Classifying the differences in gaze patterns of alphabetic
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Abstract. Using plain, but large multi-layer perceptrons, temporal eye-tracking
gaze patterns of alphabetic and logographic L1 readers were sfutlyesigssi-
fied. The Eye-tracking data was fed directly into the networks, with no fered
pre-processing. Classification rates up to 92% were achieved using MlLtP

4 hidden units. By classifying the gaze patterns of interaction partneifiar
systems are able to act adaptively in a broad variety of application fields.

1 Introduction

With the technical progress and the minituarization of tetedc devices, eye tracking
became more and more popular in the recent years. The tertnagking denotes the
process of monitoring and recording the participants’ gazstions when they look at
2D or 3D stimuli. Researchers are interested in egazt positions and their temporal
course, i.e.gpatial-temporal scan paths. The analysis of eye movements yields valuable
insights into the cognitive processes underlying infoioraprocessing (“eyes are a
window to the mind”) [1] [2] - providing answers to questidit®: “ Which information
are perceived as valuable?”, “What is the temporal order@igieed objects?”, “Where
had the participants problems to understand importanesicéormation (signified by a
high number of fixations or long fixation durations)?”. Eyadking is of high interestin
different research areas: Linguists are interested ingla¢ions between the perception
of spoken or written text and visual attention. Computeestists are interested in the
development of suitable human-computer interfaces fotitime terminals or robotic
systems.

Neural Networks have been developed with their main fedbering their learn-
ing ability: They have the ability to learn a particular taskonomously from training
data, whithout the need of explicit programming [3]. Neunats have been applied
to the field of eye tracking to reliably estimate the 3D gazmipisom a participant’s
binocular eye-position data [4]. Neural nets have been tsethalyze the diagnostic
significance of dyslexis eye movements [5]. The authors oredseye movements of
52 school children (normal readers, mentally disabled eeadnd dyslexics) during



a reading task. Using a self-organizing map, the three gréommed individual clus-
ters and could be clearly classified. [6] validate if the wayeason reads influence the
way they understand information and propose a novel metfiatttecting the level
of engagement in reading based on a person’s gaze-patteeg.ofganized some ex-
periments in reading tasks of over thirty participants dreldéxperimental outputs are
classified with Artificial Neural Networks with approximété80% accuracy. All these
approaches have in common that the gaze data needs a hightawhpue-processing
before it can serve as an input for the neural networks. Reogreriments revealed,
that deep, big feedforward networks trained with standatohe backpropagation can
achive excellent classification results without any prepssing of the input data [7] -
making them a suitable tool for the flexible analysis of ra@eganovement data. Here,
we feed eye-tracking data, recoded in a reading experimint®erman and Chinese
natives, without any pre-processing into a feedforwardvogt to classify the scan
path as belonging to a Chinese or German reader. Eye-teachimbined with neural
networks enable artificial systems to react adaptively inoad variety of application
fields.

2 Eye Movements in Reading

While reading, the visual information is projected on diéier areas of the retina, i.e.,
the foveal, parafoveal, and peripheral area. The foveaigtba of highest visual res-
olution in the retina. Because of the limited size of the oy® of the visual field),
only a small text area (around 8 letters) can be sharply aedlguring each fixation
[8]. Figure 1 shows the perceptual span for the foveal andfpeeal areas during read-
ing. Although humans are able to dissociate their atteritimm the foveal direction of
gaze (Duchowsky, 2003), complex information processisggalike reading, require a
strong coupling of gaze movements and attention [9]. Dugifigation the eye remains
directed at the same spot for a longer period (while readii§:-400 ms), enabling vi-
sual information processing of the fixated region. Apprcadety 90% of the viewing
time is spent on fixations [10].
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Because only the fovea allows clear vision, the eye has todwednso that different
parts of the text can be processed in sequence. These mageanertalledaccades.
Saccades are jerky eye movements from one fixation to an@hbeing saccades the



pupil is accelerated up to 1008, and an angular velocity of more than 3Qir sec-
ond is reached [11]. Saccade velocity and durations vady thi writing system, the
individual fluency of the reader and the diffculty of the text

Eye movement research with participants of different matanguages revealed,
that L1-Readers with an alphabetic writing system (e.ggliEh and German) have
a slightly bigger perceptual span than those of a syllalgigcal and logographical
writing system, such as Japanese or Chinese readers [LH[kthermore, experienced
readers have a larger perceptual span than beginnergheeerceptual span can be
widened by exercise [14]. Additionally, the perceptualrsimlarger when reading a
simple compared to a complex text [15][13].

