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Abstract. Intelligent agents that seek to automate various stages of the 
negotiation process are often enhanced with models of computational 
intelligence extending the cognitive abilities of the parties they represent. This 
paper is focused on predictive strategies employed by automated negotiators, 
and particularly those based on forecasting the counterpart’s responses. In this 
context a strategy supporting negotiations over multiple issues is presented and 
assessed. Various behaviors emerge with respect to negotiator’s attitude 
towards risk, resulting to different utility gains. Forecasting is conducted with 
the use of Multilayer Perceptrons (MLPs) and the training set is extracted 
online during the negotiation session. Two cases are examined: in the first 
separate MLPs are used for the estimations of each negotiable attribute, 
whereas in the second a single MLP is used to estimate the counterpart’s 
response. Experiments are conducted to search the architecture of the MLPs. 
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1   Introduction 

Negotiation is defined as an exchange mechanism between two or more parties that 
jointly determine outcomes of mutual interest. The field has attracted the interest of 
researchers from several scientific fields, providing different viewpoints and 
approaches [1-6]. Computer science contributes to the development of negotiation 
theory and examines its applied nature with the construction of negotiation tables, 
decision and negotiation support systems, software agents and software platforms [4]. 
The use of AI-based techniques to support various stages of the negotiation process 
has been viewed as a step towards extending the negotiator’s cognitive abilities. In 
this paperwork focus is set on the implementation of automated agents that use 
predictive decision-making strategies to attain more beneficial negotiation outcomes. 
In this respect a negotiation strategy employed by predictive agents that engage in 
multi-issue negotiations is presented. Different types of behaviors with respect to the 
level of risk emerge, and negotiation outcomes assessed in terms of utility gain 
(measures of individual satisfaction) are studied. In the second section definitions and 
terminologies along with related work are presented, citing systems enhanced with 



AI-based techniques to improve the negotiation outcome. In the third section a 
predictive decision making mechanism supporting automated negotiations over 
multiple issues is proposed, and in the fourth section two cases of conducting 
predictions with the use of neural networks are presented. Finally in the fifth section 
experimental results are illustrated and in the sixth section future research issues are 
discussed. 

2   Definitions, Terminology and Related Work 

In a negotiation process participants exchange offers and counter-offers in the 
search of an agreement. The outcome can be a compromise or a failure and 
satisfaction of each participant α is measured in terms of a utility function Uα(X): Rn -
> [0,1], where X is an offer vector. The negotiable objects may consist of multiple 
attributes (issues). For each issue participants specify a range of permissible 
(reservation) values (a minimum and a maximum) which they are not willing to 
exceed. Additionally in many cases participants set a deadline indicating the 
maximum time they can spend in a negotiation encounter. The specific rules of 
communication that guide the interaction constitute the negotiation protocol and 
determine the way messages are exchanged. In this paper the negotiation protocol 
used to support automated negotiations is based on the one described in [7]. The 
decision making rules or strategies are used to determine, select and analyze the 
decision alternatives. In the simple case where negotiation is conducted between two 
non learning agents, alternatives are generated with the use of formal decision 
functions [7]. More sophisticated agents enhance their strategies with AI-based 
techniques and develop particular skills with the scope to maximize the incurred 
utility to the party they represent. In our previous work [8] a categorization of such 
agents is given. This research is focused on the prediction of the counterpart’s future 
offers. Predictions can be generally grouped to single and multi lag. In cases of 
single–lag predictions agents estimate the very next offer of their counterpart, while in 
cases of multi-lag predictions they foresee future offers of their counterpart several 
time steps ahead. Reference [9] depicts the development of a neural network 
predictive model in order to facilitate “What-if” analysis and generate optimal offers 
in each round. A similar negotiation support tool is applied by [10] in a supplier 
selection auction market, where the demander benefits from the suppliers’ forecasts, 
by selecting the most appropriate alternative in each round. In references [11],[12] an 
agent applies the predictive mechanism only at the pre-final step of the process, in 
order to increase the likelihood of achieving an agreement, and to produce an 
outcome of maximal utility. An older work concerning single-lag predictions in 
agents’ strategy can be found in [13]. Trading scenarios via an internet platform are 
facilitated with the use of SmartAgent, enhanced with predictive decision making. 
The estimation of the counterparts’ next move is used at each negotiation round to 
adjust the agents’ proposal and leads to increased individual gain of the final 
outcome. As far as multi-lag predictions are concerned, interesting approaches can be 
found in [14-16], where prediction of counterpart’s future offers and strategy, has 
been used to effectively detect and withdraw from pointless negotiations. In 



references [17-19] a negotiating agent enhanced with predictive ability in order to 
determine the sequence of optimal offers “knowing” the sequence of opponent’s 
responses, has been implemented. 

