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Abstract. An application of clustering methods for production planning is 
proposed. Hierarchical clustering, k-means and SOM clustering are applied to 
production data from the company KGL  in Slovenia. A database of 252 
products manufactured in the company is clustered according to the required 
operations and product features. Clustering results are evaluated with an 
average silhouette width for a total data set and the best result is obtained by 
SOM clustering. In order to make clustering results applicable to industrial 
production planning, a percentile measure for the interpretation of SOM 
clusters into the production cells is proposed. The results obtained can be 
considered as a recommendation for production floor planning that will 
optimize the production resources and minimize the work and material flow 
transfer between the production cells. 
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1 Introduction 

Modern production strives toward the optimization of production costs by methods 
such as lean production, [1] which involves defining the internal value system and 
consequently analyzing and optimizing the internal production flow. Related methods 
known as "group technology" (GT) [2] have been proposed to implement cellular 
manufacturing systems (CMS) that group machines into production cells. A number 
of methods have been proposed for cell formation. [3-6] A unified approach that 
combines assigning parts to individual machines and forming machines into cells is 
proposed in [7]. A clustering model is introduced in [8], exploiting similarities 
between products. The ART1 neural network-based cell formation in GT has been 
proposed by [9] and group technology based clustering is applied by [10]. 

In this paper, we develop a framework for production optimization for small and 
medium enterprises (SMEs) that are characterized by individual and small batch 
production with many different products in their production range. This paper's 
findings are based on data obtained from a Slovenian manufacturing company. We 
propose a clustering approach for the segmentation of various groups of products that 
can be organized into small production cells. Based on the representatives of each 
production cell, an efficient floor plan can be designed that will support lean 
production objectives.  



2 Data 

The data considered in this paper are derived from the company KGL d.o.o., located 
in Slovenia. The company has been operating since 1985 in close relation to the 
automobile industry. The production line comprises mechanical services on CNC 
lathes and machining centres, pressing sheet metal, fabrication of cylinders for 
gasoline engines and assembling parts manufactured in blanks. 

2.1   Collecting data 

Data were collected in the company in 2009 and comprise 252 products with 
descriptions of properties and operations required to manufacture each product. Table 
1 presents 39 operations applied during production. Beside the operations, various 
features are attached to each product, such as: material, form, weight, volume, shape, 
number of assembly parts, dimensional accuracy, appearance of the product, number 
of possible variants, request for examination, the need of parts protection and the 
value of the product. 

Table 1.  List of operations applied during the production. 

No Operation No Operation No Operation 
1 Band cutting 14 Thermal cutting 27 Cutting on shears 
2 Service-casting 15 Service-forging 28 Deploy profile 
3 Broaching 16 Drilling 29 Single-spindle thread. 
4 Multi-spindle thread. 17 CNC turning 30 3-axis CNC machin. 
5 Brushing 18 Service-blasting 31 Service-deburring 
6 Honing 19 Powder Coating 32 Dip galvanizing 
7 Galvanic coating 20 Artificial aging 33 Carbonitrirating 
8 Service-hardening 21 Washing 34 Precision polishing 
9 Before assembly 22 Assembly 1 35 Hand deburring 

10 Viewing area 23 Testing 36 Packaging 
11 Chamfering machine 24 Tumble deburring 37 Compression-cutting 
12 Remodeling 25 Compression 38 Progressive compress. 
13 Progr. deep drawing 26 Deep Draw-transfer 39 Welding 

2.2   Data preprocessing 

The data about required operations and features of the products need some pre-
processing before being applied to various clustering algorithms. The following rules 
were applied to prepare the data: 
1. Operations are encoded with a single value ('operation is not required' = -1, 

'operation is required' = 1). 
2. Materials are encoded with a single descriptor ('material not used' = -1, 'material 

used' = 1) for each possible material (Al/CuZn, SL, Fe).  



