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Abstract. NNIGnets is a freeware computer program which can be used for 
teaching, research or business applications, of Artificial Neural Networks 
(ANNs). This software includes presently several tools for the application and 
analysis of Multilayer Perceptrons (MLPs) and Radial Basis Functions (RBFs), 
such as stratified Cross-Validation, Learning Curves, Adjusted Rand Index, 
novel cost functions, and Vapnik–Chervonenkis (VC) dimension estimation, 
which are not usually found in other ANN software packages. NNIGnets was 
built following a software engineering approach which decouples operative 
from GUI functions, allowing an easy growth of the package. NNIGnets was 
tested by a variety of users, with different backgrounds and skills, who found it 
to be intuitive, complete and easy to use. 
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1   Introduction 

NNIGnets includes several state-of-art tools of Artificial Neural Networks (ANNs) 
training and analysis, namely stratified Cross-Validation [1] with train/test statistics, 
Learning Curves, novel cost functions such as Generalized Exponential [2], Cross 
Entropy [3] and Shannon Entropy of the Error [4], [5], Adjusted Rand Index [6], [7] 
and Vapnik–Chervonenkis (VC) dimension estimation [8], [9], among others that are 
not usually covered by other software implementations. NNIGnets can be used for 
teaching, research or, under certain conditions, business applications. Over the last 
five years, this software has been used as a support tool for the practical sessions of 
the Neural Networks Summer School yearly held at Porto (http://www.isep.ipp.pt/nn/) 
and was tested by many users with different backgrounds and skills, who showed 
great interest in the functionalities available and agreed that it was a very complete 
package and easy to use. In the following sections we describe NNIGnets in detail. 

2   Model description 



NNIGnets is a freeware computer program developed in C# at INEB (PSI/NNIG) - 
Instituto de Engenharia Biomédica and is available for download from 
http://paginas.fe.up.pt/~nnig. It is composed by a number of menus that allow ANN 
(presently only Multilayer Perceptrons (MLPs) and Radial Basis Functions (RBFs)) 
configuration and evaluation. The Settings menu is used to set the essential 
information for ANN design by specifying the training and test data, the network 
architecture and the learning algorithm type. On the other hand, the Results menu 
provides access to the design outcomes such as tables and graphs that help the user to 
interpret the ANN performance. Although NNIGnets presently only provides MLPs 
and RBFs, the software structure was designed having in view an easy insertion of 
other ANN types within an uniform philosophy. 

2.1   ANN Inputs – Settings Menu 

The Settings menu is divided into three main submenus: Data, Architecture and 
Learning Algorithm. These three submenus are related to each other and several 
definitions affect one another. 

The ANN inputs are specified through an input file chosen on the Data panel. The 
user uploads data through a graphical user interface, by selecting a text file (.txt). 
Each text file line must comply with either of the following formats: tab separated 
columns or semi-colon separated columns (possibly with spaces in between). 

After data file uploading, the graphical interface shows the respective variable 
names and values. Each data column (variable) can be used as one of four types: 

a) input: if the variable is to be used as input to the neural network (NN);  
b) nominal output: if the variable is to be used as target in classification mode;  
c) continuous output:  if the variable is to be used as target in regression mode;  
d) Ignore: variable to be discarded from the NN design. 

The Pre-processing frame holds two options that provide two different types of 
data pre-processing: data randomization and data standardization. For data 
randomization, data rows are randomly shuffled. For data standardization, three 
methods are provided: range scaling (1), where data is scaled to an user-specified real 
interval ��� ��; mean centering (2), where data is centered around the mean; and 
standardization (3), corresponding to the usual zero mean and unit variance 
standardization. Let ���be the 	 
 �� original variable where 	 
 �� � � 	��� and ��� the 
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Another option available is the evaluation frame. Here the user can choose the type 
of performance evaluation between train/test evaluation, Cross-Validation evaluation 
and Learning Curves. In train/test evaluation data is divided into two subsets, train 



and test. The subset sizes can be specified as percentages of the whole dataset. In 
Cross-Validation, the data is divided into a number of approximately equal sized 
subsets. The user defines the number of subsets and decides whether or not the class 
ratio of the data should be kept (the so-called Stratified Cross-Validation). 

