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Abstract. We propose a novel supervised learning rule allowing the
training of a precise input-output behavior to a spiking neuron. A single
neuron can be trained to associate (map) different output spike trains
to different multiple input spike trains. Spike trains are transformed into
continuous functions through appropriate kernels and then Delta rule is
applied. The main advantage of the method is its algorithmic simplic-
ity promoting its straightforward application to building spiking neural
networks (SNN) for engineering problems. We experimentally demon-
strate on a synthetic benchmark problem the suitability of the method
for spatio-temporal classification. The obtained results show promising
efficiency and precision of the proposed method.
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1 Introduction

The desire to better understand the remarkable information processing capa-
bilities of the mammalian brain has recently led to the development of more
complex and biologically plausible connectionist models, namely spiking neural
networks (SNN). See e.g. [5] for a comprehensive text on the material. These
models use trains of spikes as internal information representation rather than
continuous-value variables. Many studies investigate how to use SNN for practi-
cal applications, some of them demonstrating very promising results in solving
complex real world problems. However, due to the increased complexity of SNN
compared to traditional artificial neural networks, the training of these networks
in a supervised fashion has proved to be difficult. See [8] for a review on super-
vised learning methods for SNN.

Only few algorithms have been proposed that are able to impose a precise
input-output mapping of spike trains to a SNN. One of the first supervised
learning methods for SNN is SpikeProb [3]. It is a gradient descent approach
that adjusts the synaptic weights in order to emit a single spike at specified
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time. The timing of the output spike encodes a specific information, e.g. the
class label of the presented input sample. Using SpikeProp, the SNN can not be
trained to emit a desired train of spikes that has more than one spike.

An interesting learning rule for spatio-temporal pattern recognition has been
suggested in [7]. The so-called Tempotron enables a neuron to learn whether
to fire or not to fire in response to a specific input stimulus. Consequently, the
method allows the processing of binary classification problems. However, the
neuron is not intended to learn a precise target output spike train, but instead
whether to spike or not to spike in response to an input stimulus.

A Hebbian based supervised learning algorithm called Remote Supervised
Method (ReSuMe) was proposed in [11] and further studied in [12, 13]. ReSuMe,
similar to spike time dependent plasticity (STDP) [1, 2], is based on a learning
window concept. Using a teaching signal specific desired output is imposed to
the output neuron. With this method, a neuron is able to produce a spike train
precisely matching a desired spike train.

Recently, a method called Chronotron was proposed in [4]. It is based on mini-
mizing the error between the desired spike pattern and the actual one. The error
is measured using the Victor-Purpura spike distance metric [15]. This metric
produces discontinuities in the error landscape that must be overcome through
approximation. E-Learning is compared with ReSuMe on some temporal classifi-
cation tasks and its better performance in terms of the number of spike patterns
that can be classified is shown.

In this study, we propose a new learning rule allowing a neuron to learn
efficiently associations of input-output spike trains. Although being principally
simpler 1 compared to the methods mentioned above, we demonstrate its effi-
ciency on a synthetic benchmark problem. The method is based on an extended
Widrow-Hoff or Delta rule. In order to define a suitable error metric between
desired and actual output spike trains, we convolve each spike sequence with a
kernel function. Minimizing the error allows the efficient training of an output
neuron to respond to specific input spikes with a desired target spike train.

We first present the new learning method. In the experiment section, we
demonstrate the method using arbitrary input-output spike sequences for train-
ing an output neuron. Furthermore, we apply the learning method on a synthetic
spatio-temporal classification problem and discuss the results.

2 Learning method

In this section, we describe the neural and synaptic model used in this study,
followed by a detailed description of the proposed learning algorithm.

2.1 Neural and synaptic model

The Leaky Integrate-and-Fire (LIF) neuron is arguably the best known model
for simulating spiking networks. It is based on the idea of an electrical circuit

1 For example the method does not require the definition of learning windows.
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containing a capacitor with capacitance C and a resistor with a resistance R,
where both C and R are assumed to be constant. The dynamics of a neuron i

are then described by the following differential equation:

τm
dui

dt
= −ui(t) +R I

syn
i (t) (1)

The constant τm = RC is called the membrane time constant of the neuron.
Whenever the membrane potential ui crosses a threshold ϑ from below, the
neuron fires a spike and its potential is reset to a reset potential ur. Following [5],
we define

t
(f)
i : ui(t

(f)) = ϑ, f ∈ {0, . . . , n− 1} (2)

as the firing times of neuron i where n is the number of spikes emitted by
neuron i. It is noteworthy that the shape of the spike itself is not explicitly
described in the traditional LIF model. Only the firing times are considered to
be relevant.

