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Abstract. In the last decades, a myriad of approaches to the multi-armed ban-
dit problem have appeared in several different fields. The cutognperform-

ing algorithms from the field of Learning Automata reside in the Pursuit family
while UCB-Tuned and the-greedy class of algorithms can be seen as state-of-
the-art regret minimizing algorithms. Recently, however, the Bayeséanring
Automaton (BLA) outperformed all of these, and other schemes, in a ridge

of experiments. Although seemingly incompatible, in this paper we integrate th
foundational learning principles motivating the design of the BLA, with ttie-pr
ciples of the so-called Generalized Pursuit algorithm (GPST), leading (ettre
eralized Bayesian Pursuit algorithm (GBPST). As in the BLA, the estimates are
truly Bayesian in nature, however, instead of basing exploration upeotdiam-
pling from the estimates, GBPST explores by means of the arm selectiba-pro
bility vector of GPST. Further, as in the GPST, in the interest of higher aites
learning, aset of arms that are currently perceived as being optimal is pursued
to minimize the probability of pursuing a wrong arm. It turns out that GBRST
superior to GPST and that it even performs better than the BLA by congollin
the learning speed of GBPST. We thus believe that GBPST constitutes arhew a
enue of research, in which the performance benefits of the GPST arigLih

are mutually augmented, opening up for improved performance in deuof
applications, currently being tested.
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1 Introduction

The multi-armed Bernoulli bandit problem (MABB) is a clasali optimization prob-
lem that captures the exploration-exploitation dilemmiae MABB setup consists of
a gambling machine with multiple arms and an agent that seglly pulls one of the
arms, with each pull resulting in eitherreward or a penalty®. The sequence of re-
wards/penalties obtained from each arforms a Bernoulli process with amknown
reward probabilityd;, and a penalty probability 4 d;. The dilemma is this: Should the
arm that so far seems to provide the highest chance of reveapdilbled once more, or
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3 A penalty may also be perceived as the absence m@rd. However, we choose to use the
termpenalty as is customary in the LA and RL literature.



should an inferior arm be pulled to learn more abitsiteward probability? Sticking
prematurely with the arm that is presently considered ttnbdest one, may lead to not
discovering which arm is truly optimal. On the other handgéring with an inferior
arm unnecessarily, postpones the harvest that can be ethtmom the optimal arm.

1.1 Existing Solutions to Multi-Armed Bernoulli Bandit Prob lem

Bandit like problems involve two highly related yet distifields: the field of Learning
Automata and the field of Bandit Playing Algorithms. A myriaflapproaches have
been proposed within these two fields. Classical exactisokifor discounted rewards
take advantage of Gittins Indices [1-3] — by always pullihg arm with the largest
Gittins index (measuring the value associated with theesthta stochastic process),
the expected amount of discounted rewards obtained is nieedmCalculating Gittins
Indices in a computationally efficient manner is far fromaitx [4,5], and this problem is
currently being pursued [6, 7]. Because of the computatidiffeculties associated with
exact solutions based on Gittins Indices, a number of apmabe solution techniques
has also been proposed. Thgreedy strategy, first described by Watkins [8], represents
an earlyapproximate solution to the bandit problem, in which the arm so far being
perceived as the best is pulled with probability £, and a randomly chosen action is
pulled with probabilitye. Thus, the expected frequency of exploring a random action
is determined by the parameter®fA variant ofe-greedy strategy is the-decreasing
strategy [9, 10], which gradually shifts focus from exploya to exploitation by slowly
decreasing. Recently, Tokic proposed atlaptive e-greedy strategy based on reward
value differences (VDBE) [11]. In this strategydecreases on the basis of changes in
the reward value estimates.

