFs))
configuration and evaluation. The Settings menu is used to set the essential
information for ANN design by specifying the training and test data, the network
architecture and the learning algorithm type. On the other hand, the Results menu
provides access to the design outcomes such as tables and graphs that help the user to
interpret the ANN performance. Although NNIGnets presently only provides MLPs
and RBFs, the software structure was designed having in view an easy insertion of
other ANN types within an uniform philosophy.

2.1 ANN Inputs – Settings Menu

The Settings menu is divided into three main submenus: Data, Architecture and
Learning Algorithm. These three submenus are related to each other and several
definitions affect one another.

The ANN inputs are specified through an input file chosen on the Data panel. The
user uploads data through a graphical user interface, by selecting a text file (.txt).
Each text file line must comply with either of the following formats: tab separated
columns or semi-colon separated columns (possibly with spaces in between).

After data file uploading, the graphical interface shows the respective variable
names and values. Each data column (variable) can be used as one of four types:

a) input: if the variable is to be used as input to the neural network (NN);
b) nominal output: if the variable is to be used as target in classification mode;
c) continuous output: if the variable is to be used as target in regression mode;
d) Ignore: variable to be discarded from the NN design.

The Pre-processing frame holds two options that provide two different types of
data pre-processing: data randomization and data standardization. For data
randomization, data rows are randomly shuffled. For data standardization, three
methods are provided: range scaling (1), where data is scaled to an user-specified real
interval ��� ��; mean centering (2), where data is centered around the mean; and
standardization (3), corresponding to the usual zero mean and unit variance
standardization. Let ���be the 	
 �� original variable where 	
 �� � � 	��� and ��� the
standardized���; � and � the lower and upper interval respectively; � the mean value
of �����and���the standard deviation value of���. Then we have:

���
 ���
�����������

���
 ����� ! � . (1)

���
 ��
 � . (2)

���
 ����
" . (3)

Another option available is the evaluation frame. Here the user can choose the type
of performance evaluation between train/test evaluation, Cross-Validation evaluation
and Learning Curves. In train/test evaluation data is divided into two subsets, train

and test. The subset sizes can be specified as percentages of the whole dataset. In
Cross-Validation, the data is divided into a number of approximately equal sized
subsets. The user defines the number of subsets and decides whether or not the class
ratio of the data should be kept (the so-called Stratified Cross-Validation).

The Learning Curves allow the user to analyze ANN convergence and
generalization abilities by performing multiple designs with incremental data sizes.
The user defines the starting and ending sizes of the training set, the increment, the
number of experiments in each subset and the format to be carried out. The format
can be one of the following: i.i.d., where the instances for the test sets are randomly
picked up from the data, and off-train-sets: the same process as i.i.d. but discarding
instances already present in the training set.

The Architecture panel allows the specification between a MLP or a RBF network.
Notice that we consider that each neuron in a given layer is connected to every neuron
on the next layer and there is a weight assigned to each of these connections and a
bias in each layer. The number of neurons in the input layer depends on the number of
inputs chosen from the data and the number of neurons in the output layer depends on
whether the user chooses classification or regression mode. In regression mode only
one neuron is needed, since the network output is regarded as the expected value of
the model at a given point in input space, whereas in classification mode the number
of neurons depends on the number of classes: 1 output for two-class problems, c
outputs for c > 2 classes problems, using 1-out-of-c coding.

For each ANN architecture, the user can choose different activation functions:
Sigmoid, Hyperbolic Tangent or Linear Heaviside for MLPs and Gaussian or
Multiquadric for RBFs. By default, the initial weights of the MLP architecture are set
to zero, but the user can specify their initial values in two ways: by initializing the
weights randomly within a specify range, or by specifying values using a text file. In
latter the file must follow the format specified for input data. For RBFs the weights of
neurons in the hidden layer are set according to x and y centroid coordinates. In both
ANN architectures the user can change the network properties by inserting and
removing layers or neurons and by changing the layer’s activation function (i.e.
setting weights). There is also an option for viewing the connections of a specific
neuron. To ease the visualization, neurons are identified using a color scale: black for
bias, red for input neurons, and blue for the remaining neurons.

The selection of the learning algorithm is available on the Learning Algorithm
window. For MLP networks, either the Batch Back-Propagation or the Sequential
Back-Propagation algorithm can be chosen, while for RBF networks a hybrid learning
algorithm is available.

