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Abstract. Liquid State Machines constitute a powerful computational tool for 
carrying out complex real time computations on continuous input streams. 
Their performance is based on two properties, approximation and separation. 
While the former depends on the selection of class functions for the readout 
maps, the latter needs to be evaluated for a particular liquid architecture. In the 
current paper we show how the Fisher’s Discriminant Ratio can be used to 
effectively measure the separation of a Liquid State Machine. This measure is 
then used as a fitness function in an evolutionary framework that searches for 
suitable liquid properties and architectures in order to optimize the performance 
of the trained readouts. Evaluation results demonstrate the effectiveness of the 
proposed approach. 
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1   Introduction 

Liquid State Machines (LSMs) are based on the concept of using biologically realistic 
neural networks for processing continuous input channels of information [9,10]. Their 
powerful computational abilities can be attributed to the capacity of these networks to 
transform the temporal dynamics of an input signal into a high dimensional spatio-
temporal pattern, which preserves recent and past information about the input. This 
information can be retrieved with a high degree of accuracy using certain types of 
classifiers.  
Following their introduction [9], LSMs have been used in various pattern 
classification tasks, including speech recognition [14] and movement prediction [2]. 
The notion behind LSMs has also been extended to problem domains outside 
computational modeling, where researchers use physical mediums for the 
implementation of the liquid, such as a bucket of water [5] or real cell assemblies [3]. 
An LSM consists of three components: (i) the liquid, i.e. a pool 𝑀 of spiking neurons 
that accepts input from different sources and outputs a series of spike trains, (ii) a 
filter 𝐿 that is applied on the output of the liquid in order to create a state matrix 𝑆, 
and (iii) one or more memoryless readout maps that are trained to extract information 
from 𝑆. The main conception behind this setup is that the complex dynamics of the 
input are transformed by the liquid to a high dimensional space, in a way that 
preserves their recent and past properties. This can be compared to a pool of water 
with a stone thrown in it. The disturbances that are caused in the liquid could be used 



by a trained observer to deduce the properties of the motion of the stone before 
entering the water.  
To improve the classification performance of an LSM, one must ensure that for two 
different input histories, the liquid states produced are significantly different [8]. This 
property, known as separation, has recently received increased attention in the 
literature, due to its close correlation with the performance of the LSM. In [9] the 
separation between two different liquid states is calculated by measuring the 
Euclidean distance of their state vector, i.e. the filtered neuron output sampled at one 
time instance. A similar geometric interpretation has been given by [7], who measure 
the separation of the liquid as the Euclidean distance between the centroids of the 
states that belong to different classes. In [3], the authors use spike train distance 
metrics instead of Euclidean distance. From the perspective of a classification system, 
it has been suggested that the rank of the state matrix 𝑆 can be used to measure the 
quality of the liquid [8]. According to this measure, the larger the number of linear 
independent variables produced by a liquid state, the better the classification that can 
be performed by the LSM.  
Attempts to improve the performance of an LSM in the literature have shown that it is 
very difficult to devise a proper measure or structural criterion to optimize the quality 
of the liquid. For example in [18] the authors have concluded that randomly generated 
liquids outperform any attempt to structurally modify the LSM. In [17] the authors 
use both reinforcement learning and genetic algorithms in order to optimize the 
classification performance of the LSM. Finally in [16] the authors use the centroid 
separation measure in order to drive the synaptic modification of the LSM.  
In the current paper we propose a criterion that measures the separation of the liquid 
states that correspond to different classes based on the class means and variances. The 
classification performance of an LSM is subsequently improved by employing an 
evolutionary framework to minimize the introduced criterion. Experimental results 
attest on the performance and accuracy of the proposed approach. 

2   Separation Measure 
Similarly to Support Vector Machines, the liquid of the LSM acts as a kernel that 
transforms the low-dimensional space of an input signal to the spatio-temporal space 
of the liquid. When used for classification, it is important that this transformation 
yields liquid states that are well separated across different classes. Thus an 
appropriate measure of the quality of the LSM is a criterion that incorporates the 
liquid means and variances in order to compute the separation of the data. For a 
classification task of 𝜔𝑖 different classes we define three quantities.  
 