3. Form is encoded with a single descriptor (-1,1) for each form applied 
(cast/forged, rod, platinum, band, profile/tube). 

4. Shape is expressed as 'simple' = -1, 'combined' = 1. 
5. Dimensional accuracy is originally expressed as ['0.1', '0.01', '0.001'] and we 

encode this property as '0.1' = -1, '0.01' = 0, '0.001' = 1 to keep proper ordering.  
6. Appearance of the product is encoded as ordered variable: 'unimportant' = -1, 

'important' = 0, and 'very important' = 1. 
7. Request for examination is expressed as a single value:  'No request' = -1, 

'Functional examination' = 1. 
8. The need of parts protection is encoded with (-1,1) for each category (no 

protection, mechanical, anticorrosion). 
9. Weight, Volume, Nr. assembly parts, Nr. of operations, Nr. of possible variants, 

and Value are expressed as real values and are therefore not encoded but only 
scaled into [-1,1] intervals.  

 
Finally, constant operations (packaging and progressive deep drawing) were 

eliminated. Without prior knowledge about the relative importance of various 
operations, we assumed equal importance for all operations. This assumption was 
encoded into data by using the same scaling in interval [-1,1] for all the attributes. The 
preprocessed data comprises 58 attributes: 37 operations, 3 materials, 5 forms, 1 
shape, 1 dimensional accuracy, 1 appearance, 1 request for examination, 3 
protections, and 6 for real valued categories.  

3 Clustering algorithms 

Several clustering algorithms were applied to the task of products clustering, as 
follows: hierarchical clustering, k-means clustering, and SOM neural network. An 
important ability of these algorithms is to also accept real-valued attributes, which is 
not possible with structures such as the ART1 neural network. 

3.1   Hierarchical clustering 

Hierarchical clustering algorithms produce a nested series of partitions based on a 
criterion for merging or splitting clusters based on similarity [11]. In this paper, we 
apply agglomerative hierarchical clustering, with a Euclidean distance metric and 
several linkage methods: single linkage, complete linkage, average linkage, and Ward 
linkage. 

3.2   K-means 

The k-means is the simplest and most commonly used algorithm employing a squared 
error criterion [11]. It starts with a random initial partition and keeps reassigning the 
patterns to clusters based on the similarity between the pattern and the cluster centres 
until a convergence criterion is met. 



3.3   SOM 

A self-organizing map (SOM) was proposed by Kohonen [12]. In this paper, we 
examine a SOM algorithm with distances defined by the Euclidean distance metric, 
and two variants of two-dimensional grid (rectangular and hexagonal). We apply a 
two-dimensional grid with six clusters, arranged by two rows each with three 
elements. Such a topology seems to be well suited to production floor planning. 

3.4   Evaluation of clustering results 

Clustering validity measures fall broadly into three classes [13]:  
a) internal validation (based on properties of the resulting clusters), 
b) relative validation (running the algorithm with different parameters), 
c) external validation (comparison with a given partition of the data).  

In our case study, there is no possibility of evaluating the correct clustering based 
on external validation measures; therefore, we have to rely in internal and relative 
validation that makes clustering essentially a subjective visualization tool. Following 
the recommendation proposed in [13], we evaluate the clustering results based on 
silhouette values that seem to be a good internal validation measure and also provide 
good graphical representation of clustering quality. The silhouettes validation 
technique [14] calculates the silhouette width for each sample, the average silhouette 
width for each cluster and the overall average silhouette width for a total data set. In 
our study, we evaluate the clustering quality based on the average silhouette width for 
a total data set. 

4 Clustering results 

In this section, we present and compare various clustering results, obtained by the 
proposed clustering algorithms. Results are presented for hierarchical clustering, 
k-means, and SOM clustering. Within each clustering method, various parameters are 
optimized in order to obtain the best results.  

