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Abstract: This research effort aims in the estimation of Wood Loss Factor by 
employing Support Vector Machines. For this purpose experimental data for two 
different wood species were used. The estimation of the dielectric properties of 
wood was done by using various Kernel algorithms as a function of both ambient 
electro-thermal conditions applied during drying of wood and basic wood chemistry. 
Actually the best fit neural models that were developed in a previous effort of our 
research team were compared to the Kernels’ approaches in order to determine the 

optimal ones.  
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1.  Introduction  

It has been shown in the literature that the knowledge of dielectric properties of 

wood can be used to determine its density and moisture content nondestructively. On 
the other hand this knowledge can lead to the detection of hand knots, spiral grain, and 

other defects [14]. From a theoretical perspective a better understanding of the 

molecular structure of wood and wood-water interactions can be obtained [9]. Various 

approaches towards this direction have been reported in the literature, namely the radio 

frequency vacuum drying [11][12][13] and the high frequency electric field heating, 

such as the veneer and finger-joint gluing and parallam manufacturing [19]. Thus, 

estimation of the dielectric constant (ε'), the loss tangent (tanδ) and the loss factor (ε") 

plays a catalytic role in the process of design, control, optimization and simulation.   

Recently Koumoutsakos [11] has shown that ε" is proportional to the thermal energy 

transferred to the wood, during radio frequency vacuum drying (RFV) process. RFV 

heating is a volumetric method where thermal energy is produced simultaneously 
through a pile of lumber which is placed inside an electromagnetic field. In this process 

the moisture starts its transportation from the center to the surface as soon as the wood 

is exposed to the field [1]. In fact, the electric power converted to thermal is given by 

the following formula 1. 
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PD = 5.56x10-11 E2 f ε" (1) 

  

It should be clarified that PD is the power density in W/m3, E is the field strength in 

V/m and f is the frequency measured in Hz 

Research efforts in the past have shown that there exists a strong relationship between 

the dielectric properties and wood attributes studied plus field frequency applied 

[18][19]. 

It is a fact that despite all conducted research so far, there is very little respective 
knowledge regarding the effect of wood chemical composition on the determination of 

ε". Actually, Norimoto [15][16] have investigated the dielectric properties of some 

wood chemical constituents as a function of frequency and temperature, but no attempt 

was made towards the correlation of their percent content in the cell-wall composition 

to the gross wood ε" values.  

Another point that motivated this study is the fact that the data that have been used 

so far to construct such models have originated from assorted species, under different 

thermo-physical conditions and variable frequencies and thus, they are not suitable to 

be employed in drying modeling [2].  

This research effort aims in the development of Support Vector Machines models 

(Gaussian, Fuzzy weighted and Polynomial) capable of determining reliably the value 

of ε" based on ambient electro-thermal conditions and also on basic wood chemistry. 
On the other hand a comparative study is performed with a previous study of our 

research team that used Artificial Neural Networks (ANNs) for the same purpose [2]. 

This comparison aims in the determination of the optimal approaches that can be used 

to offer reliable and most of all cost and time effective approximation.  

2. Materials and methods 

2.1.  Obtaining the experimental data 

This study employees ε" values and macro-physical data that were already published 

by Zhou and Avramidis [22]. According to Zhou and Avramidis all-sapwood and all-

heartwood western hemlock [Tsuga heterophylla (Raf.) Sarg.], and all-heartwood 

western red cedar [Thuja plicata Donn] specimens were evaluated in the radial 

direction (thickness) and at various moisture contents and temperature levels were 

exposed to two levels of electric field voltage. After the exposure was terminated the ε" 

values were calculated indirectly by performing heating studies at a 13.56 MHz fixed 

frequency with a laboratory size RFV dryer [22] [2].  

Also the above described wood species were analyzed by Zhou and Avramidis [22] 

regarding their chemical composition as follows: air dried wood samples were ground 
in a Wiley Mill to pass a 40-mesh screen and extracted in a Soxhlet apparatus with 

acetone for 12 hours, and extractives determined gravimetrically [2]. According to 

Zhou and Avramidis [22], the content of Lignin was determined using a modified 

Klason approach derived from the TAPPI standard method T222 om-98. For more 

details refer to [22]. 



2.2.  5-Fold-Cross Validation 

Cross-validation is a methods for estimating generalization error based on 

"resampling" [21] [7] [8] [17]. The resulting estimates of generalization error are often 

used for choosing among various models. In k-fold cross-validation, the data are 
divided into k subsets of (approximately) equal size. The model is trained k times, each 

time leaving out one of the subsets from training, but using only the omitted subset to 

compute whatever error criterion interests you. If k equals the sample size, this is 

called "leave-one-out" cross-validation. The division of the data set was done by the 

use of MATLAB’s crossvalind function, which is included in the Bioinformatics 

Toolbox. 