This paper is focused on single-lag predictions and builds on Oprea ‘s earlier work 
[13], extending the strategy of the predictive agents to support negotiations over 
multiple issues (and not just single-issued as described in Oprea). Additionally a 
variation of the strategic rule is provided with the scope to generate different types of 
behaviors with respect to the agent’s attitude towards risk. In the following section the 
extended strategy is illustrated. 

3 Extending the strategy of predictive agents to support multi-issue 
(automated) negotiations incorporating different r isk attitudes 

The negotiation environment considered is tied to bilateral or one-on-one multi-
issue negotiations, where all issues are bundled and discussed together (package deal). 
The formal model of negotiation is comprised by the set of agents A = { α, b }, a 
finite set of quantitative issues under negotiation I = {i1, i2, . . ., in}, the domain of 
reservation values a
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Each agent α is configured with a default strategy Sα, , which determines the level 

of concession in each round. Classification of strategic families to time dependent 
(TD), resource dependent (RD) and behavior dependent (BD) is used as in [7], 
reflecting the agent’s behavior with respect to the elapsing time, resources and 
counterpart’s responses respectively.  In each time step t agent α estimates the next 
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decision rule makes use of the default strategy (Sα) of the predictive agent to generate 
offers until the detection of a “meeting point” (MP) with the “opponent”. MP is a 
point which would result an established agreement if the agent was guided solely by 



his default strategy. When such point is detected, and according to the agent’s attitude 
towards risk, agent risks staying in the negotiation in order to maximize the utility of 
the final agreement. In this respect two extreme attitudes can be generated:  risk-
seeking and risk-averse. The risk-seeking agent is willing to spend all the remaining 
time until expiration of his deadline engaging in an adaptive behavior to turn the 
estimations of his counterpart’s responses to profit. This risk-seeking behavior is 
based on the one discussed [13], and is extended to support multiple issues. More 
specifically: 
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where ε is a domain dependent parameter. 
On the other hand risk-averse agents follow a more conservative behavior when 

they detect an MP. They do not make any further concessions and insist on sending 
their previous offer, waiting for the opponent to establish an agreement.  

For  each issue i 
Risk-Averse Behavior : 
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Fusions of the two extreme attitudes have led to the specification of risk portions 
(RPs) which characterize the predictive agent’s behavior after the detection of MP. 
RPα determines the percentage of the distance between MP and deadline aTmax that 
agent α is willing to adopt the risk-seeking behavior.  After RPα

 is consumed agent 
adopts the risk-averse behavior. For a predictive agent who is not willing to take any 
risks RPα is set to 0%, while for an agent who is willing to risk until expiration of his 
deadline RPα is set to 100%. The decision making rule repeated in each step is thus 
formulated as follows: 
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     If  RPα is not consumed 
Generate Offer adopting Risk-Seeking Behavior 

     Else 
Generate Offer adopting Risk-Averse Behavior 

Else 
 Generate Offer ( )default

t
baX →  



Where ( )default
t

baX →  is the offer generated by agent α at time t based on his default 

strategy. 
Figure 1(a) illustrates how the predictive agent with RP 100% may “tease” his 

opponent until an agreement is established. At the other end, Figure 1(b) illustrates a 
risk-averse agent with RP 0% who reaches an agreement faster than the risk-seeking 
agent, but incurs smaller increase in utility. Negotiation is conducted between a 
provider and a consumer agent, over service terms of electricity trade, characterized 
by four negotiable attributes (number of Kwh, Price per Kwh, Penalty terms (returns), 
and Duration of service provision). The latter agent uses the predictive decision rule. 

 
(a) 
 

 
 
(b) 

                      
Fig. 1. (a) a risk-seeking consumer adjusts his offer with respect to the counterpart response 

and (b) a risk-averse consumer “freezes” his offer after MP is detected. 