The Learning Curves allow the user to analyze ANN convergence and 
generalization abilities by performing multiple designs with incremental data sizes. 
The user defines the starting and ending sizes of the training set, the increment, the 
number of experiments in each subset and the format to be carried out. The format 
can be one of the following: i.i.d., where the instances for the test sets are randomly 
picked up from the data, and off-train-sets: the same process as i.i.d. but discarding 
instances already present in the training set. 

The Architecture panel allows the specification between a MLP or a RBF network. 
Notice that we consider that each neuron in a given layer is connected to every neuron 
on the next layer and there is a weight assigned to each of these connections and a 
bias in each layer. The number of neurons in the input layer depends on the number of 
inputs chosen from the data and the number of neurons in the output layer depends on 
whether the user chooses classification or regression mode. In regression mode only 
one neuron is needed, since the network output is regarded as the expected value of 
the model at a given point in input space, whereas in classification mode the number 
of neurons depends on the number of classes: 1 output for two-class problems, c 
outputs for c > 2 classes problems, using 1-out-of-c coding. 

For each ANN architecture, the user can choose different activation functions: 
Sigmoid, Hyperbolic Tangent or Linear Heaviside for MLPs and Gaussian or 
Multiquadric for RBFs. By default, the initial weights of the MLP architecture are set 
to zero, but the user can specify their initial values in two ways: by initializing the 
weights randomly within a specify range, or by specifying values using a text file. In 
latter the file must follow the format specified for input data. For RBFs the weights of 
neurons in the hidden layer are set according to x and y centroid coordinates. In both 
ANN architectures the user can change the network properties by inserting and 
removing layers or neurons and by changing the layer’s activation function (i.e. 
setting weights). There is also an option for viewing the connections of a specific 
neuron. To ease the visualization, neurons are identified using a color scale: black for 
bias, red for input neurons, and blue for the remaining neurons.  

The selection of the learning algorithm is available on the Learning Algorithm 
window. For MLP networks, either the Batch Back-Propagation or the Sequential 
Back-Propagation algorithm can be chosen, while for RBF networks a hybrid learning 
algorithm is available. 

Unlike other ANN programs where only the Mean Squared Error (MSE) cost 
function is provided (4), NNIGnets avails (presently) three further possibilities: 
Exponential (Exp) cost function [2] (5), Cross-Entropy (CE) cost function [3] (6) and 
Shannon Entropy of the Error (HS) cost function [4], [5], (7), which have the 
following definition for two-class problems:  
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where =�is the number of patterns, �� and )� are the target and network output 
(respectively) values for pattern i, : D E is the Exponential cost function parameter 
and BC(�* is an estimate of the error density obtained with the Parzen window method. 

For MLP algorithms the following parameters can be adjusted: the learning rate 
which can be adaptive [10] or specified, the momentum, the number of epochs in one 
run and the minimum squared error. The hybrid learning algorithms only uses the 
number of weights which depends on the number of neurons on the hidden layer. 

2.2   ANN Outputs – Results Menu 

The Results menu has several submenus: the Classification Matrix, the Error Graph, 
the Error Surface and the Decision Border. 

The Classification Matrix menu provides the classification error matrices resulting 
from the train/test learning process. The classification results can be adjusted to 
several types of priors: equal priors, with an equal weighting factor for every class, 
structured priors, with weights proportional to the set class sizes, and specified priors 
with weights specified by the user. The output varies according to the evaluation type 
selected in the Data panel: train classification matrix, whenever the user chooses 
100% of the available data for the training set; train and test classification matrices, 
Cross-Validation, or the Learning Curves. NNIGNets software provides an estimate 
for the classification error rate (Error mean). Several performance indicators for 
two-class problems are also included (Sensitivity and Specificity, Balanced Error Rate 
and Adjusted Rand Index [6], [7]). Let�F be the number of classes, G�the class index, 
HI the number of misclassified cases in class G, =I the number of cases in class G and 0I 
the prior of class G; let B0 be the number of false positives, B= the number of false 
negatives, �0 the number of true positives and �= the number of true negatives. Then 
we have: 

#JJ@J�K/�= 
 ' �L
�L

0IMI,- �. (8) 

N/=O	�	P	�) 
 2.
2.�Q�R� . 

