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Abstract. In this manuscript, a Genetic Algorithm is applied on a filter in order 
to optimize the selection of clusters having a high probability to represent 
protein complexes. The filter was applied on the results (obtained by 
experiments made on five different yeast datasets) of three different algorithms 
known for their efficiency on protein complex detection through protein 
interaction graphs. The derived results were compared with three popular 
clustering algorithms, proving the efficiency of the proposed method according 
to metrics such as successful prediction rate and geometrical accuracy.   
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1   Introduction 

The importance of protein interactions is given as they play important role on 
fundamental cell functions. They are crucial for forming structural complexes, for 
extra-cellular signaling, for intra-cellular signaling [1]. Recently, new high throughput 
experimental methods [2-5] have been developed which detect thousands protein-
protein interactions (PPIs) with a single experiment. As a result, enormous datasets 
have been generated which could possibly describe the functional organization of the 
proteome. However, these data are extremely noisy [6], making it difficult for 
researchers to analyze them and extract valuable conclusion such as protein complex 
detection or characterizing the functionality of unknown proteins.  

Due to the vast volume of PPI data, they are usually modeled as graphs G=(V,E) 
where V is the set of vertices (proteins) and E the set of adjacent edges between two 
nodes (protein interactions). The model of graph makes it easy for bioinformatics 
researchers to apply various algorithms derived from graph theory in order to perform 



clustering and detect protein complexes which are represented as dense subgraphs [7-
9]. According to [10, 11], the most prevailed algorithms are MCL (Markov clustering) 
[12] and RNSC (Restricted Neighbourhood Search Clustering) [13]. Besides them, 
spectral clustering can achieve similar results [14]. While these methods use the PPI 
graph structure to detect protein complexes, additional information could also be used 
such as gene expression data [15], functional information [16] as well as other 
biological information [17]. However, the use of additional information has the 
disadvantage that can not cover the aggregation of proteins that constitute the PPI 
graph. 

The aforementioned algorithms assign each protein of the initial PPI graph to a 
cluster, constructing clusters that could hardly be characterized as dense ones. As a 
result, their prediction rate of protein complexes is pretty low. One way to deal with 
this problem is to filter the results of such an algorithm using additional information 
such as Gene Ontology [13]. However, the sources of the additional information 
usually do not cover all the recorded interactions that form the PPI graphs. Moreover, 
the parameters of these filters are almost always empirically defined, leading to biased 
solutions. 

In this contribution, a filter is constructed by four methods which are based on 
graph properties such as density, haircut operation, best neighbor and cutting edge 
and it is applied on the results of MCL, RNSC and spectral algorithm. Furthermore, 
the parameters of the filter methods are optimized by a Genetic Algorithm (GA) 
which takes into account the rate of successful prediction, the absolute number of 
valid predicted protein complexes and the geometrical accuracy of the final clusters. 
Extended experiments were performed using five different PPI datasets. The derived 
results were compared with the recorded protein complexes of the MIPS database 
[18], while statistical metrics were calculated such as sensitivity (Sn), positive 
predictive value (PPV) and geometrical accuracy (Acc_g). To demonstrate the 
efficiency of the proposed filter, we compare the derived results with 3 other 
algorithms (SideS [8], Mcode [7], HCS [9]).  

2   Our method 

We chose to perform our filtering method on the results of 3 clustering algorithms 
that assign each protein of the initial PPI graph to a cluster and they are considered as 
the best of their category: MCL, RNSC and spectral. The MCL algorithm [12] is a 
fast and scalable unsupervised clustering algorithm based on simulation of stochastic 
flow in graphs. The MCL algorithm deterministically computes the probabilities of 
random walks through a graph and uses two operators transforming one set of 
probabilities into another. It does so by using the language of stochastic matrices (also 
called Markov matrices) which capture the mathematical concept of random walks on 
a graph. The RNSC algorithm [13] performs an initial random clustering and then 
iteratively by moving one node from one cluster to another is trying to improve the 
clustering cost. In order to avoid local minima, it maintains a tabu list that prevents 
cycling back to a previously explored partitioning. Due to the randomness of the 
algorithm, different runs on the same input data produce different outputs. For the 



spectral clustering algorithm, we used [19] spectral graph decomposition and mapped 
the set of nodes of PPI graph into the k-dimensional space. Following the spectral 
decomposition, the EM algorithm [20] was applied to produce the final clusters.      