The synaptic current Isyni of neuron i is modeled using an α-kernel:

I
syn
i (t) =

∑
j

wij

∑
f

α(t− t
(f)
j ) (3)

where wij ∈ R is the synaptic weight describing the strength of the connection
between neuron i and its pre-synaptic neuron j. The α-kernel itself is defined as

α(t) = e τ−1
s t e−t/τsΘ(t) (4)

where Θ(t) refers to the Heaviside function and parameter τs is the synaptic
time constant. We describe the parametrization of the model equations in the
experiments section of this paper.

2.2 Learning

Similar to other supervised training algorithms, the synaptic weights of the net-
work are adjusted iteratively in order to impose a desired input/output mapping
to the SNN. We start with the common Widrow-Hoff rule for modifying the
weight of a synapse i:

∆wWH
i = λxi (yd − yout) (5)

where λ ∈ R is a real-valued positive learning rate, xi is the input transferred
through synapse i, and yd and yout refer to the desired and the actual neural
output, respectively. This rule was introduced for traditional neural networks
with linear neurons. For these models, the input and output corresponds to
real-valued vectors.

In SNN however, trains of spikes are passed between neurons and we have to
define how to implement Equation 5 for this form of information exchange. In
order to define the distance between spike trains, we introduce here an extended
Delta rule. We transform each spike sequence into a continuous function using
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a kernel function. This is similar to the binless distance metric used to compare
spike trains [14]. In this study, we use an α-kernel, however many other kernels
appear suitable in this context. The convolved input xi is defined as

xi(t) =
∑
f

α(t− t
(f)
i ) (6)

where α(t) refers to the α-function defined in Equation 4. Representing spikes
as a continuous function allows us to define the difference between spike se-
quences as the difference between their representing functions. Similar to the
neural input, we define the desired and actual outputs of a neuron:

yd(t) =
∑
f

α(t− t
(f)
d ) (7)

yout(t) =
∑
f

α(t− t
(f)
out) (8)

As a consequence of the spike representation defined above, ∆wWH
i itself is

a function over time. By integrating ∆wWH
i we obtain a scalar ∆wi that is used

to update the weight of synapse i:

∆wi = λ

∫
xi(t) (yd(t)− yout(t)) dt (9)

Weights are updated in an iterative process. In each iteration (or epoch), all
training samples are presented sequentially to the system. For each sample the
∆wi are computed and accumulated. After the presentation of all samples, the
weights are updated to wi(e + 1) = wi(e) +∆wi, where e is the current epoch
of the learning process.

We note that the algorithm is capable of training the weights of a single neural
layer only. Related methods such as ReSuMe [11] and the Chronotron [4] exhibit
similar restrictions. Therefore, a combination with the well-known Liquid State
Machine (LSM) approach [9] was suggested in these studies. By transforming the
input into a higher-dimensional space, the output of the LSM can potentially be
mapped to any desired spike train.

Figure 1 illustrates the functioning of the learning method. An output neu-
ron is connected to three input neurons through three excitatory synapses with
randomly initialized weights. For the sake of simplicity, each input sequence con-
sists of a single spike only. However, the learning method can also deal with more

than one spike per input neuron. The inputs t
(f)
i are visualized in Figure 1A. In

this example, we intend to train the output neuron to emit a single spike at a

pre-defined time t
(0)
d .

Assume that, as shown in Figure 1B, the presented stimulus causes the ex-
citation of the output neuron resulting in the generation of two output spikes

at times t
(0)
out and t

(1)
out, respectively, neither of them equals the desired spike

time t
(0)
d . The evolution of the membrane potential u(t) measured in the output
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Fig. 1: Illustration of the proposed training algorithm. See text for a detailed
explanation of the figure.

neuron is shown in middle top diagram of the figure above the actual and the
desired spike trains, cf. Figure 1B.