Unlike other ANN programs where only the Mean Squared Error (MSE) cost
function is provided (4), NNIGnets avails (presently) three further possibilities:
Exponential (Exp) cost function [2] (5), Cross-Entropy (CE) cost function [3] (6) and
Shannon Entropy of the Error (HS) cost function [4], [5], (7), which have the
following definition for two-class problems:

#$%&
 ' (��
)�*+��,- , (4)

#&�.
 /�0 1' (2��3�*4��56
7 8 9 : , (5)

#;&

' �� <=)� ! (�
 ��* <=(�
)�*��,- , (6)

#>%

 ?
�' <@A BC(��
)�*��,- , (7)

where =�is the number of patterns, �� and)� are the target and network output
(respectively) values for pattern i, : D E is the Exponential cost function parameter
and BC(�* is an estimate of the error density obtained with the Parzen window method.

For MLP algorithms the following parameters can be adjusted: the learning rate
which can be adaptive [10] or specified, the momentum, the number of epochs in one
run and the minimum squared error. The hybrid learning algorithms only uses the
number of weights which depends on the number of neurons on the hidden layer.

2.2 ANN Outputs – Results Menu

The Results menu has several submenus: the Classification Matrix, the Error Graph,
the Error Surface and the Decision Border.

The Classification Matrix menu provides the classification error matrices resulting
from the train/test learning process. The classification results can be adjusted to
several types of priors: equal priors, with an equal weighting factor for every class,
structured priors, with weights proportional to the set class sizes, and specified priors
with weights specified by the user. The output varies according to the evaluation type
selected in the Data panel: train classification matrix, whenever the user chooses
100% of the available data for the training set; train and test classification matrices,
Cross-Validation, or the Learning Curves. NNIGNets software provides an estimate
for the classification error rate (Error mean). Several performance indicators for
two-class problems are also included (Sensitivity and Specificity, Balanced Error Rate
and Adjusted Rand Index [6], [7]). Let�F be the number of classes, G�the class index,
HI the number of misclassified cases in class G, =I the number of cases in class G and 0I
the prior of class G; let B0 be the number of false positives, B= the number of false
negatives, �0 the number of true positives and �= the number of true negatives. Then
we have:

#JJ@J�K/�=
 ' �L
�L

0IMI,- �. (8)

N/=O	�	P	�)
 2.
2.�Q�R� .

(9)

N0/F	S	F	�)
 2�
2��Q�R. .

(10)

T�<�=F/U�#JJ@J�V��/�(T#V*

WX

Y�ZWXQ
W�

YXZW�
+ .

(11)

[UG\O�/U�V�=U�]=U/�
 1�+8(2.Q2�*�^(2.QR�*(2.QR.*Q(R.Q2�*(R�Q2�*_
1�+8

4�^(2.QR�*(2.QR.*Q(R.Q2�*(R�Q2�*_
 .

(12)

The outputs resulting from the training process are shown on the Output panel, and
include the ANN output, the target value, the deviation value and the class confidence
value (H). The misclassified instances are represented in dark grey. On the options
frame the user can choose which output layer will be displayed. For two-class
problems the target value can be either in [0, 1] or [-1, 1] depending on the activation
function chosen. For multi-class problems the targets are coded in a 1-out-of-c (where
c is the number of classes) mode. The class confidence value H, as a function of each
pattern is given by [11]:

`

ab(c�d�*<=(c�d�*
e

�� (13)

where:

b(c?d�*
)�(�*,�b(c-d�*
 �
)�(�*, for two-class problems;

b(c�d�*
 3�(�*
' 3�(�*e

 , for multi-class problems.

For classification problems, the confidence level ff is given by:

ff
 g<=(F*
 `� 	B�h/<<�F<�OO	S	/U

 <=(F*
 `�� @��/Jh	O/ i�, (14)

(15)

where F is the number of classes.

This Output panel also shows the Class Confidence Mean (Mean H) which is the

average value for all cases, such that
 <=(F* j ` j <=(F*.
The Error Graph panel is one of the most useful tools available in this software.

This panel is composed by a graph that shows the evolution of the mean classification
error for the select cost function along the train/test epochs and helps the user to
identify the minimum number of epochs for a specified ANN configuration.