The developed filter was based on four graph metrics that would help to detect the 
denser clusters out of the above algorithms results and it was first introduced in [21]. 
These graph metrics are: 

● Density of a subgraph is calculated as 2|E|/|V|(|V|-1) where |E| is the 
number of edges and |V| the number of vertices of the subgraph. 

● Haircut operation is a method that detects and excludes vertices with 
low degree of connectivity from the potential cluster that these nodes 
belong to. 

● Best neighbor tends to detect and enrich the clusters with candidate 
vertices that the proportion of their edges adjacent to the cluster divided 
by the total degree of the vertex is above a threshold. 

● Cutting edge metric is used to detect those clusters that are more isolated 
than the remaining of the graph by dividing the number of edges that are 
adjacent to two cluster vertices with the total number of edges of the 
cluster.  

The difference of the filter presented in this manuscript with the filter presented in 
[21] is that its parameters are optimized by a genetic algorithm in order to achieve 
better quality results concerning the rate of successful prediction, the detection of 
more real protein complexes and the highest accuracy.  

2.1    Optimizing clustering results filter 

Genetic Algorithms (GAs) are one of the most popular techniques to solve 
optimization problems with very satisfactory results [22, 23]. In this manuscript, a GA 
is used to optimize the fitness function containing metrics such as successful 
prediction, absolute number of valid protein complexes and accuracy by choosing the 
appropriate values for the filter parameters.  In order to implement the GA, we used 
GALIB library [24] which is a set of C++ GA objects and well known about its 
computing efficiency.  

The chromosome used in our case is represented as a one dimensional array, where 
each cell represents a filter parameter: the first parameter is used in density method, 
the second one in best neighbor method, the third in cutting edge method and the 
fourth in haircut method. 

The proposed GA uses simple mutation and crossover operations while as a 
selection scheme we decided to use Roulette Wheel selection [25]. The mathematical 
representation of the evaluation function is as follows: 

Max(10*percentage+0,05*#valid_clusters+5*Acc_g) 
where percentage is the percentage of successful predictions, #valid_clusters is the 
absolute number of valid clusters, Acc_g is the geometrical accuracy. Depending on 
how important each metric of the fitness function is, we multiplied it with a constant 
number. In our case, we considered as best solutions those that succeed high 
prediction rate without having small absolute number of valid predicted protein 
complexes. These values were selected after performing exhaustive experiments. 



Finally, in order to retain the best chromosome in every generation, as elitism 
schema [25, 26] is used. The best chromosome of each generation is copied to the 
next generation (and not to the intermediate one, the individuals of which may 
crossover or mutate) assuring that it is preserved in the current population for as long 
as it is the best compared to all other chromosomes of the population. This choice 
assures that the best chromosome of each generation will be, if not better, at least 
equal to the best chromosome of the previous generation. Furthermore, it helps GA to 
converge faster to a near optimal solution. 

3   Experimental Results 

In order to prove the efficiency of our method, we performed experiments with 5 
different yeast datasets derived by online databases (MIPS [18], DIP [27]) or 
individual experiments (Krogan [28], Gavin_2002 [29], Gavin_2006 [30]) and 
compared the results with the algorithms: SideS, HCS and Mcode. As an evaluation 
set, we used the recorded yeast complexes stored in MIPS database. 

For all the results presented in this section the same set of GA’s operators and 
parameters were used in order to provide a fair comparison of the algorithm’s 
efficiency and performance. The crossover probability was equal to 0.7, while the 
mutation probability was equal to 0.1. The size of the population was set to 20 and the 
algorithm was left to run for 200 generations (the number of generations was used as 
termination criterion). 