The lower part in the figure (Figure 1C,D,E) depicts a graphical illustration
of Equation 9. Using Equations 6 and 7, the input, actual and desired spikes
trains are convolved with the α-kernel (Figure 1B and C). We define the area
under the curve of the difference yd(t) − yout(t) as an error between actual and
desired output:

E =

∫
|yd(t)− yout(t)| dt (10)

Although this error is not used in the computation of the weight updates ∆wi,
this metric is an informative measure of the achieved training status of the
output neuron. Figure 1E shows the weight updates ∆wi. We especially note

the large decrease of weight w0. The spike train t
(0)
0 of the first input neuron

causes an undesired spike at t
(0)
out and lowering the corresponding synaptic efficacy

potentially suppresses this behavior. On the other hand, the synaptic weight w2

is increased promoting the triggering of spike t
(1)
out at an earlier time.

We note that, unlike related methods such as ReSuMe [11], the defined learn-
ing rule does not employ any learning windows making the method easy to
comprehend and to implement.

3 Experimental results

Two experiments are conducted to demonstrate the functioning and the ef-
ficiency of the proposed learning algorithm. The first experiment intends to
demonstrate the concept of the proposed learning algorithm, while the second
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Neural Model

Type Leaky integrate-and-fire (LIF) neuron
Description Dynamics of membrane potential u(t):

– Spike times: t(f) : u(t(f)) = ϑ

– Sub-threshold dynamics: τm
du
dt

= −u(t) +R Isyn(t)

– Reset & refractoriness: u(t) = ur∀f : t ∈ (t(f), t(f) + τref)
– exact integration with temporal resolution dt

Parameters Membrane time constant τm = 10ms
Membrane resistance R = 333.33MΩ

Spike threshold ϑ = 20mV, reset potential ur = 0mV
Refractory period τref = 3ms
Time resolution dt = 0.1ms, simulation time T = 200ms

Synaptic Model

Type Current synapses with α−function shaped post-synaptic currents
(PSCs)

Description Synaptic input current Isyn(t) =
∑

w
∑

f α(t− t(f))

α(t) =

{

e τ−1
s t e−t/τs , if t > 0

0, otherwise

Parameters Synaptic weight w ∈ R, uniformly randomly initialized in [0, 25]
Synaptic time constant τs = 5ms

Input Model

Type Random input
Details Population of 200 input neurons each firing a single spike at a ran-

domly chosen time in the period (0, T )

Table 1: Tabular description of the experimental setup as suggested in [10].

experiment implements the more practical scenario of a spatio-temporal pattern
classification problem.

We follow the initiative recently proposed in [10] for promoting reproducible
descriptions of neural network models and experiments. The initiative suggests
the use of specifically formatted tables explaining neural and synaptic models
along with their parametrization, cf. Table 1. For both experiments, we use
200 input neurons that stimulate the synapses of a single output neuron, cf.
Figure 2. The spike trains for each input neuron are sampled from a uniform
random distribution in the interval [0, 200]ms. For the sake of simplicity of this
demonstration, we allow only a single spike for each input neuron (multiple spikes
in a spike train are processed in the same way). A similar experimental setup was
used in [4]. The single output neuron is fully connected to all 200 input neurons
with randomly initialized connection weights. All of our experiments employ the
SNN simulator NEST [6].

3.1 Demonstration of the learning rule

The purpose of the first experiment is to demonstrate the concept of the proposed
learning method. The task is to learn a mapping from a random input spike
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Fig. 2: A single output neuron is trained to respond with a temporally precise
output spike train to a specific spatio-temporal input. The organization of the
figure is inspired by [4].

pattern to specific target output spike train. This target consists of five spikes

occurring at the times t
(0)
d = 33, t

(1)
d = 66, t

(2)
d = 99, t

(3)
d = 132 and t

(4)
d = 165ms.

Initially, the synaptic weights are randomly generated uniformly in the range
(0, 25pA). In 100 epochs, we apply the new learning rule to allow the output
neuron to adjust its connection weights in order to produce the desired output
spike train. The experiment is repeated for 100 runs each of them initialized with
different random weights in order to guarantee statistical significance.