If Cross-Validation method is selected, this graph also shows the MSE standard
deviation for train and test over the number of epochs. Right clicking on the graph, a
pop-ups menu provides several options such as saving the graph as an image on a
pre-specified location, or showing x and y coordinates (visualization mode) when the
user moves the mouse over the graph line.

From the Results menu the user can also choose to display the Decision Border and
the Error Surface. The first is a two dimensional representation of the ANN behavior
for a given range of values for two variables/characteristics specified by the user.
Patterns are represented in different colors depending on the class and the border
curve, which divides the classes, is represented in black. The user can set the grid
resolution, the dots size and can also choose to display a grid with class labels. The
Error Surface is a three dimensional plot of the ANN cost function for any pair of
weights. Each ANN output can be regarded as a function of n input variables, which
form a response surface on an n+1-dimensional space.

Another aspect that is not usual to find in other similar software is the estimation of
the VC-dimension, which is part of the VC-theory [8]. VC-dimension assesses the
model complexity and the generalization ability of a learning machine. Phatak
demonstrates the inter-relationships between generalization and the VC-dimension of
feed-forward ANNs [12] and a practical setup to estimate the VC-dimension of a

binary classifier is proposed by Vapnik et al. [8]. NNIGnets uses the optimized design
proposed by Shao and Li [9] to obtain a more accurate estimate of the VC-dimension.
The user selects the option VC-dimension from the Actions menu, which is only
available for two class datasets, since the empirical process proposed in [9] is defined
only for binary classifiers. On the VC Dimension window two inputs are defined: the
number of experiments to be performed and the initial guess of the VC-dimension (h),
which is a non negative number.

NNIGnets also includes a help tool that explains the software usage, describing
each menu option, as well as the meaning of the fields on each panel.

3 Conclusions

The NNIGnets software has been used as a teaching tool for the practical sessions of
the last editions of the Neural Networks Summer School, held in Oporto. The School
involved over thirty participants of diverse backgrounds and practical interests from
several countries. NNIGnets raised great interest among the participants who found it
very intuitive, pleasant and easy to use, even for an inexperienced user. Since it offers
a large set of options, including new functionalities that are not usually found in other
similar software, and participants agreed it to be very complete and appealing.
New tools and ANN types are planned to be included in NNIGnets in the near future.

4 References

1. Hastie, T., Tibshirani, R., Friedman, J.: The Element of Statistical Learning: Data Mining,
Inference, and Prediction. Springer, 2.º edition (2009)

2. Silva, L., Marques de Sá, J., Alexandre, L.A.: Data Classification with Multilayer
Perceptrons using a Generalized Error Function. Neural Networks 21(9), 1302-1310 (2008)

3. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, (1995)
4. Silva, L., Marques de Sá, J., Alexandre, L.A.: The MEE Principle in Data Classification: A

Perceptron-Based Analysis. Neural Computation 22, 2698-2728 (2010)
5. Silva, L.: Neural Networks with Error-Density Risk Functionals for Data Classification.

PhD thesis, University of Porto (2008)
6. Hubert, L., Arabie, P.: Comparing Partions. J. of Classification 2, 193-218 (1985)
7. Santos, J.M., Ramos, S.: Using a Clustering Similarity Measure for Feature Selection in

High Dimensional Data Sets. In: Innovation and Sustainable Development in Agriculture
and Food 2010, vol. 1, pp. 900-905. IEEE Computer Society Press, Montpellier (2010)

8. Vapnik, V., Levin, E., Le Y.C.: Measuring the VC-Dimension of a Learning Machine,
Neural Computation 6(5), 851-876 (1994)

9. Shao, X., Li, W.: Measuring the VC-Dimension using optimized experimental design.
Neural Computation 12, 1969-1986 (2000)

10. Santos, J.M.: Data classification with neural networks and entropic criteria. PhD thesis,
University of Porto (2007)

11. Wan, E.A.: Neural Network Classification: A Bayesian Interpretation. IEEE Tr NN (1990)
12. Phatak, D.: Relationship between fault tolerance, generalization and the Vapnik-

Chervonenkis (VC) dimension of feed-forward ANNs. Proceedings of the International
Joint Conference on Neural Networks (IJCNN) (1999)

