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Abstract. Software project management makes extensive use of predictive 

modeling to estimate product size, defect proneness and development effort.  

Although uncertainty is acknowledged in these tasks, fuzzy inference systems, 

designed to cope well with uncertainty, have received only limited attention in 

the software engineering domain. In this study we empirically investigate the 

impact of two choices on the predictive accuracy of generated fuzzy inference 

systems when applied to a software engineering data set: sampling of 

observations for training and testing; and the size of the rule set generated using 

fuzzy c-means clustering. Over ten samples we found no consistent pattern of 

predictive performance given certain rule set size.  We did find, however, that a 

rule set compiled from multiple samples generally resulted in more accurate 

predictions than single sample rule sets.  More generally, the results provide 

further evidence of the sensitivity of empirical analysis outcomes to specific 

model-building decisions. 
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1   Introduction 

Accurate and robust prediction of software process and product attributes is needed if 

we are to consistently deliver against project management objectives.  In recent years 

fuzzy inference systems (FIS) have gained a degree of traction (with empirical 

software engineering researchers if not practitioners) as an alternative or 

complementary method that can be used in the prediction of these attributes [1-4]. 

Empirical software engineering research that has focused on prediction is normally 

performed using a standard sample-based approach in which a data set is split into 

two sub-samples, the first, larger set for building a predictive model and the second 

for non-biased evaluation of predictive performance (for instance, see [1]). Any 

reasonable splitting strategy can be used. Typically, two-thirds of the total sample is 

randomly allocated to the build subset, leaving one third of the observations to 

comprise the test subset.  Given the incidence of outlier observations and skewed 

distributions in software engineering data sets [5], stratified sampling may be useful, 

but it has not been widely employed in software engineering analyses. Similarly, 



where information on the ordering of observations is available this could be used to 

further inform the sampling strategy. Again, however, such an approach has not been 

used to any great extent in empirical software engineering research [6]. 

In this paper we analyze the sensitivity of prediction outcomes to systematic 

changes in two parameters relevant to fuzzy inference model building and testing: 

data sampling and rule set size. In essence, then, this is a paper focused on the 

infrastructure of predictive modeling – our intent is to highlight the potential pitfalls 

that can arise if care is not taken in the building and testing of models.  In the next 

section we describe the empirical work we have undertaken using a software 

engineering data set. Section 3 reports the results of our analysis. A discussion of the 

key outcomes is provided in Section 4, after which we briefly address related work. 

We conclude the paper and highlight opportunities for future research in Section 6. 

2   Empirical Analysis 

In this section we describe the empirical analysis undertaken to assess the impact of 

changes in both data sampling and rule set size on the predictive accuracy of fuzzy 

inference systems.  After providing a description of the data set employed in the 

analysis we explain the three approaches used in constructing our prediction systems. 

2.1   The Data Set 

The data set we have used here is a simple one in that it involves a small number of 

variables.  This does not detract, however, from its effectiveness in illustrating the 

impact of sample selection and rule set size, the principal issues of concern in this 

study.  The data were collected in order to build prediction systems for software 

product size.  The independent variables characterized various aspects of software 

specifications, including the number of entities and attributes in the system data 

model, the number of data entry and edit screens the system was to include, and the 

number of batch processes to be executed.  As each implemented product was to be 

built using a 4GL (PowerHouse) our dependent variable was the number of non-

comment lines of 4GL source code. The systems, which provided business transaction 

processing and reporting functionality, were all built by groups of final-year 

undergraduate students completing a computing degree. 

A total of 70 observations were available for analysis.  Although this is not a large 

number, it did represent the entire population of systems built in that environment 

over a period of five years.  It is in fact quite a homogeneous data set – although the 

systems were built by different personnel over the five-year period they were all 

constructed using the same methodology and tool support by groups of four people of 

similar ability.  Furthermore, it is quite common in software engineering to have 

access to relatively small numbers of observations (for example, see [7]), so the data 

set used here is not atypical of those encountered in the domain of interest. 

In a previous investigation [2] we identified that two of the 8 independent variables 

were significantly correlated to source code size and were also not correlated to one 

another.  These were the total number of attributes in the system data model (Attrib) 



and the number of non-menu functions (i.e. data entry and reporting modules rather 

than menu selection modules) in the system‟s functional hierarchy (Nonmenu). We 

therefore used these two variables as our predictors of size. 