From the perspective of production planning, the company would prefer a small 
number of clusters, i.e. condensed production cells sharing the necessary tools and 
operation within confined space. The number of clusters should be around K≈5 but 
this is only a recommendation and not a strictly defined condition. Consequently, in 
our study we fix the number of clusters to be K = 6, which supports the application of 
a two-dimensional clustering architecture (3 × 2). 

4.1   Hierarchical clustering 

Hierarchical clustering results based on Euclidean distance and several linkage 
methods are shown in Figure 1. Single linkage obviously yields the worst result, with 
an average silhouette S = 0.1937. Average and complete linkage give better clustering 
results, while the best result, S = 0.4698, is obtained by applying the Ward distance.  
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Fig. 1.  Hierarchical clustering results compared by various linkage measures. Ward linkage 
results in best average silhouette value S = 0.4698. 

4.2   K-means 

Due to the sensitivity of the k-means algorithm to become trapped in a local 
minimum, the algorithm was restarted 100 times from various random initial 
positions. This effectively converged into a unique solution, as presented in Figure 2. 
The obtained average silhouette value amounts to S = 0.4742, which slightly exceeds 
the result obtained by hierarchical clustering. 
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Fig. 2.  K-means clustering, average silhouette value S = 0.4742. 



4.3   SOM 

Two variants of SOM grid organization are explored: rectangular and hexagonal grid. 
For the distance metrics and for the neighbourhood distance functions, the Euclidean 
distance metric is applied. Figure 3 displays the clustering results for both topologies 
(rectangular and hexagonal). The best result is obtained by the hexagonal topology 
and yields an average silhouette of S = 0.4743. Figure 4 shows a hexagonal SOM 
topology with class labels and number of samples in each class. 
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Fig. 3.  SOM clustering results for rectangular and hexagonal 2-dimensional topology 

51 59 30

23 21 67

Class 1 Class 2 Class 3

Class 4 Class 5 Class 6

 
Fig. 4.  Hexagonal SOM topology with class labels and number of samples in each class 

4.4   Comparison of clustering results 

The random initialization of the k-means and SOM clustering algorithm causes 
various final clustering arrangements in which class labels depend on initial 
conditions. In order to compare the silhouette plots of various clustering algorithms, 
the class labels should be aligned properly. We applied the method of class matching 
so that outcomes of various clustering methods were rearranged in a way that 
guarantees the highest cluster matching. The best results of hierarchical clustering, k-
means, and SOM clustering are shown in Figure 5 and presented in Table 2. Table 2 
also presents the similarity measure between various clustering approaches. The 
methods are compared to the SOM result with respect to the number of equally 
classified samples. After rearrangement, all three methods exhibit very similar results, 
with k-means and SOM being almost identical and hierarchical clustering diverging 
below 5%. 



Table 2.  Comparison of clustering results by average silhouette values. 

Method Average silhouette S Similarity to SOM 
Hierarchical clustering 0.4698 95.2% 
K-means 0.4742 99.6% 
SOM 0.4743 100% 
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Fig. 5.  Comparison of clustering results (hierarchical clustering, k-means, SOM). 

The overall best result is considered to be obtained by SOM. Its average silhouette, 
S = 0.4743, is the highest score obtained in this study. The result is almost the same as 
k-means and only slightly exceeds hierarchical clustering, but there are two more 
advantages to support the selection of SOM clustering:  

a) SOM result has no negative silhouettes, which means there are no 
products that are classified in a wrong cluster, 

b) SOM topology shown in Figure 4 can be directly interpreted as a 
production floor plan. 

SOM clusters maintain neighbourhood properties, which can be very helpful when 
designing a production floor plan. Operation clusters that are close to each other will 
probably share more equal operations and thus more material exchange than the 
clusters that are far apart. Therefore, we conclude that the SOM clustering method 
seems to be the most suitable approach for the task considered in this paper. The 
homogeneity of results obtained by various clustering methods only further supports 
the assumption that the obtained clustering result is meaningful and therefore 
applicable to production planning.  