(a) The between-class scatter matrix: 
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where 𝜇0 = ∑ 𝑃𝑖𝜇𝑖𝛭
𝜄=1  is the global mean vector for all 𝑀 classes, 𝑃𝑖  is the a priori 

probability of class 𝜔𝑖, and 𝜇𝑖 is the mean of the liquid states that correspond to class 
𝜔𝑖. 



 
(b) The within-class scatter matrix: 

𝑆𝑤 = �𝑃𝑖𝛴𝜄

𝑀
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    (2) 

where 𝛴𝑖 is the covariance matrix of the liquid states that correspond to class  𝜔𝑖 , and 
𝑃𝑖  is as eq. 1. 
 
(c) The covariance matrix 𝑆𝑚 with respect to the 𝜇0 global mean: 

𝑆𝑚 = 𝑆𝑤 + 𝑆𝑏    (3) 

The trace of the 𝑆𝑚 matrix adequately describes the sum of the variances of the 
features around the global mean, while the trace of the 𝑆𝑤 matrix is the sum of the 
feature variances computed for all classes. Consequently, the separation between 
different classes can be determined using the following quantity: 

𝐹𝐷𝑅 = 𝑡𝑟𝑎𝑐𝑒{𝑆𝑤−1𝑆𝑚}    (4) 

which is the generalization of the Fisher Discriminant Ratio [FDR, 19] to more than 
two classes.  
To apply the FDR measure on an LSM we sample the spatio-temporal patterns of the 
liquid’s action potentials with respect to each input. These are used to construct the 
state matrix 𝑆: 

𝑆 =  �
𝑠11 ⋯ 𝑠1𝑗
⋮ ⋱ ⋮
𝑠𝑖1 ⋯ 𝑠𝑖𝑗

�     (5) 

where 𝒔𝒊𝒋 is the filtered output of the jth spiking neuron in the liquid and i is the index 
of the time window in which the outputs of the neurons are sampled. For each task, 
we create 𝑛 matrices 𝑆, each corresponding to a different class. The FDR measure is 
then calculated based on eqs. 1-4. 

3   Genetic Algorithm based Liquid Evolution 
The separation of the liquid is positively correlated with the performance of the LSM 
[8]. Consequently, one can improve the classification performance of the trained 
readouts by designing a liquid that has a high separation measure. To accomplish this 
we minimize the FDR (eq. 4) of a liquid using genetic algorithms (GAs). GAs are a 
stochastic optimization method that can optimize complex functions by exploiting 
their parameter space [6]. Due to their ability to find good solutions in multi-modal 
and non-differentiable functions they have been extensively used to optimize the 
performance of neural networks. In these cases researchers encode properties such as 
the architecture, weights or neuronal models of the network and exploit them in order 
to minimize some objective optimization function (see [15] for a review). To evolve 
the LSM we utilize three types of properties: (i) the parameters of the neurons in the 
liquid, (ii) the architecture of the liquid, and (iii) the local properties of each 



architecture. The effect these parameters have on the liquid performance is discussed 
in the following. 
The first part of the chromosome encodes the firing threshold of all neurons in the 
liquid and the mean of the Gaussian noise added to the neurons’ output on every step. 
These two parameters control the responsiveness and generalization properties of 
each neuron. In the first case, if the firing threshold of a neuron is low, then it will 
require to integrate more spikes before firing a post-synaptic potential, making the 
liquid less responsive to the perturbations of the low input signals. The second 
parameter controls the mean of the white noise added to each neuron, which affects 
the generalization properties of the training.  
The second part of the chromosome encodes three different architectures for the LSM. 
Each architecture specifies a different way for connecting the inputs to the liquid, and 
the inter-liquid connectivity (Fig. 1). In architecture 1, all input neurons are connected 
to all neurons within the liquid. Thus all task information is integrated in overlapping 
liquid locations. This is the original setup suggested by [9]. In the second architecture 
the neurons that encode the input from different sources project to different locations 
in the liquid. In this case, the resulting LSM will produce a state vector whose entries 
correspond to particular input properties. The third architecture also incorporates the 
properties of the input, but discriminates it depending on whether they are temporally 
varying or static throughout the classification task. Temporally varying inputs project 
to different locations within the liquid, while the constant input signals are propagated 
to all neurons.  