2.2   FIS Development 

We adopted three model-building approaches in order to investigate the impact of 

sampling and fuzzy rule set size on the coverage and accuracy of source code size 

predictions. We first built membership functions and rule sets (via the algorithms 

below) using the entire data set of 70 observations (Full Approach); we also randomly 

generated ten separate build subsets of 50 cases that we used to build fuzzy prediction 

systems (Sampled Approach); finally we analyzed the ten rule sets generated by the 

sampling process to create a „mega‟ rule set comprising the 50 most frequently 

generated rules (Top 50 Approach).  For each of the three approaches we generated 

fuzzy inference systems comprising from one to fifty rules.  Each FIS was tested 

against the ten test subsets of 20 observations.  While performance was assessed using 

a variety of accuracy indicators, we report here the results in terms of the sum of the 

absolute residuals and the average and median residual values, as these are preferred 

over other candidate measures [8].  We also assessed the coverage of each FIS i.e. the 

proportion of the test subsets for which predictions were generated (meaning the rule 

set contained rules relevant to the test subset observations that were then fired to 

produce a predicted size value). 

Previous research using this data set [2] had indicated that the three variables of 

interest were most effectively represented by seven triangular membership functions, 

mapping to the concepts <VerySmall, Small, SmallMedium, Medium, MediumLarge, 

Large, VeryLarge>.  The membership function extraction algorithm is as follows: 

1. select an appropriate mathematically defined function for the 

membership functions of the variable of interest (i), say ƒi(x) 

2. select the number of membership functions that are desired for that 

particular variable, mi functions for variable i (mi may set by the user or may 

be found automatically, to desired levels of granularity and interpretability) 

3. call each of the mi functions ƒij([x]) where j = 1… mi and [x] is an array 

of parameters defining that particular function (usually a center and width 

parameter are defined, either explicitly or implicitly) 

4. using one-dimensional fuzzy c-means clustering on the data set find the 

mi cluster centers, cij from the available data (mi may set by the user or may 

be found automatically, to desired levels of granularity and interpretability) 

5. sort the cluster centers cij into monotonic (generally ascending) order for 

the given i 

6. set the membership function center for ƒij, generally represented as one 

of the parameters in the array [x], to the cluster center cij 

7. set the membership function widths for ƒij in [x] such that ∑ 
mi

n=1 ƒin 

([cin,…]) = 1, or as close as possible for the chosen ƒ(x) where this cannot be 

achieved exactly (for example for triangular membership functions each 

function can be defined using three points, a, b, and c where a is the center of 

the next smaller functions and c is the center of the next larger function). 



Rules were extracted using the same clustering process with multiple dimensions 

(matching the number of antecedents plus the single consequent): 

1. start with known membership functions ƒij([x]) for all variables, both 

input and output, where j represents the number of functions for variable i 

and [x] is the set of parameters for the particular family of function curves 

2. select the number of clusters k (which represents the number of rules 

involving the k-1 independent variables to estimate the single output variable) 

3. perform fuzzy c-means clustering to find the centers (i dimensional) for 

each of the k clusters 

4. for each cluster k with center ck 

(a) determine the k
th

 rule to have the antecedents and consequent 

ƒij for each variable i where ƒij (ck) is maximized over all j 

(b) weight the rule, possibly as ∏
i
n=1 ƒij (ck) or ∑

i
n=1 ƒij (ck) 

5. combine rules with same antecedents and consequents, either summing, 

multiplying, or bounded summing rule weights together 

6. (optionally) ratio scale all weights so that the mean weight is equal to 

1.0 to aid interpretability. 

3   Results 

We now consider the outcomes of each of the three approaches in turn – Full, 

Sampled and Top 50. 

3.1   Full Approach 

Development of an FIS using the entire set of observations is the most optimistic of 

the three approaches, and in fact represents more of a model-fitting approach rather 

than one of unbiased prediction where a hold-out sample is used.  We employed this 

approach, however, to provide a benchmark for comparative model performance.  The 

clustering approaches described above were used to build membership functions and 

rule sets based on all 70 observations.  Essentially this meant that there were fifty 

distinct FIS produced, comprising from one to fifty rules. These FIS were then tested 

against each of the ten test subsets produced from the Sampled Approach (described 

below). Accuracy and coverage were assessed for each FIS, illustrated by the example 

shown for the sample 4 test subset in Figures 1 and 2 and Table 1. 