In Figure 1, the percentage of successful predictions is presented. As it can easily 
be seen, the optimized filtered algorithms achieve better percentages than those of the 
other algorithms in all cases. The combination of the MCL algorithm with the 
optimized filter gives the best results except in the case where the MIPS dataset is 
tested. 
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Fig. 1. Percentage of successful prediction. 

Concerning the geometrical accuracy metric, the results are satisfactory comparing 
to all other algorithms (Figure 2). In most of the cases, our methodology surpasses the 
other algorithms. In contrast with Figure 1, it seems that the combination of RNSC 
algorithm and the optimized filter is equally good with the one which uses MCL.  

On the other hand, as it is shown in Figure 3, the absolute number of valid 
predicted clusters is lower than the other algorithms. The variables used in the fitness 
function of the GA caused those results. There is a trade off between the absolute 
number of valid predicted clusters and the other metrics used in the fitness function. 
We decided to give a priority to the quality of the produced solutions even if this 
leads to fewer final clusters.  
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Fig. 2. Geometrical accuracy of  results. 

0

5

10

15

20

25

30

35

40

45

50

Krogan Gavin2002 Gavin2006 DIP MIPS

SideS Mcode HCS filtered RNSC filtered Spectral filtered MCL
 

Fig. 3. Absolute number of the resulting valid predicted clusters. 

Finally, it has to be noted that after the GA training, the parameters of the filter 
methods have different values depending on the input dataset, as it is shown in Table 



1. This proves that there is not an optimal solution that suits in all datasets. The filter 
composition should be adjusted in each time specific PPI dataset properties in order to 
obtain better results.   

 

Table 1. Parameters of the filter methods in each time dataset.  

 

  MCL RNSC Spectral 

Krogan 
Density: 0.370 
Cutting Edge: 0.455 
Best Neighbor: 0.216 
Haircut: 4.528 

Density: 0.306 
Cutting Edge: 0.753 
Best Neighbor: 0.825 
Haircut: 0.059 

Density: 0.027 
Cutting Edge: 0.584 
Best Neighbor: 0.670 
Haircut: 4.539 

Gavin2002 
Density: 0.250 
Cutting Edge: 0.609 
Best Neighbor: 0.887 
Haircut: 4.983 

Density: 0.342 
Cutting Edge: 0.613 
Best Neighbor: 0.587 
Haircut: 3.615 

Density: 0.123 
Cutting Edge: 0.602 
Best Neighbor: 0.836 
Haircut: 3.672 

Gavin2006 
Density: 0.173 
Cutting Edge: 0.685 
Best Neighbor: 0.824 
Haircut: 4.807 

Density: 0.010 
Cutting Edge: 0.674 
Best Neighbor: 0.905 
Haircut: 4.610 

Density: 0.196 
Cutting Edge: 0.647 
Best Neighbor: 0.695 
Haircut: 3.357 

DIP 
Density: 0.503 
Cutting Edge: 0.399 
Best Neighbor: 0.616 
Haircut: 1.174 

Density: 0.344 
Cutting Edge: 0.398 
Best Neighbor: 0.606 
Haircut: 4.785 

Density: 0.153 
Cutting Edge: 0.398 
Best Neighbor: 0.630 
Haircut: 3.152 

MIPS 
Density: 0.711 
Cutting Edge: 0.365 
Best Neighbor: 0.798 
Haircut: 2.729 

Density: 0.700 
Cutting Edge: 0.237 
Best Neighbor: 0.958 
Haircut: 3.196 

Density: 0.437 
Cutting Edge: 0.050 
Best Neighbor: 0.209 
Haircut: 3.196 

 

4   Conclusions 

In this contribution, we presented a filter, optimized by a GA, which was applied on 
the results of three well known for their efficiency clustering algorithms namely 
MCL, RNSC and spectral. Furthermore, we compared the derived results with three 
other algorithms: SideS, HCS and Mcode to demonstrate the superiority of the 
proposed method. For the implementation of the GA we used GALIB library, while 
the filter is composed by four different methods derived from graph theory. As a 
future prospective, we plan to apply the proposed methodology on specific 
experimental methods datasets to extract rules about the properties that a cluster in 
these PPI graphs should have in order to be considered as protein complex. 
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