4 Forecasting Tools Employed by Predictive Agents 

 Forecasting techniques employed by predictive agents are mainly summarized into 
statistical approaches (particularly non-linear regression), mathematical models based 
on differences, and neural networks. As discussed in [20], what is most appealing in 
neural networks is that they are data-driven, self adaptive, capable of modeling non-
linear relations and do not require specific assumptions of the underlying data 
distributions. Current trend on providing offer forecasts lies on neural networks. In 
this research, a Multi-layer Perceptron (MLP) with one hidden layer using sigmoid 
activation functions and one output layer using linear activation functions is used for 
the prediction of counterpart’s next offer, as it is shown that such network is capable 
of approximating any continuous function [21]. The negotiation thread which 
comprises of the subsequent offers and counteroffers of the engaged parties 
formulates the data set which is used to train the network. As far as design issues are 
concerned, two cases are examined; in the first an MLP is considered for each issue, 
thus for a negotiation over n negotiable attributes n individual MLPs are constructed.  
Each MLP comprises of J1 input nodes representing the counterpart’s J1 previously 
offered values of the particular issue, J2 nodes in the hidden layer, and one node in the 
output layer representing the predicted response.  The values of J1 and J2 are selected 
after empirical evaluation. Training using the Levenberg and Marquardt (LM) method 
is conducted during the negotiation session, giving rise to session-long learning 
agents. Each network is initialized with random weights and in every negotiation 
round the network is re-trained with data extracted from the current thread. In the 
second case a single MLP undertakes the task of prediction. If the J1 previous offers 
of the opponent are considered for negotiations over n attributes, then an MLP with 
n*J1 input nodes, J2 nodes in the hidden layer and n nodes in the output layer is 
constructed. As in the first case, the network is initialized with random weights and is 
trained in each round of the predicting agent with data extracted from the current 
negotiation thread using the LM method. Values of J1 and J2 are also empirically 
evaluated. 

5 Exper iments: Measur ing Outcomes with respect to the different 
types of r isk attitudes  

This section is divided in two parts. The first part is focused on assessing 
negotiation results with respect to agent’s attitude towards risk. The second part is 
focused on searching optimal number of input and hidden nodes for each case 
discussed in section 4. A simulation of agent interactions has been developed in Java, 
and the Java classes have been imported and extended in Matlab (R2008a). 



5.1 Evaluation of negotiation results with respect to agent behavior  after  
detection of MP 

The proposed strategy is tested with consumer agents with perfect predicting skills 
(yielding zero errors) and providers following TD strategies. The experimental 
workbench issues nine different scenarios with respect to deadline, and overlap of 
agreement zones of the two negotiators ( {   Pr

maxmax TT Con = , Pr
maxmax  TT Con < , Pr

maxmax  TT Con > } 

× {Φ=0, Φ=0.33, Φ=0.66} ), where  max
aT  ∈ [50:100:350], α={Con,Pr}, and Φ is a 

parameter which indicates overlap of the agreement zones [7]. In each scenario a 
variety of concession curves is considered in order to build the default strategies of 
the opposing agents. For each of the 2352 generated negotiation environments 
different RPs are set to predictive agent (consumer) (RPCon ∈ [0:5:100]), leading to an 
overall of 49392 experiments. The objective is to measure the gain of consumer agent 
with respect to his attitude towards risk, and highlight the value of forecasting 
counterpart’s next offer in multi-issued negotiations. Results are summarized in 
Figure 2 where the average gain of the agent adopting the learning strategy illustrated 
in section 3 is depicted with respect to Risk Portion (RP). 

 
Fig. 2. (%) Average gain in Utility with respect to RP 

 
As it is shown in Figure 2 an agent with RP 0% incurs an average increase of 2.4% 

in utility, while an agent with RP 100% incurs an average increase of 26.2% in utility. 
Figure 2 also illustrates the smooth increase of the percentage of utility gain with the 
increase of RP. Similar experiments are conducted for single-issued negotiations and 
in cases where an agreement is feasible average utility of the learning agent is 
increased up to 2% when RP is set to 0%, and up to 30.6% when RP is set to 100%. 

5.2 Empir ical Search of (sub)optimal network architectures consider ing the two 
cases 

Results of section 5.1 are extracted when agents with perfect predicting skills are 
employed. In this section, agents enhanced with neural networks are considered. More 
specifically the two cases discussed in section 4 are implemented and assessed. 
Taking the first case, the predicting agent constructs an MLP for each negotiable 
issue. Negotiations with RP set to 100% are conducted and the average error of the 
predictive mechanism is computed. In each decision making step the agent makes an 
estimation of the counterpart’s next offer. This estimation is compared to the true 
offer vector of the counterpart and the absolute error is computed in terms of 