For sample 4 we can see in Figure 1 that predictive accuracy measured using the 

median residual value taken over the predictions made shows some volatility but is 

generally stable within the range 150-250 SLOC, once the rule set size reaches a 

value of around 18.  At this point also we can see that coverage becomes stable at 

close to 100% i.e. rules were fired and predictions made for close to all 20 test subset 

observations.  Further evidence of the generally high degree of test observation 

coverage is provided in Table 1 and Figure 2. This latter result is not unexpected as in 

the Full Approach all 70 observations were used to build the FIS, and so the test 

observations had been „seen‟ and accommodated during model-building.  

 



 
Fig. 1.  Change in median residual and coverage with increasing rule set size for sample 4. 

 

 
Table 1.  Overall coverage for sample 4. 

 

Coverage Sample 4 

 

     100% 22 44% Mean 86% 

80%-99% 16 32% Med 95% 

60%-79% 9 18% 

  40%-59% 1 2% 

  20%-39% 2 4% 

  0%-19% 0 0% 

                   Fig. 2.  Graphical depiction of coverage. 

3.2   Sampled Approach 

As stated above, in this approach we randomly allocated 50 of the 70 observations 

to a build subset and left the remaining 20 observations for testing, repeating this 

process ten times to create ten samples. FIS development then used only the build 

subsets, creating FIS comprising an increasing number of rules (from one to fifty, the 

latter meaning one rule per build observation) for each of the ten samples. 

Sampling. We performed t-tests to assess the degree of uniformity across the ten 

samples, using Size as our variable of interest.  These tests revealed that, in particular, 

sample 10 was significantly different (at alpha=0.05) from samples 3 through 8. This 

could also be verified informally by looking at the data – build subset 10 comprised a 

higher proportion of larger systems (and test subset 10 a correspondingly higher 

proportion of smaller systems) than most of the other samples. As our objective was 

to illustrate the impact of such sampling on model performance and the rule sets 

generated, however, we retained the samples as originally produced. 

Model performance. Model accuracy varied across the ten samples, and while in 

general there was a tendency for accuracy to either stabilize or improve as the FIS 

rule set grew (as per Figure 1 above for the Full Approach) this was not found to 



always be the case.  For instance, prediction of the test subset for sample 2 was quite 

volatile in spite of good coverage, as shown in Figure 3. 

 

 
Fig. 3.  Change in median residual and coverage with increasing rule set size for sample 2. 

 
Table 2.  Best models for each sample in terms of accuracy measures (when coverage ignored). 

Sample 1 2 3 4 5 6 7 8 9 10 

Coverage 80% 90% 90% 100% 90% 95% 80% 90% 85% 95% 

Minimum rules? 19 23 31 34 18 14 12 35 29 26 

Abs Res 3100 4340 5430 6156 4077 4623 5257 5996 6823 5000 

Ave Res 194 241 302 308 227 243 329 333 401 263 

Med Res 111 118 163 177 159 200 266 288 261 176 

 

The best models achieved for each sample are shown in Tables 2 and 3. The first 

table depicts the results irrespective of coverage whereas the second considers only 

those FIS that achieved maximum coverage for each test subset.  What is evident in 

both tables is the variation in values for all three accuracy measures – for instance, the 

median residual value in the best maximum coverage models (Table 3) varies from a 

low of 139 SLOC (for sample 2) up to 296 SLOC (for sample 8). 
 