2.3. ε-SV Regression (ε-SVR) 

Support Vector Machines (SVM) are keeping the training error foxed while at the 

same time they are minimizing the confidence interval [10]. Their primary target was 

pattern recognition [3]. Now they are used for both regression and classification. 

Vapnik [20] [10] introduced the following loss function that ignores errors less than a 

predefined value 0   

    max 0 ,y f x y f x


       (2) 

It is a fact that the ε-SVR algorithm offers in many cases the optimal function of the 

form:    , , ,Nf x k w x b w x R b R       (3). The whole idea is based on the 

determination of the function with the minimum testing error. The problem in this case 

is that the minimization of the above function is not possible due to the fact that the 

probability distribution P  is unknown. Consequently, the actual solution can be 

reached by minimizing the following normalized risk function 4. 
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Obviously, the objective which is the Minimization of the above risk function 4 can 
be phased as a specific optimization problem which phases the constraints described 

below: The aim is the minimization of the following function: 
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The constraints in this case are:   , i i ik w x b y      (8) and 

  i i iy k w x b         (9) and of course 
, 0i i    (10). Obviously (and this 

can be seen in the following figure 1)
i


,
i  are the distances of the training data set 

points from the e-zone. All of the errors that are smaller than  are ignored. As it is 

clearly shown, 
i stands for the distance of a point that can be found above the e-tube 

zone and 
i


 stands for the distance of a point that is located below the e-tube zone.  It 

is well known that in the case of the application of Lagrange multipliers the problem 

would correspond to a double optimization one as follows:  Maximize  
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Figure 1.  ε-SVR for Regression 

Based on Vapnik and Kecman [20][10], the optimization problem can be solved by 

the use of the following linear extension of the kernel functions (14) and (15)  
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 where b is estimated by the following function 16 
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The training set vectors
ix  related to nonzero values of  i ia a  are called SVM. The 

following function 17 presents the Radial Basis function (RBF) kernel 
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The involved parameters  , ,RBF    are very significant and they determine to a 

great level of extend the good fit of the ε-SVR. It should be specified that 
RBF  is the 

RBF kernel’s standard deviation,   has a constant value that determines the point 

where the empiric error is related to complexity and finally the parameter  is the 

width of the ε-zone. In statistics, when we consider the Gaussian probability density 

function σRBF is called the standard deviation, and the square of it, the variance. 

 

2.4. Fuzzy weighted Support Vector Regression 

 

The fuzzy weighted SVR with a fuzzy partition first employs the fuzzy c-mean 

clustering algorithm to split training data into several training subsets. Then, the local-

regression models (LRMs) are independently obtained by the SVR approach for each 

training subset. Finally, those LRMs are combined by a fuzzy weighted mechanism to 

form the output. Experimental results show that the proposed approach needs less 
computational time than the local SVR approach and can have more accurate results 

than the local/global SVR approaches does [5]. 

3. Application  

In this section of the paper, the application results of the Global SVR approach for 

all existing data vectors will be presented thoroughly. The regression was done for 

different kernels, namely the Gaussian (RBF) the Fuzzy weight SVM and the 

Polynomial one. In order to perform Global SVR a global regression model was 

developed.  

The regression was performed by the use of the LIBSVM v2.9 

(http://www.csie.ntu.edu.tw/~cjlin/libsvm/) [4] which is encoded in C++ and offers a 

Matlab Interface. In this specific application the RBF-Kernel was applied.  

 

 

3.1. Performing trial and error for the Gaussian Kernel 

 
The initial data set comprised of one hundred forty-four (144) sets of experimental 

data, where the ε" was measured under different temperature and moisture conditions 

and for various types of chemical composition. 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/


During Training and Testing, several hundreds of experiments were performed in 

order to determine the optimal parameters’ values.  

More specifically in the case of the Gaussian (RBF) Kernel, 400 experimentation cases 

(applications of the 5-fold cross validation) were constructed with the integer value of 

σRBF ranging from 1 to 20 and with the value of the parameter γ ranging from 1 to 14. 

In the same case the e parameter took real values from the following set {0.003, 0.004, 
0.005, 0.006, 0.007, 0.008, 0.009, 0.1, 0.12, 0.14, 0.16, 0.18,0.20, 0.22} This means 

that totally 400*14=5600 trials were performed during the 5-fold cross validation 

process.  

The Root Mean Square Errors (RMSE) produced in each Training or Testing cycle 

were stored and then they were averaged each time 5-fold cross validation was 

employed. In each trial the initial data set was divided into five subsets (4 training and 

one testing) where five training and testing cycles were performed (each time changing 

the testing set in a round robin manner).  Totally 5600 Average Root Mean Square 

Errors were obtained (ARMSE) one for each 5-fold cross validation cycle and for each 

unique combination of the parameters, together with the corresponding % Mean 

Average Percent Error (MAPE). 