Euclidean distance. The subset of input features J1 expressing the past offers of the 
opponent for a particular issue, as well as the number of hidden nodes are empirically 
searched in the space {2,3,4,5}x{2,3,4,5}. The search space comprises of 16 neural 
networks and is selected to be small since only a few patterns extracted from the 
current thread will be available for training. Preprocessing, in terms of normalization, 
is applied to the input data set. At the end of each negotiation, the mean of the 
absolute errors is computed for each network. The same procedure is also repeated in 
the second case, where a single neural network is used to predict the counterpart’s 
next offer vector. For an offer which consists of n=4 attributes and for the case where 
the J1 ∈ {2,3,4,5} previously sent offers of the opponent are considered, the optimal 
number of input and hidden nodes is searched in the space {8,12,16,20}x{2,3,4,5}. 
For each case 192 negotiation environments are generated and 16 ANNs are tested, 
leading to a total of 3072 experiments. The overall mean of the absolute errors is used 
to assess the predictive models. Results show that the neural network yielding the 
smallest error and smallest standard deviation comprises of 5 input and 4 hidden 
nodes, when an MLP is constructed separately for each issue (first case). For this 
ANN the average increase in utility attained by the predictive agent is 10.78%. On the 
other hand, in the second case where a single MLP is employed for the prediction of 
the counterpart’s response, the smallest average error is yielded when 8 input nodes 
(stemming from the counterpart’s 2 previous offer vectors) and 5 hidden nodes are 
used. This model returns an average increase in utility of 10.5%. The smallest average 
standard deviation is yielded when 20 input and 5 hidden nodes are used. The last 
ANN yields 10.34% average increase in utility. The low value of the average standard 
deviation signifies smoother predictive curves, as estimations do not deviate much 
from the mean. Table 1 summarizes the results with respect to the combination of 
input-hidden nodes.  

Table 1.  Mean errors and mean standard deviations for each combination of (input,hidden) 
nodes in the MLP, are illustrated for each case. Minimum values are depicted in bold style. 

                                                 Mean Error                 Mean Std Deviation 
                      Hidden 
   Input     

2    3   4   5   2   3   4 5 

Case 1          
 2 1.62 1.36 1.6 1.81 3.49 1.67 1.97 2.07 

3 1.60 1.20 1.17 1.26 3.03 1.72 1.38 1.47 
4 1.69 1.11 1.03 1.08 3.44 1.37 1.19 1.29 
5 1.57 1.07 0.98 1.07 2.91 1.32 1.16 1.26 

Case 2          
 8 1.19 0.63 0.53 0.49 3.63 1.38 1.03 0.97 

12 1.14 0.64 0.50 0.51 3.21 1.18 0.88 0.92 
16 1.00 0.61 0.55 0.51 2.27 1.14 0.98 0.89 
20 1.10 0.69 0.53 0.52 3.02 1.35 0.97 0.83 



6 Conclusions and Future Research 

In this paper a predictive strategy adopted by agents who engage in multi-issue 
negotiations is presented and assessed. Different behaviors emerge from the 
specifications of risk portions (RP) after the detection of a point of agreement, also 
termed a meeting point (MP), with the opponent. At one extreme an agent may be 
guided by a highly risk seeking behavior, where he risks staying in the negotiation 
until expiration of his deadline so as to maximize the utility of the final outcome. 
Maximization may be accomplished through adaptation of the predictive agent’s 
offers based on the estimations of the counterpart’s responses. At the other extreme an 
agent may be guided by a risk-averse behavior “freezing” his final offer and not 
making any further concessions. It is shown that intermediate behaviors, controlled by 
the RP parameter, lead to smooth increases of the average utility gain. Negotiation 
forecasts are undertaken by Multilayer Perceptrons (MLPs). Training data are 
extracted online and are composed of the previously sent offers of the opponent agent. 
The MLPs are retrained in each round as the data set augments with the counterpart’s 
incoming offer. Two cases are illustrated. In the first an MLP is used to guide the 
prediction of each individual attribute, while in the second case a single MLP is used 
to estimate the vector of the counterpart’s response. MLPs prove capable of capturing 
the negotiation dynamics if retrained in each round. However retraining is often time 
consuming, and time is crucial in most negotiation cases. For this reason as a future 
research issue we plan on focusing on the resources required, as well as on examining 
more flexible, evolving structures which engage in online, life-long learning, with 
one-pass propagation of the training patterns. These characteristics are met by 
Evolving Connectionist Structures (ECoS), discussed in [22]. 
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