Another direction for solving the bandit problem is confiderinterval based algo-
rithms. They estimate confidence intervals for the rewaadabilities, and identify an
“optimistic” reward probability estimate for each arm. Tdren with the most optimistic
reward probability estimate is then greedily selected B2, Furthermore, Auer et al.
has shown that variants of confidence interval based afgositthe so-called UCB and
UCB-Tuned schemes, provide a logarithmic regret bound [10]

There are also algorithms for solving MABB problems thatlaased on so-called
Boltzmann exploration. These introduce the parametas the “temperature” of the
exploration. Related schemes include EXP3 [14]. The “Poicknowledge and Esti-
mated Reward” (BKER) algorithm proposed in [12] takes into consideration mgodf
uncertainty, exploiting the arm reward distributions, #melhorizon of the problem. The
Linear Reward-Inaction (g ) learning automaton [15] and the Pursuit Scheme based on
Linear Reward-Inaction philosoph€Tr ) [16] [17] are known for theig-optimality.
Besides PSTr, which uses Maximum Likelihood (ML) reward probability esates
to pursue the currently optimal action, is known for its gering role in the estimator
Learning Automata family. A thorough comparison of seveffahe above mentioned
schemes can be found in [12,18].

There also exists several algorithms based on Bayesiaonieggd19], with [20,21]
being a few examples. In general, Bayesian reasoning is ny oases computational
intractable for bandit like problems [19]. However, basedttee Thompson sampling
principle [22], theBayesian Learning Automata (BLA) reported in [18,23] and extended



in [24] to deal with non-stationary environments, are iimély Bayesian in nature, yet
avoids computational intractability by relying simply opdating the hyper-parameters
of sibling conjugate distributions, and on simultaneowssynpling randomly from the
respective posteriors. As seen in [18] and [24], BLA dematstsignificant perfor-
mance advantage compared to a number of competing MABBIigplsthemes.

1.2 Contributions and Paper Organization

In this paper, we propose a hew Bayesian algorithm for MAB&bfems, which we
refer to as the Generalized Bayesian Pursuit algorithm @BPGBPST augments the
philosophy of BLA with the principles behind the GPST [25H4a able to outperform
both the GPST as well as the BLA schemes in extensive experithefiis augmenta-
tion is achieved as follows: Firstly, as in the BLA, the esttes are truly Bayesian (as
opposed to ML in GPST) in nature. However, the arm selectiobability vector of
GPST is used for exploration purposes. Secondly, as opposeel ML estimate, which
is usually a single value - the one which maximizes the Iil@did function - the use of
a posterior distribution permits us to choose any onespeetrum of values in the pos-
terior, as the appropriate estimate. In the interest ofgoeoncrete, we have chosen a
95% percentile value of the posterior (instead of the meaputsue promising arms.
Thirdly, as in the GPST, after each arm pull, all arms culyelé¢ing associated with
a higher reward estimate than the currently pulled arm, arsygd. Finally, the pur-
suit is done using the Linear Reward-Inaction philosopégding to the corresponding
GBPSTy scheme. To the best of our knowledge, all these contributions averto the
field of MABB problem, and we thus believe that the GBPST cituitsls a new avenue
of research, in which the performance benefits of the GPSTreBLA are mutually
augmented. We also believe that the theoretical contdbatof this paper could lend
itself to practical solutions improving performance in anher of applications, some
of which are currently being tested.

The paper is organized as follows. In Section 2 we give anviserof GPST and
BLA. Then, in Section 3, we present the new Bayesian estinadgorithm — theGener-
alized Bayesian Pursuit algorithm — by incorporating GPST and BLA. In Section 4, we
provide extensive experimental results demonstratingthleaGBPST is truly superior
to GPST. The BLA scheme is also outperformed by appropyiatebosing a learning
speed parameter for the GBRgTFinally, in Section 5, we report opportunities for
further research, in addition to providing concluding reksa

2 The Generalized Pursuit Algorithm and Bayesian Learning
Automata

We here briefly review the selected schemes upon which ther@kzed Bayesian Pur-
suit scheme builds.