 
Fig. 1. The three architectures used in the genetic algorithm, shown from a different perspective 
in order to highlight how the components are connected together. In each architecture the liquid 
component of the LSM is shaded with red, while the inputs with green. 

The last part of the chromosome encodes the properties common to all architectures. 
These include the size of the liquid map and the locality of the connections in the 
liquid (i.e. the size of the neighborhood that each neuron is allowed to connect to). 
Because of the exponential descending output of the dynamic synapses of the LSM 
[10], the last parameter affects the chaotic dynamics of the liquid, i.e. the period in 
which a certain input has an effect on the liquid state. 
To evolve the chromosomes we use 3 different operators, mutation, crossover and 
selection. Mutation was implemented by adding a random number drawn from a 
Gaussian distribution, with zero mean and standard deviation that starts from 1 and 
decreases linearly until it reaches 0 in the final generation. To perform crossover, the 
GA selects (with probability 0.5) a bit from each parent chromosome in order to form 
a child. Selection was implemented using a roulette wheel function. 



4   Experimental Results 
In the current section we evaluate the performance of the FDR measure and the GA 
optimization framework on a number of different classification tasks. For this reason, 
we focus on two issues: (i) the ability of the proposed measure to predict the quality 
of the liquid in an LSM, and (ii) whether the optimization framework can reduce the 
error of the readouts by minimizing the FDR. 

4.1 Measure Evaluation 
To evaluate the FDR measure we use three classification tasks, which incorporate 
different methods for encoding the input. This is important since diverse input 
encodings can have a different effect on the liquid dynamics. Population codes [11] 
provide a consistent representation of the input by using distributed and partially 
overlapping neuron groups in order to encode the values of a variable. In contrast, rate 
codes [11] produce a higher homogeneity when used as input because they employ 
the same neuron to represent different input values. Consequently in the three tasks 
discussed below, rate codes are used to encode the input in two cases, whereas 
population codes are used in the third case. The liquid in all the aforementioned 
classification tasks follows the initialization and topology settings discussed in [9]. To 
evaluate the measure on different classification methods we employ four different 
readouts: the first readout is implemented with a multi-layer perceptron using the 
backpropagation rule to train the weights [12]. The second readout implements linear 
regression [4]. The third readout implements a classifier that uses least squares to find 
the regression coefficients [4], while the fourth the p-Delta rule on a parallel 
perceptron layer [1]. 
For the first classification task, we compare the performance of the two most popular 
measures in the literature, namely the centroids and rank measures, against the FDR. 
For this reason we use an LSM with one linear regression readout to classify whether 
the rate of the input is above a particular value, in this case five Hertz. Input is 
encoded as a random Poisson rate and applied for 1000ms to a pool of Leaky 
Integrate and Fire [13] spiking neurons. The liquid used for this purpose consists of a 
pool of 125 spiking neurons, arranged in a 3 dimensional grid. States are sampled 
every 10ms for 1 second and input to the 4 readout units.  
The FDR, Rank and Centroids measures were (a) calculated for the two state vectors 
𝑆1 and 𝑆2 from eq. 5 that correspond to classes 𝜔1 and 𝜔2, and (b) compared against 
the performance of a linear regression readout for 16 different simulations (Fig. 2). 

 
Fig. 2. Evaluation of the FDR, Rank and Centroids measures against their ability to predict the 
performance of the linear readout map of an LSM. In each subplot the x,y axes correspond to 
different configurations for an LSM. The color in each x,y entry corresponds to the value of the 
error (for subplot a) or the negative value of the measure (for subplots b,c,d).  