3 Data Collection

The eye movements of thirteen german native speakers (5 fe-
males and 8 males) and thirteen Chinese native speakers (9
females, 4 males), with an age between 26 and 37 years,
were recorded while they read silently German text passages
The Chinese native speakers were required to have passed t
DSH (German abbreviation for Deutsche Sprachprifung fi
den Hochschulzugang), a language exam required to study
German higher education institutions and be at least efoll
for one year at a German high school. For the experiment;
two literature text passages were used. Text A, is an excerpt
from "Der Richter und sein Henker", Friedrich Durrenmatt
with 195 words (1027 letters). Text B is an excerpt from the
novel "‘Fabian. Die Geschichte eines Moralisten™, Ericdt-

ner with 201 words (1084 letters). The text was splitted ieetisns and then presented
in Times New Roman 16pt, double spaced, black colour on a lgaakground on a
computer screen with 1024x768 pixel resolution (see Figir€or the experiment, an
SMI Eyelink | eye tracker was used to record participant® ayvements. The col-
lected eye-tracking data consists of (X,y) coordinatedl oeorded fixations as well as
the fixation durations in ms. The maximum length of scanpatis 424 frames.
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Fig. 2. Example scanpaths of a (a) chinese and (b) german reader.



4 Multilayer Perceptron Classification

To train a multilayer perceptron (MLP), the Mattg/2010b Neural Network Toolbox
was used. The network had 424 input and two output neuromsanstgmoidal activa-
tion function (tanh). Each output neuron represents orssclgith class 1 (logographic)
coded ag(1 0) and class 2 (logographic) 49 1). The training data fed into the net
had three data channels: the x- and the y-component of theostha and the fixation du-
ration (f). Before training, the temporal input data wadedanto the rangé—1, 1] and
spatially unfolded into the input vectar = (xq, yo, fo, 1,1, f1 - Tn, Yn, fn). The
default training algorithm for pattern classification udsdthe toolbox is Levenberg-
Marquardt backpropagation. All toolbox options were kepheir default values, ex-
cept the stopping criterion "failed evaluation runs™.&maximum allowed number of
failed evaluation runs was increased to 50 (default = 7)s Trtdreased the classification
performance slightly without impairing generalizationf®ld cross validation (N=10)
was applied to estimate the classification performance.

Fig. 3a shows the performance of a single layer perceptreriQN training repe-
titions with different random network initialisations) rmpared to MLPs with hidden
layers sizes from 1 to 10. The figure shows, that already deslager perceptron can
classify the data (median value 83%). The best network fdwatta classification per-
formance of 88%. Adding a hidden layer improves performdiég 3b). MLPs with
4 hidden units show a best performance of 92% and a mediaorpehce of 84%.

Adding more hidden layers did not improve the performan®é. MLPs with two
hidden layers and hidden layer sizes ranging from 1 to 15 wameed (N=100 repe-
titions of the training process with random initial netwanrkights). Best mean value
found was 84.3% and the best overall network had 92% claatiificperformance. Fig.
4 shows mean and maximal performance for MLPs with two hiddgers.
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Fig. 3. Classification performance depending on the number of neurons indtierhlayer. Box-

plots show n=100 repetitions of 10-fold crossvalidation runs over theinitata. a) Perfor-
mance of a single layer perceptron for comparison. b) Performafrperceptrons with one hid-
den layer.
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Fig. 4. a) Mean and b) maximum classification performance (colour codeM)Léfs with two
hidden layers. N=100 training repetitions were performed. No combmafibidden layer sizes
(1 to 15 units) resulted in an improvement over the single hidden layer MLPs

4.1 Contribution of Data Components

To analyse the contribution of the several components ofyledracking data, an MLP
with four hidden units was trained (N=100 repetitions) sepy for each data chan-
nel. Fig. 5 shows that training the networks given each cebalone did not reach the
performance of the networks that were fed with all three datmnels. The figure also
indicates that the vertical component of the scanpath iboriérs the most to classifica-
tion success.
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5 Conclusions

Given raw, non-preprocessed eye-tracking data, a simptddevard network could be
trained to achieve a high classification rate on an expetiahelata set regarding the
reading performance of German versus Chinese L1-readeesemporal eye-tracking
data was spatially unfolded into a high number of networkitsp



A possible application scenario can be information tertsitizat are able to detect
persons having difficulties reading the presented on-adesgjuage and automatically
offer a language selection menu. Also, a pre-evaluatiorading performance of as-
pirants for specialised professions (translators) argjinzble.

The process of recording data in empirical studies andttesain adequate simula-
tion will be important for further understanding of intetiao scenarios. The question
is, if the data which was measured in the real world, is alflest=d in simulated be-
havior. One example would be humanoid robots. Will a robafgee like a grown
up or more like a child, when fed with recorded data of adultstildrens? The au-
tomatic classification of the gaze behavior and human momendeta will be of high
importance to this field of research.
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