4 The theoretical results concerning the formal properties of the fami®&®ST are currently
being compiled.

5 The pursuit can also be conducted using the Linear Reward-Penaltgqbtilp (GBPSEp),
as advocated in [17]. In the interest of brevity, we here report the g@forming scheme,
which is GBPSTF.



Linear Updating Schemes: The more notable and well-used traditional LA approaches
include the family of linear updating schemes, with the binBeward-Inactionl(g)
automaton being designed for stationary environments [h5hort, theLr maintains

r
an arm selection probability vecter=[ps, p2, ..., pr], with 3 p; = 1 andr being the

number of arms. The question of which arm is to be plulled isddecrandomly by
sampling fromp. Initially, pis uniform. The following linear updating rules summarize
how rewards and penalties affeptwith p{ and p’j being the resulting updated arm
selection probabilities:

P = (1-A)x pj,1<j<rj#i
pi=1— z pj if pulling Arm i results in a reward.
i
pj = pj,1 < j <rif pulling Arm j results in a penalty.

In the above, the paramete(0 < A < 1) governs the learning speed. As seen, after arm
i has been pulled, the associated probabyitis increased using the linear updating rule
upon receiving a reward, with;(j # i) being decreased correspondingly. Note that
is left unchanged upon a penalty.

Pursuit Schemes: A Pursuit scheme (PST) makes the updating afore goal-directed
in the sense that it maintains ML estimates) of the reward probabilitiesd;) associ-
ated with each arm. In brief, a Pursuit scheme increasesrthes@ection probability
p; associated with the currently largest ML estimdtdnstead of the arm actually pro-
ducing the reward. Thus, unlikey , in which the reward from an inferior arm can cause
unsuitable probability updates, in the Pursuit schemesgthewards will not influence
the learning progress in the short term, except by modifyivgy estimate of the re-
ward vector. This, of course, assumes that the ranking dfithestimates are correct,
which is what it will be if each arm is chosen a “sufficientlyda number of times”.
Accordingly, a Pursuit scheme consistently outperfornes tf in terms of its rate of
convergence.

Generalized Pursuit Schemes. The Generalized Pursuit schemes (GPST) generalizes
PST by allowing several arms to be pursued at the same tirsiead of only pursuing

the arm with the highest reward estimate, the whasteof arms that possess higher
reward estimates than the arm actually pulled is pursueB3f, when the arm with
the maximum reward estimate is not the one with the highegtne probability, the
incorrect arm is pursued, thus potentially derailing thespit of the optimal action.
The probability of this happening is reduced in GPST.

Bayesian Learning Automata: A unique feature of th®ayesian Learning Automaton
(BLA) is its computational simplicity, achieved by relyimgplicitly on Bayesian rea-
soning principles. In essence, at the heart of the BLA we fivedBeta distribution,
which is the conjugate prior for the Bernoulli distributidts shape is determined by



two positive parameters, denoted &gndb, producing the following probability den-
sity function:

Xafl(l _ X)bfl
Joua(1—u)b-1du’

Essentially, the BLA uses thBeta distribution for two purposes. First of all, it is
used to provide 8ayesian estimate of the reward probabilities associated with each of
the available arms - the latter being valid by virtue of thejagate prior nature of the
Binomial parameter. Secondly, a novel feature of the BLA& it uses th&eta distri-
bution as the basis for abrder-of-Statistics-based-andomized selection mechanism.

f(xa,b) = x € [0,1]. (1)

3 The Generalized Bayesian Pursuit Algorithm (GBPST)

Bayesian reasoning is a probabilistic approach to inferevitich is of significant im-
portance in machine learning because it allows fordhantitative weighting of ev-
idence supporting alternative hypotheses, with the perpdsallowing optimal deci-
sions to be made. Furthermore, it provides a framework fatyaing learning algo-
rithms [26]. We present here a completely new estimatorrédlgo that builds upon
the GPST framework. However, rather than utilizing ML redvarobability estimates,
optimistic Bayesian estimates are used to pursue the anmently perceived to bpo-
tentially optimal. We thus coin the algorith@eneralized Bayesian Pursuit (GBPST).
As in the case of the BLA, the GBPST estimates the reward pitityeof each arm
based on th&eta distribution. These Bayesian estimates allow us to acelyratlcu-
late an optimistic reward probability that provides a 95% upper bound for the reward
probability of armi, by means of the respective cumulative distribufid;; a, b).