A good measure should be positively correlated with the error of any trained readout 
that is used to extract information from the liquid. As Fig. 2 shows there is a clear 
correlation between the value of the error of a readout map and the value of the FDR 
measure (for both cases high values close to 1 are colored with red shades, while low 
values close to 0 are colored with blue). Furthermore, the results presented in Fig. 2 
show that the proposed measure outperforms the Centroids measure and, at the same 
time, performs better than the Rank measure. By comparing Fig. 2a and Fig. 2b, it is 
evident that the FDR measure can predict with satisfying accuracy the performance of 
the linear regression readout and, therefore, the separation of the liquid in the LSM 
(readout error/FDR correlation was 0.86). Due to space limitations we do not provide 
the corresponding contour plots for the other three readouts, although we note that the 
results were similar to the ones presented in Fig. 2. 
The second task requires the LSM to classify two different motions of an object, 
based on the projection of its image on a 9x9 grid of receptive field neurons. The 
output of the retina field is encoded as a group of 81 neurons, each one corresponding 
to a different cell. These neurons fire random Poisson spikes of 30Hz when their 
corresponding cell in the retina field is occupied, and at a rate of 5Hz otherwise. This 
output is then projected to a liquid with 63 neurons, where we record the post-
synaptic potentials of the neurons for 3 sec (3000ms). Information from the liquid 
response is used to classify whether the movement on the retina belongs to either one 
of the two behaviors for 9 different simulations. The error is calculated by subtracting 
the readout value from the actual behavior being performaned for each step of the 
simulaton, and normalized to 1. Due to space limitations, results are not presented for 
this task in the form of contour plots but rather as graphs of the errors of the readouts 
against the FDR (Fig. 3). 

 
Fig. 3. Graphs of the FDR measure (blue line) against the readout error (red line) of linear 
regression, backpropagation, linear classification and pDelta methods. The x-axis corresponds 
to the 9 different trials of the simulation, while the y-axis shows the output of the corresponding 
error and measure. 

As Fig. 3 illustrates, FDR follows quite closely the corresponding error in all cases. 
The correlation between the FDR measure and the readout error was in all cases 
above 0.8, indicating a close relationship between the two.  
For the third task we use an LSM that must classify the type of three different objects, 
a circle, a square and a hexagon. To encode the input we first sharpen each image 
using a Laplacian filter and consequently convolve it with 4 different Gabor filters 
with orientations π, π

2
, 2π and −π

2
 respectively. The four convolved images from the 

input are projected into four neuronal grids of 25 neurons, where each neuron 



corresponds to a different location in the Gabor output. Information from the liquid 
response is classified by the above mentioned four readouts for 9 different simulations 
(Fig. 4). 

 
Fig. 4. Graphs of the FDR measure (blue line) against the readout error (red line) of linear 
regression, backpropagation, linear classification and pDelta methods. The x-axis corresponds 
to the 9 different trials of the simulation, while the y-axis shows the output of the corresponding 
error and measure. 

The results presented above for all three tasks, indicate that the FDR measure can 
describe the quality of the liquid over a broad range of tasks and input encodings. 

4.2   Liquid optimization 
In the current section we evaluate the extent to which the aforementioned GA 
framework can optimize the performance of an LSM. For this reason, we consider an 
additional classification task that requires the integration of temporal information in 
the liquid states. More specifically, we consider a binary classification task in which 
an LSM must classify whether the end point of a moving planar robotic arm is closer 
(or not) than a predefined distance to a given target location. The difficulty of the task 
lies in the fact that the time-varying control model of the arm must be combined with 
the static signal of the end point location and produce discrete liquid states, even in 
cases where the input dynamics are not so different.  
Input in this case consists of two different channels. The first encodes the spatial 
location of an end point position in (𝑥,𝑦) space coordinates and the second the 
inverse kinematics of different arm trajectories. Input joint positions are generated by 
creating different trajectories using a two-link planar arm based on one start position 
(Fig. 5a), three speed profiles (Fig. 5b) and five random ending positions for the train 
and test sets (Fig. 5c,d). The training set consists of the trajectories between the initial 
position (Fig. 5a) and a random end position (Fig. 5c). The test set is generated using 
a different set of ending positions (Fig. 5d). 
To determine the trajectory between a starting and ending position, a random speed 
profile is chosen from the templates in Fig. 5b. The joint configurations of the robot 
across the pathway of a trajectory are obtained using an iterative solution to the 
inverse kinematics problem based on the pseudo-inverse of the robot’s Jacobian. 
To encode the target position we use a population code with 10 neurons for each 
dimension (i.e. the 𝑥,𝑦 coordinates). Thus for the two dimensional space 20 input 
neurons are used. The simulated robotic arm that is employed in the experiments 
consists of 2 joints, namely elbow and shoulder, which are also encoded using 
population codes. 