Table 3.  Best models for each sample in terms of accuracy measures (maximum coverage). 
Sample 1 2 3 4 5 6 7 8 9 10 

Coverage 95% 95% 100% 100% 100% 100% 95% 100% 100% 100% 

Minimum rules? 44 36 40 34 50 15 38 49 45 36 

Abs Res 5825 5017 6394 6156 7193 4807 5970 5842 6789 5028 

Ave Res 307 264 320 308 360 240 314 292 339 251 

Med Res 187 139 208 177 274 203 177 296 269 173 

 

Rule Distribution. For each of the ten samples we also considered the 

composition of the generated rule sets, comprising from one to fifty rules each at 

increments of one, meaning a total of 1275 rules per sample.  Each rule was a triple 

made up of two antecedents and a single consequent e.g. IF <Attrib> IS [Small] AND 

<Nonmenu> IS [SmallMedium] THEN <Size> IS [Small].  Our analysis considered 



the frequency of particular memberships in the rule sets for each variable (e.g. count 

of „<Attrib> IS [VerySmall]‟), as well as the frequency of each complete rule across 

the sets.  Space precludes full reporting of the results of this analysis across all ten 

samples but an example for sample 6 is shown in Figures 4, 5 and 6. (Note that in 

these figures Set Value „1‟ maps to „VerySmall‟, „2‟ maps to „Small‟, and so on.) 

 

 

 

 

 

 

 

 

 

 
Fig. 4.  Membership frequency for Attrib. 

 

 

 

 

  

 

 

 

 

 
Fig. 5.  Membership frequency for Nonmenu. Fig. 6.  Rule frequency for sample 6. 

 

For this sample 47 distinct rules of the 343 possible (the latter representing each 

possible triple from „1,1,1‟ through to „7,7,7‟) made up the 1275 rules in the fifty sets, 

the most frequently occurring rule for this sample being „3,3,4‟: IF <Attrib> IS 

[SmallMedium] AND <Nonmenu> IS [SmallMedium] THEN <Size> IS [Medium], 

with 112 instances over the fifty rule sets (shown as the longest bar in Figure 6). 

Across the ten samples, the number of distinct rules varied from 45 for sample 8 up to 

60 for sample 1, and these sets were distinct in part, meaning that over the ten 

samples 131 distinct rules were generated from the 343 possible candidates. 

3.3   Top 50 Approach 

The above analysis of the ten samples allowed us to also identify the Top 50 distinct 

rules across the sampled data sets i.e. the 50 rules that were generated most frequently 

(where 50 was an arbitrary choice). The most common rule (at 506 instances) was: IF 

<Attrib> IS [MediumLarge] AND <Nonmenu> IS [MediumLarge] THEN <Size> IS 

[MediumLarge], whereas the 50
th

 most common rule, with 89 instances, was IF 

<Attrib> IS [SmallMedium] AND <Nonmenu> IS [Small] THEN <Size> IS 

[VerySmall].  We then applied this set of 50 rules to the ten test subsets, in the 



expectation that over the entire set they may outperform the potentially over-fitted 

Sampled rule sets generated from each specific build subset.  We compare the results 

obtained from this approach to those derived from the originally Sampled approach. 

3.4  Comparison of Approaches 

As might be expected, the Full approach models performed well across the ten 

samples.  When considered in terms of the sum of absolute residual and average and 

median residual measures, the Full model was the most accurate in 14 of the 30 cases 

(30 being 10 samples by 3 error measures). As noted above, however, this does not 

represent an unbiased test of predictive accuracy as the Full models were built using 

the entire data set.  Our comparison is therefore focused on the Sampled and Top 50 

approaches.  Figure 7 illustrates one such comparison, based on the median residual 

measure for sample 3.  We can see that in this case the model created from the Top 50 

approach performed better than those from the Sampled approach for FIS comprising 

up to 29 rules, but beyond that the Sampled approach was generally superior. 

 

 
Fig. 7.  Sample 3 comparison in terms of median residual (Sam.: Sampled, Top: Top 50). 

 

The pattern exhibited for sample 3 was not a common one across the ten samples, 

however. The data presented in Tables 4 and 5 indicate that, in general, the Top 50 

model („Top‟) outperformed the specific FIS developed with the Sampled approach 

(„Sam.‟). Of the 30 comparisons, 9 favored the Sampled approach. (Note that totals 

can exceed 100% for a sample because the two methods may achieve equivalent 

performance for a given number of rules, and so are both considered „Best‟.)  
 

Table 4.  Comparison of model accuracy across the ten samples (best shown in bold type). 