In Figure 2, the experimental setup of a typical run is illustrated. The left side
of the diagram shows the network architecture as defined in the experimental
setup above. The right side shows the desired target spike train (top) along with
the produced spike trains by the output neuron over a number of learning epochs
(bottom). We note that the output spike trains in early epochs are very different
from the desired target spike sequence. In later epochs the output spike converges
towards the desired sequence. Consequently, the error as defined in Equation 10
decreases in succeeding epochs (right part of Figure 2). We note that the neuron
is able to reproduce the desired spike output pattern very precisely in less than
30 learning epochs.

Figure 3 shows the evolution of the average error over the performed 100
runs. We note the logarithmic scale of the y-axis and the exponential decrease
of the error. The slope of the curve suggests further improvement of the error,
if the neuron was trained longer than the 100 performed learning epochs.

From this simple experiment, we conclude that the proposed learning method
is indeed able to train a input-output behavior to a spiking neuron.

3.2 Classification of spatio-temporal data

The second experiment is a spatio-temporal classification task. The objective is
to learn to classify five classes of input spike patterns. The pattern for each class
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Fig. 3: Evolution of average error obtained in 100 independent runs

is given as a random input spike pattern that was created in a similar fashion
as for the first experiment. Fifteen copies for each of the five pattern are then
generated by perturbing each pattern using a Gaussian jitter with a standard
deviation of 3ms resulting in a total of 15 × 5 = 75 samples in the training
data set. Additionally, we create 25 × 5 = 125 testing samples using the same
procedure. The output neuron is then trained to emit a single spike at a specific
time for each class. Only the training set is used during training, while the
testing set is used to determine the generalization ability of the trained neuron.
The spike time of the output neuron encodes the class label of the presented
input pattern. The neuron is trained to spike at the time instances 33, 66, 99,
132, and 165ms respectively, each spike time corresponding to one of the five
class labels. We allow 200 epochs for the learning method and we repeat the
experiment in 30 independent runs. For each run we chose a different set of
random initial weights.

Figure 4a shows the evolution of the average error for each of the five classes.
In the first few epochs, the value of the error oscillates and then starts to stabilize
and decrease slowly. The learning error decreases for some classes faster than for
others, e.g. class 3. We also note that the class reporting the highest error is
class 1. This behavior is expected and confirms a quite similar finding in [4]. In
order to classify samples of class 1 correctly, the output neuron has to emit a
very early spike at t ≈ 33ms. Consequently, the neuron needs to be stimulated
by input spikes occurring at times before t = 33ms. However, due to the random
generation of the input data, only few input spikes occur before t = 33ms.
Most input spikes arrive after that time at the output neuron and therefore do
not contribute to the correct classification of class 1 samples. The relationship
between the accuracy and the output spike time was also noted in [4]. Future
studies will further investigate this interesting observation.

In order to report the classification accuracy of the trained neuron, we define
a simple error metric. We consider a pattern as correctly classified, if the neuron
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Fig. 4: Evolution of the average errors obtained in 30 independent trails for each
class of the training samples (a). The average accuracies obtained in the training
and testing phase (b).

fires a single spike within [t
(f)
d − 3, t

(f)
d +3]ms of the desired spike time t

(f)
d . Any

other output is considered as incorrect. It is noteworthy to mention that using
this definition, an untrained neuron is very likely to produce incorrect outputs
resulting in accuracies close to zero. Figure 4b shows the average classification
error for each class in the training and testing phase. As mentioned above, for
testing, the 125 unseen patterns of the test set are used. The neuron is able to
learn to classify the 75 training patterns with an average accuracy of 94.8% across
all classes. Once more, we note the comparatively poor classification performance
of samples belonging to the first class. For the test patterns, the neuron is able
to achieve average accuracy of 79.6% across all classes which demonstrates a
satisfying generalization ability.

4 Conclusion

In this paper, we have proposed a novel learning algorithm that allows the train-
ing of a precise input-output behavior to a SNN. Besides the benefits of an
efficient supervised training method for a spiking neuron, we see the main ad-
vantage of the proposed approach in its algorithmic simplicity promoting its
straightforward application to engineering problems. As a proof of concept, we
have demonstrated the suitability of the method for classification problems on a
small synthetic data set. Although the method can only train a single layer of the
SNN, it was argued that in combination with the LSM approach [9], the method
allows the processing of complex non-linearly separable classification problems.
Considering the difficulty of the spike-based classification task, the results are
both satisfying and encouraging.
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