5 Application of clustering results 

After obtaining a meaningful clustering result, the next step is to apply this result to 
the production environment. In this section, we propose an interpretation of clustering 
results that may yield an applicable industrial solution.  

According to the SOM clustering result, six operation cells are arranged in a two-
dimensional hexagonal grid. This architecture (shown in Figure 4) can already be 



interpreted as an initial production floor layout. The next question is about which 
operations should be contained in the arranged production cells. This leads to the 
interpretation problem of clustering results as described below. 

5.1   Interpretation of clustering results 

The interpretation problem can be formulated as how to define a mapping from 
obtained SOM clusters into the real world production cells: 

SOM clusters      Production cells 

As SOM clusters are represented by prototypes, an initial estimation could be to 
directly translate SOM prototypes into production cells, but this turns out to be 
inappropriate. SOM prototypes have continuous values in the interval [-1,1], which is 
acceptable for the product features (weight, volume, shape, etc.) but not for the 
operations that should be either included or not included in the production cell. 
Therefore, some kind of discretization of SOM prototypes should be performed for 
logical descriptors (such as operations, materials, form, shape, etc.). 

We propose a percentile measure for the interpretation of SOM clusters into the 
production cells. For each operation in a particular cluster, we can provide a 
percentage of samples in this cluster, which should contain this operation (or 
property) in order for this operation (or property) to be included into the production 
cluster. Various percentile margins can be defined, such as: p = {50th, 75th, 100th}. 
For each percentile margin, the particular operation should be included into the 
production floor planning cell if at least (100-p)% of samples in a particular SOM 
cluster require this operation. The 100th percentile should be interpreted as a limit 
value: if at least one sample requires an operation, it should be included in the 
production cell. 

Figure 6 presents SOM interpretation results based on various percentile margins 
p = {50th, 75th, 100th}. The result for p = 50th seems to be under-populated as there 
are a significant number of operations missing in a complete production scheme 
because they are simply not frequently required by the production process. On the 
other side, the result for p = 100th is probably over-populated. An optimal 
arrangement can be expected somewhere between the 50th and 100th percentile 
margins; therefore, a 75th percentile margin can be taken as a guideline to 
successfully interpret SOM clusters into the production cells. 

5.2   Finalization of production clusters 

If SOM interpretation based on the 75th percentile is applied to cell arrangement, 
some operations are still not assigned to any production cell. This is a consequence of 
their rare application, but in practice the production process can not be completed 
unless all the required operations are available. Therefore, as a final stage, we propose 
assigning each missing operation into the cell that has the highest requirement for this 
operation among all cells. The final result is shown in Figure 7, where filled missing 
discrete operations are displayed in blue.  
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Fig. 6.  Interpretation of SOM clusters into production cells based on percentile margins 
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Fig. 7. Final interpretation of SOM clusters into production cells based on the 75th percentile 
margin and filling the empty operations 

6 Conclusions 

This paper presents an application of clustering methods to production planning. 
Various clustering methods, including hierarchical clustering, k-means and SOM 
clustering are applied to production data from the company KGL in Slovenia. The 
best results are obtained with SOM clustering, although the results are shown to be 
very consistent in comparison with other clustering methods. An interpretation 
method is proposed to translate the SOM clustering result into the production cells. 
The following two properties support the assumption that the resulting production cell 
arrangement is suitable for production planning: 



a) Organization of production cells supports production of similar products in 
closed production units, which optimizes material and work flow, and 
reduces production costs. Clustering evaluation based on silhouette widths 
confirms good clustering quality, which means that the proposed clustering 
is meaningful. 

b) Production cells are arranged according to SOM topology. This guarantees 
that neighbourhood properties of clusters are maintained and consequently, it 
can be expected that this will lead to the minimization of material and work 
piece exchange between production cells that are not close to each other. 

The results reported can be considered as a recommendation to the production 
planning managers. We hope the proposed results will be a useful guidance to 
production planning in the company. 
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