Sample 1  2  3  4  5  

Approach Sam. Top Sam. Top Sam. Top Sam. Top Sam. Top 

Abs Res Best 52% 50% 50% 52% 52% 48% 14% 86% 14% 86% 

Ave Res Best 38% 64% 24% 78% 36% 64% 10% 90% 8% 92% 

Med Res Best 42% 60% 56% 46% 40% 60% 30% 72% 0% 100% 

Sample 6  7  8  9  10  

Approach Sam. Top Sam. Top Sam. Top Sam. Top Sam. Top 

Abs Res Best 16% 84% 82% 20% 26% 74% 30% 72% 70% 30% 

Ave Res Best 24% 76% 74% 28% 6% 94% 20% 82% 62% 38% 

Med Res Best 20% 82% 58% 46% 12% 88% 22% 80% 72% 28% 



Table 5.  Comparison of model accuracy – summary statistics. 

Summary Statistic Mean  Median  

Approach Sam. Top Sam. Top 

Abs Res Best 41% 60% 40% 62% 

Ave Res Best 30% 71% 24% 77% 

Med Res Best 35% 66% 35% 66% 

4   Discussion 

The impact of sampling was evident in the t-tests of difference in Size across the ten 

samples. The mean value for Size varied from 1043 to 1211 SLOC in the build 

subsets, and from 843 to 1264 in the test subsets, with a significant difference evident 

in relation to sample ten. Similarly, FIS model performance also varied over the 

samples in terms of both the residual values and the coverage of the test observations.  

For example, the outright best model for sample 1 comprised just 19 rules, had an 

absolute error value of 3100 SLOC and achieved 80% coverage, whereas the sample 

4 best model achieved 100% coverage using 34 rules and an absolute residual of 6156 

SLOC. No consistent pattern was evident in relation to rule set size even for FIS 

achieving maximum coverage – across the ten samples the most accurate FIS was 

obtained from rule sets varying in size from 15 to 49 rules (out of a possible 50 rules).  

The rules also varied from one sample to the next (aligned with the differences in the 

data) – 131 distinct rules were generated. These outcomes all reinforce the importance 

of considering multiple samples and aggregating results in cases where there is 

variance in the data set, rather than relying on a single or small number of splits. 

The Top 50 rules (in terms of frequency) generally outperformed the single-sample 

FIS, struggling only against samples 7 and 10.  Overall this is an expected result, as 

the mega-set of rules was derived from exposure to most if not all 70 observations, 

albeit across ten samples, and we were already aware that sample 10 was significantly 

different to the others.  The poor performance on sample 7 needs further analysis. 

5   Related Work 

As far as we are aware there have been no prior systematic assessments of the impact 

of these parameters on analysis outcomes in the empirical software engineering 

community.  While several studies have used FIS in software engineering (e.g. [3]) 

only single splits of the data set have been used, and there has been no specific 

assessment of the impact of rule set size. That said, [4] describes the selection of rules 

based on error thresholds. Related work has also been undertaken in other domains. 

For instance, [9] considered the trade-off between a smaller rule set and the accuracy 

of decisions made in regard to credit scoring, concluding that substantially fewer rules 

did not lead to proportional reductions in accuracy.  The author notes, however, that 

“[t]he cost in accuracy loss one is willing to pay for the benefit of a smaller rule-base 

is entirely domain and organization dependent.” [9, p.2787].  [10] investigated the 



impact of stratification of training set data in data mining (employing evolutionary 

algorithms) noting significant differences in classification outcomes. Within the 

software engineering research community the influence of sampling on data analysis 

has received some attention, but as this does not relate to fuzzy inference the 

interested reader is referred to [11] for an example of this work. 

6   Conclusions and Future Work 

We have conducted an analysis of the sensitivity of predictive modeling accuracy to 

changes in sampling and rule set size in the building and testing of fuzzy inference 

systems for software source code size.  Our results indicate that both aspects influence 

analysis outcomes – in particular, the splits of data across build and test sets leads to 

significant differences in both predictive accuracy and test set coverage. 

We are continuing to work on aspects of prediction infrastructure – in particular, 

our current work is focused on considering the impact of temporal structure on 

modeling outcomes as well as the development of more suitable error measures for 

accuracy assessment. Further research should also address the degree to which 

stability in predictor variables over the life of a project affects predictions of size, 

quality and other aspects of project management interest. 
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