In the case of the Gaussian Kernel the optimal SVM model was produced for the 
σRBF = 2 and for the value of the parameter γ=12 in the case with e=0.04 as it is shown 

in the following table 1. 

 

Table 1: Performance of the Optimal Gaussian Kernel 

Optimal Gaussian Kernel SVM (5-fold cross validation) 

Value of 

σRBF 

Value 

of γ 

Value 

of  e 

Mean 

RMSE 

Training 

Mean 

RMSE 

Testing 

MAPE 

Training 

MAPE 

Testing 

2 12 0.04 0.00009664 0.0001501 2.4824596 3.7328347 

 

The following figures 2 and 3 present the evolution of the Mean RMSE and of the 

MAPE respectively, according to the values of the e parameter for the Gaussian 

Kernel. It is clearly shown that the best model should have an e value equal to 0.04. 

 

 Performing Gaussian SVM with 5-fold cross validation
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Figure 2. Evolution of the Mean RMSE for different values of the parameter 



 

Gaussian SVM using 5-fold cross validation
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Figure 3. Evolution of the MAPE for different values of  the e parameter 

 

For the case of the Polynomial Kernel, the σRBF again took integer values from 1 to 

20 and the parameter γ from 1 to 14. However the e parameter took real values from 

the following set {0.005, 0.1, 0.15, 0.20, 0.25}.  The performance of the best fit 

Polynomial Kernel is shown in the following table 2 and it was achieved for σRBF=3  

γ=18 and e=0.1 

 

Table 2: Performance of the Optimal Polynomial Kernel 

 

Optimal Polynomial Kernel SVM (5-fold cross validation) 

Value of 

σRBF 

Value 

of γ 

Value 

of  e 

Mean 

RMSE 

Training 

Mean 

RMSE 

Testing 

MAPE 

Training 

MAPE 

Testing 

3 18 0.1 0.000485 0.000549 11.74819 14.01062 

 

For the Fuzzy weight Support Vector Machine the σRBF again took integer values 

from 1 to 20 and the parameter γ from 1 to 14. Also the e parameter took real values 
from the following set {0.005, 0.1, 0.15, 0.20, 0.25}.  The performance of the best fit 

Fuzzy weight SVM is shown in the following table 3 and it was achieved for σRBF=3 

γ=16 and e=0.05  

 

Table 3: Performance of the Optimal Fuzzy weight SVM 

 

Optimal Fuzzy weight SVM (5-fold cross validation) 

Value of 

σRBF 

Value 

of γ 

Value 

of  e 

Mean 

RMSE 

Training 

Mean 

RMSE 

Testing 

MAPE 

Training 

MAPE 

Testing 

3 16 0.05 0.000488 0.000542 12.13017 14.12399 
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Figure 4. Actual versus estimated values of Loss Factor for Fuzzy Weighted 

SVMs  
 

4. Discussion – Comparative analysis 
 

The results of the e-SVM regression were compared to the results of the Artificial 

Neural Network that was developed by our research team in a previous study [2] and 

also the results of the three SVM kernels were compared to each other.  

In [2] the optimal ANN that estimated wood loss factor for the same input variables 

was found to be a multi layer Back propagation one, with Sigmoid transfer function. It 

was found to have eleven (11) processing elements in the input layer, nine (9) neurons 
in the hidden layer and of course one neuron in the output layer [2].  

 

 
Table 4: Performance of the optimal ANN for the estimation of loss factor in wood 

 

Optimal 

ANN 

RMSE 

Training 

Optimal 

ANN R
2
 

Training 

 

Optimal 

ANN 

RMSE 

Testing 

 

Optimal 

ANN R
2
 

Testing 

 

0.017 

 

R2=0.9989 

 

0.0382 

 

R2=0.9945 

 

 

The above table 4 presents the performance of the best fit ANN. It is clearly shown 

that the Gaussian Kernel approach has by far much lower RMS error than the 

Polynomial and the Fuzzy weight SVM and also than the best fit ANN. Thus it can be 

considered the most reliable modeling approach. 



This research effort is quite new and processes a high degree of innovation due to the 

fact that similar research has not been performed in wood science literature before. It is 

the final part of a wider effort to produce rational and useful Soft Computing 

regression models towards the estimation of wood dielectric properties.  

It has been clearly shown that all three Kernel approaches and the ANN model are 

reliable and they can be used alternatively in wood industry applications. However the 
Radial Basis function (Gaussian) Kernel has proven to produce a much more promising 

model. Further experiments will be performed to produce more data vectors and 

complimentary modeling efforts will be performed in the future.  
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