(9) 

N0/F	S	F	�) 
 2�
2��Q�R. . 

(10) 

T�<�=F/U�#JJ@J�V��/�(T#V* 

WX

Y�ZWXQ
W�

YXZW�
+  . 

(11) 

[UG\O�/U�V�=U�]=U/� 
 1�+8(2.Q2�*�^(2.QR�*(2.QR.*Q(R.Q2�*(R�Q2�*_
1�+8

4�^(2.QR�*(2.QR.*Q(R.Q2�*(R�Q2�*_
 . 

(12) 



The outputs resulting from the training process are shown on the Output panel, and 
include the ANN output, the target value, the deviation value and the class confidence 
value (H). The misclassified instances are represented in dark grey. On the options 
frame the user can choose which output layer will be displayed. For two-class 
problems the target value can be either in [0, 1] or [-1, 1] depending on the activation 
function chosen. For multi-class problems the targets are coded in a 1-out-of-c (where 
c is the number of classes) mode. The class confidence value H, as a function of each 
pattern is given by [11]: 

` 
 
ab(c�d�*<=(c�d�*
e

�� (13) 

where: 

b(c?d�* 
 )�(�*,�b(c-d�* 
 � 
 )�(�*, for two-class problems; 

b(c�d�* 
 3�(�*
' 3�(�*e

 , for multi-class problems. 

For classification problems, the confidence level ff is given by: 
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where F is the number of classes. 
 
This Output panel also shows the Class Confidence Mean (Mean H) which is the 

average value for all cases, such that 
 <=(F* j ` j <=(F*. 
The Error Graph panel is one of the most useful tools available in this software. 

This panel is composed by a graph that shows the evolution of the mean classification 
error for the select cost function along the train/test epochs and helps the user to 
identify the minimum number of epochs for a specified ANN configuration. 

If Cross-Validation method is selected, this graph also shows the MSE standard 
deviation for train and test over the number of epochs. Right clicking on the graph, a 
pop-ups menu provides several options such as saving the graph as an image on a 
pre-specified location, or showing x and y coordinates (visualization mode) when the 
user moves the mouse over the graph line. 

From the Results menu the user can also choose to display the Decision Border and 
the Error Surface. The first is a two dimensional representation of the ANN behavior 
for a given range of values for two variables/characteristics specified by the user. 
Patterns are represented in different colors depending on the class and the border 
curve, which divides the classes, is represented in black. The user can set the grid 
resolution, the dots size and can also choose to display a grid with class labels. The 
Error Surface is a three dimensional plot of the ANN cost function for any pair of 
weights. Each ANN output can be regarded as a function of n input variables, which 
form a response surface on an n+1-dimensional space. 

Another aspect that is not usual to find in other similar software is the estimation of 
the VC-dimension, which is part of the VC-theory [8]. VC-dimension assesses the 
model complexity and the generalization ability of a learning machine. Phatak 
demonstrates the inter-relationships between generalization and the VC-dimension of 
feed-forward ANNs [12] and a practical setup to estimate the VC-dimension of a 



binary classifier is proposed by Vapnik et al. [8]. NNIGnets uses the optimized design 
proposed by Shao and Li [9] to obtain a more accurate estimate of the VC-dimension. 
The user selects the option VC-dimension from the Actions menu, which is only 
available for two class datasets, since the empirical process proposed in [9] is defined 
only for binary classifiers. On the VC Dimension window two inputs are defined: the 
number of experiments to be performed and the initial guess of the VC-dimension (h), 
which is a non negative number.  

NNIGnets also includes a help tool that explains the software usage, describing 
each menu option, as well as the meaning of the fields on each panel.  

3   Conclusions 

The NNIGnets software has been used as a teaching tool for the practical sessions of 
the last editions of the Neural Networks Summer School, held in Oporto. The School 
involved over thirty participants of diverse backgrounds and practical interests from 
several countries. NNIGnets raised great interest among the participants who found it 
very intuitive, pleasant and easy to use, even for an inexperienced user. Since it offers 
a large set of options, including new functionalities that are not usually found in other 
similar software, and participants agreed it to be very complete and appealing.  
New tools and ANN types are planned to be included in NNIGnets in the near future. 
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