VA1 (1—v)b-1dv

F(x;ab) =
(xia.b) Jdua-1(1—u)b-1du

» % €[0,1]. 2

The following algorithm contains the essence of the GBP3¥agch.

Algorithm: GBPSTy

Parameters:

o: The arm chosen by LA.

pi: Theit" element of the arm selection probability veckor

A: The learning speed, where<OA < 1.

g, bj: The two positive parameters of tBeta distribution.

xi: Theit" element of the Bayesian estimate vectogiven by the 95% upper bound of
the cumulative distribution function of the correspondBega distribution.

R: The response from the environment, whBre 0 (reward) oR = 1 (penalty).
Initialization:

1. pi(t) = 1/r, where r is the number of arms.

2. Seta; = bj = 1. Then repeat Step 1 and Step 2 in “Method” below a small naimibe
times (i.e., in this paper 1 times) to get initial estimates fa andb;.

Method: For t:=1 to NDo



1. Picka(t) randomly according to arm selection probability ved&ft). Suppose
a(t) = aj.

2. Based on the Bayesian nature of the conjugate distritmitigpdates; (t) andby(t)
according to the response from the environment:
If R(t) =0Thenai(t) =aj(t—1)+1;bi(t) = bt —1);
Elseai(t) = a(t—1);bi(t) = bi(t— 1)+ 1;

3. Identify the upper 95% reward probability boundxdt) for each arm as:

fOXi ®) (a-1) (1-v)®i Dy

JEu@ =D (1—u)® Dy =0.95

4. If M(t) is the number of arms with higher upper 95% reward probghilaund
than the pulled arm at timg update the arm selection probability vecRit + 1)
according to the following rule:

If R(t) =0Then
pj(t+1) = (1—N)pj(t) + % for v # i such thax;(t) > x(t);
pj(t+1) = (1—A)pj(t), for Vj # i such tha;(t) < x;(t);
plt+1)=1- 5 py(t+1)

IEall

Else
P(t+1) =P(t).

End Algorithm: GBPSTg

Observe that the GBPST is quite similar to the GPST in theestira both of them
pursue the currently perceivgbtentially optimal arms, and update the arm selection
probability vector based on a linear updating rule. Theedéfice is that instead of using
ML estimates for the reward probabilities, in the GBPST thtneation is Bayesian,
allowing the calculation of 95% upper bounds;}.

Itis crucial that the salient features of the GBPST and thA Bte highlighted. The
reader should observe that they both rely onBa distribution for reward probability
estimation. However, the BLA does not perform any Bayes@nputations explicitly.
Instead, when it comes to arm selection and exploratiorBt#echooses an arm based
on sampling directly from th®eta distributions, while the GBPST samples the arm
selection space based on the arm selection probabilitpresiso, by calculating the
95% upper boundy;, the GBPST is able to decide which arms are most promising to
pursue.

4 Empirical Results

In this section, we evaluate the computational efficienofe6BPSTr by comparing
it with the GPSR and the BLA. Although we have conducted numerous experisnent
using various reward distributions, we report here, forshiee of brevity, results based
on the experimental configurations listed in Table 1.

In the experiments considered, Configurations 1 and 4 foarstimplest environ-
ments, possessing a low reward variance and a large differbetween the reward



probabilities of the arms. This is because by reducing tfierdnce between the arms,
we increase the learning difficulty of the environment. Cgunfations 2 and 5 achieve
this task. The challenge of Configurations 3 and 6 is thein kiyiance combined with

the small difference between the arms.