 
Fig. 5. a. The initial position of the robot’s arm. b. The three speed profiles used to generate 
random movements. c. The five different configurations of the arm of the robot for the five 
ending positions of the train set. d. The five different configurations of the arm for the test set. 

The classification task we consider requires the LSM to predict whether in the next 
location, the end point of the robot’s arm will be closer than a predefined distance to 
the object in 𝑥,𝑦 coordinates. To classify a given location correctly, the LSM must 
make a prediction on the speed of the arm at any given time. Hence, the liquid state 
must integrate information about the location of the robot’s end-point effector 
position in previous time steps.  To generate the different liquid states we have run 
100 simulations for the train set kinematics and 30 simulations for the test set 
kinematics. To learn the classification task, these liquid states were input to 4 readout 
units, namely a feedforward neural network, a parallel perceptron layer, a linear 
regression and a linear classification readout. 
Even though the results reported here regard the optimal individual produced by the 
genetic algorithm, it should be noted that similar results were obtained for all 
chromosomes in the last generation. The GA was run for 18 generations in order to 
minimize the FDR criterion (Fig. 6). As the four rightmost plots in Fig. 6 show, while 
the genetic algorithm was used to minimize the FDR measure, it also reduced the 
error on all four readout maps. 

 
Fig. 6. The results from the evolution of the LSM for 18 generations of the 100 individuals. 
The left plot shows the best and mean fitness (y-axis) of the population on each generation (x-
axis). The right set of four plots shows the average error of the four readouts across the 
generations (y-axis) of the 100 individuals (x-axis) in the final population. 

The subplots in Fig. 6 demonstrate how the GA was able to optimize the performance 
of the LSM by reducing the classification error of the readouts. The error was reduced 
from 0.3 to 0.1 in all four readouts maps (Fig. 6, right four subplots), simply by 
optimizing the FDR measure on the liquid (Fig. 6, left subplot) during the 
evolutionary process. The improvement in the liquid performance is also evident 



when we examine the output of the four classifiers in the optimal individual produced 
by the GA. As Fig. 7 shows, all the readouts are able to classify different movements 
with a high degree of accuracy.  

 
Fig. 7. The output of the four trained readouts for two sample movements (four bottom 
subplots) and the input projected to the liquid (top subplot). 

In the first example (plot a), the robot’s arm never reaches the target location in a 
distance closer than required. In the second (plot b), it approximates the end location 
in the final 10 simulation steps. In both plots, we show the stimulus input to the liquid 
(top graph of plots a,b), the output of the four readouts (blue lines in bottom four 
graphs of plots a,b) and the target for each readout (red lines in bottom four graphs of 
plots a,b). Each graph is labeled with the corresponding readout map. The x-axis 
represents the simulation time in 100ms intervals for all graphs. 

5   Discussion 
In the current paper we presented a method for improving the computational 
capabilities of LSMs by focusing on the separation property of the liquid. This was 
measured using the Fisher’s Discriminant Ratio, a measure that is maximized when 
the class means are far from each other, and the class variances are as small as 
possible. To evaluate the FDR measure against a broad range of classification tasks, 
we incorporated different types of neuron encodings for the input. As the results 
show, the FDR criterion accurately predicts the performance of the readouts without 
having any knowledge of the algorithm used to train them. Due to this fact, the GA, 
by minimizing the value of the FDR criterion, also improved the performance of all 
four classifiers. 
In contrast to other criterions, the FDR is a supervised measure, i.e. requires the class 
labels in order to compute the quantities in eqs. 1-3. Consequently, the evolutionary 
framework that was presented is also supervised. We consider this a benefit of the 
method, since it allows the design of liquid architectures that will be suited for the 
specific dynamics of the classification task. 
The proposed methodology will be used to develop a large-scale model of movement 
imitation and observational learning. In this context, the FDR measure can be 
employed to optimize the performance of the LSMs that underpin the agent’s 



perception and motor control system. We also plan to investigate whether projecting 
the liquid states along the eigenvectors of the argument of the FDR measure, can 
further improve class separation. 
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