For these configurations, an ensemble of 1,000 independplitations with dif-
ferent random number streams was performed to minimizeatiance of the reported
results. In each replication, 100 arm pulls were conducted in order to examine both
the short term and the limiting performance of the evaluatgdrithms.

Since both the two schemes, the GBRSand the GPSH depend on an external
parametel, we measure performance using a wide range of learning speed0.05,
A =0.01 andA = 0.005. We report the best performing learning speeds.

Table 2 reports the average probability of pulling the oplimrm after 10, 100,
1,000, 10000 and 100000 rounds of arm pulls, for each configuration. As seen, in
Configurations 1, 2 and 4, all three schemes converge to tiiraalgarm with high ac-

Table 1: Bernoulli distributed rewards used in 4-armed and 10-armeditproblems
Config/Arm 1 2 3 4 5 6 7 8 9 10

0.90 0.60 0.60 0.60 - - - - - -

0.90 0.80 0.80 0.80 - - - - - -

0.55 0.45 0.45 0.45 - - - - - -

0.90 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

0.90 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80

0.55 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

O hAWNE

Table 2: Probability of pulling the optimal arm after 10, 100, 1000, 10 @6@d,100 000 rounds
[Configuration| Algorithm I 100 1000 1004 10004 100009

Conf.1 GBPSTR, 0.05 || 0.2653 0.5949 0.9438 0.9941 0.9993
GPSTr 0.05 0.2649 0.5966 0.9437 0.9941 0.9994
BLA 0.3512 0.713Q 0.954Q 0.9942 0.9993
Conf.2 GBPSTR| 0.005] 0.2514 0.2869 0.6812 0.9645 0.9963
GPSTR 0.005 0.2507 0.2844 0.6852 0.9652 0.9956
BLA 0.2852 0.4583 0.819Q 0.9712 0.9960
Conf.3 GBPSTg; 0.01 || 0.2507 0.2800 0.6312 0.9552 0.9953
GPSTR 0.005 0.2505 0.2647 0.5387 0.9419 0.9933
BLA 0.2761 0.3856 0.6942 0.9419 0.9913
Conf.4 GBPSTR, 0.05 || 0.1027 0.3136 0.8671 0.9854 0.9985
GPSTr 0.05 0.1035 0.3244 0.8733 0.9862 0.9986
BLA 0.1407 0.4187 0.87071 0.9826 0.9978
Conf.5 GBPSTg, 0.01 || 0.0998 0.1204 0.5063 0.9368 0.9924
GPSTR 0.005 0.0996 0.1106 0.4194 0.9187 0.9819
BLA 0.1103 0.187Q 0.5492 0.9163 0.9878
Conf.6 GBPSTg, 0.005| 0.0992 0.1035 0.2357 0.8494 0.9817
GPSIR 0.005 0.0995 0.1041 0.2594 0.8523 0.9581
BLA 0.1075 0.1493 0.3572 0.8347 0.9757




curacy, with the BLA being the fastest scheme. The GBp@nd the GPSg perform
comparably.

In Configuration 3, the GBPSJ outperforms the GPS. The BLA learns faster
than GBPSk scheme at the beginning but was caught up with and surpagsi b
GBPSTR in the final 10000 to 100000 rounds.

Configurations 5 and 6 are the two most challenging expettahsat-ups, in which
the superiority of the GBP S over the GPSH is more obvious than in previous con-
figurations. As compared with the BLA, the GBR$re not as fast as the BLA at the
beginning, but again outperforms the BLA from around thestindex 10,000.

We now consider the so-call&gret of the algorithms. Th&egret is the difference
between the sum of rewards expected after N successive arm pulls, and what would have
been obtained by only pulling the optimal arm. Assuming that aeward amounts to the
value (utility) of unity (i.e., 1), and that penalty possesses the value O, tRegret can
be defined as:

dopt -N — idi, @3)

whered,y is the reward probability of the optimal action ashds the reward probability
of the selected action

The Regret offers the advantage that it does not overly emphasize tperitance
of pulling the best arm. In fact, pulling one of the inferiame will not necessarily
affect the overall amount of rewards obtained in a significaanner if, for instance,
the reward probability of the inferior arm is relatively sbto the optimal reward prob-
ability. ForRegret it turns out that the performance characteristics of theritlyns are
mainly decided by the reward distributions, and not by theber of arms. Thus, we
now consider configuration 4, 5, and 6 only.

—— GBPSTRI, 4=0.05
40 GPSTRI, 2=0.05
BLA

120 300
100 @ 250]
=)

80 & 200)
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= . o S =

0’ 10* 10° 10° 10! 10

10° b1 ? 10°
Rounds Rounds

4 (b) Conf. 5 (c) Conf. 6
Fig. 1. TheRegret for experiment conf. 4, conf. 5 and conf. 6

The plots in Fig. 1 illustrate the accumulation of tRegret of each algorithm with
the number of rounds of pulling arms. As seen in Fig. 1(a)yearhe learning phase,
the BLA is clearly better than the other two schemes, but B &I and the GPSH
catch up later with the GBPS®rincreasing slowly and the GP&Tconverging to yield
a constanRegret. In the more challenging configurations as shown in Fig. &)
Fig. 1(c), none of the schemes converge to yield a con&agnet because of their low



learning accuracy. However, tliRegret of the GBPSR is much lower and increases
more slowly than the others, showing its superiority to ttreeoschemes.
From the above results we draw the following conclusions:

1. The GBPSTF is superior to the GPSJ, although the GBPSY performsslightly
worse than GPSY in the simplest configuration. Furthermore, in the otheffigen
urations, the GBPSY provides much better performance than the Gk S3ug-
gesting the former’s superiority.

2. By tuning the learning paramet&r the GBPS| provides better performance
compared to the BLA. On the other hand, in several cases, ltAeidtially im-
proves performance faster. This difference in behaviorlmamexplained by their
respective distinct strategies for pulling arms. The BLAlparms based on the
magnitude of a random sample drawn from the posterior distributiorhefreward
estimate, while the GBP &I chooses arms based on the maintained arm selection
probability vector. In fact, with some deeper insight one sae that the initial per-
formance gap can be traced back to the initialization phegealgorithms, where
each arm is pulled to provide initial reward estimates.

5 Conclusion and Further Work

In this paper we have presented the Generalized BayesianiPAfgorithm (GBPST)
based on the Reward-Inaction philosophy (GBR$TThe GBPSk maintains an arm
selection probability vector that is used for the selectibtihe arms. However, it utilizes
Bayesian estimates for the reward probabilities assatiaith each available arm, and
adopts a reward-inaction linear updating rule for arm selegrobability updating.
Also, because we have used the posterior distributions,rev@lale to utilize a 95%
upper bound of the estimates (instead of the mean) to pursetecd potentially optimal
arms. Thus, to the best of our knowledge, the GBPST is theMis&B solution scheme
built according to the GPST strategy that also takes adgardba Bayesian estimation
scheme. Our reported extensive experimental results demate the advantages of the
GBPST over the GPST scheme. The GBPST also provides betfermance than the
BLA by choosingA suitably.

Based on these results, we thus believe that the GBPST fomesvaavenue of
research, in which the performance benefits of the GPST &i8ltA can be combined.
In our further work, we intend to investigate how our Gernieeal Bayesian Pursuit
strategy can be extended to the Discretized Pursuit fanfiscbemes. Besides this,
we are currently working on convergence proofs, including tesults for games of
GBPSTs, involving multiple interacting GBPSTSs.
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