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Abstract. Recently, we have proposed a novel intuitionistic fuzzy inference 

system (IFIS) of Takagi-Sugeno type which is based on Atanassov’s 

intuitionistic fuzzy sets (IF-sets). The IFIS represent a generalization of fuzzy 

inference systems (FISs). In this paper, we examine the possibilities of the 

adaptation of this class of systems. Gradient descent method and other special 

optimization methods are employed to adapt the parameters of the IFIS in 

regression problems. The empirical comparison of the systems is provided on 

several well-known benchmark and real-world datasets. The results show that 

by adding non-membership functions, the average errors may be significantly 

decreased compared to FISs. 

Keywords: Intuitionistic fuzzy sets, intuitionistic fuzzy inference systems, 

adaptation, regression. 

1   Introduction 

Several generalizations of Zadeh’s fuzzy set theory [1] have been developed to handle 

imprecision and uncertainty in a better way, e.g. IF-sets [2,3], L-fuzzy sets [4], 

interval-valued fuzzy sets (grey sets) [5], or interval-valued IF-sets [6], see [7] for a 

review. It was proven that interval-valued fuzzy set theory is equivalent to IF-set 

theory, which is equivalent to the vague set theory. In a similar manner, FISs have 

also been extended as interval-valued FISs [8], interval-valued type-2 FISs (IT2FISs) 

[9, 10] or IFIS [11, 12, 13].  

The concept of IF-sets can be viewed as an alternative approach to define a fuzzy 

set in cases where available information is not sufficient for the definition of an 

imprecise concept by means of a conventional fuzzy set. This may hold true for many 

real world applications. For example, the uncertainty presented in air quality 

evaluation was modelled using hierarchical IFISs of Mamdani type in [13]. 

Recently, we presented a novel IFIS of Takagi-Sugeno type for time series 

prediction [12, 14]. It was shown that MIN t-norm (Gödel t-norm) provided the 

lowest error in terms of root mean squared error (RMSE) on testing data [14]. 

Furthermore, we developed IFIS with various levels of uncertainty represented by 

intuitionistic fuzzy index (IF-index). This class of systems presents a strong 
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possibility to express uncertainty (in the presence of imperfect facts and imprecise 

knowledge) and provides a good description of object attributes by means of 

membership functions x) and non-membership functions x). 

In this paper, we compare several optimization algorithms used to adapt FISs and 

IFISs on selected artificial and real world datasets. We will also analyze the behaviour 

of the IFIS when the weights of the subsystems outputs (with membership functions 

x) and non-membership functions x)) change. The rest of this paper is 

organized as follows. First, we briefly introduce FISs and IFIS of Takagi-Sugeno 

type. In this section, the difference between IFIS and related IT2FISs is mentioned. 

Next, we present the methods used for the adaptation of IFISs. In section 4, regression 

datasets are described. Finally, the results of experiments are provided and analyzed. 

2   IFIS of Takagi-Sugeno Type 

The FIS of Takagi-Sugeno type [15] is composed of the following steps. In the 

fuzzification process, the input variables are compared with the membership functions 

x). Next, operators (AND, OR, NOT) are applied within the if-then rules. Thus, 

firing weight of each if-then rule is obtained. Further, the outputs of each if-then rule 

are generated. The output of each rule is a linear combination of input variables plus a 

constant term. The final output is the weighted average of each if-then rule’s output.  

Let xX, X={x1,x2, … ,xi, … ,xn} be input variables defined on the universes X1,X2, 

... ,Xi, ... ,Xn and let y be an output variable defined on the universe Y. Then FIS has n 

input variables and one output variable. Then the k-th if-then rule R
k
, k=1,2, ... ,N, in 

the FIS of Takagi-Sugeno type can be defined in following form 

Rk: if x1 is A1,k AND x2 is A2,k
 AND ... AND xi is Ai,k


AND ... AND xn is An,k 

then yk=f(x1,x2, ... ,xn), i=1,2, ... ,n, 

    (1) 

where A1,k,A2,k, ... ,Ai,k,
 ... ,An,k represent fuzzy sets and f(x1,x2, ... ,xn) can be a linear or 

polynomial function. In further considerations, we assume a linear function defined as 

yk=a1,kx1+a2,kx2+ ... +ai,kxi+ ... +an,kxn+b. 

The FIS of Takagi-Sugeno type was designed in order to achieve higher 

computational effectiveness. This is possible as the defuzzification of outputs is not 

necessary. Its advantage lies also in involving the functional dependencies of output 

variable on input variables. The output level yk of each the k-th if-then rule Rk is 

weighted by wk=x1) AND x2) AND … AND xm). The final output y of the FIS 

Takagi-Sugeno type is the weighted average of all N if-then rule Rk outputs yk, k=1,2, 

… ,N, computed as follows 
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Let a set X be a non-empty fixed set. An IF-set A in X is an object having the form 

A{x,(x),(x)xX}, where the function :X[0,1] defines the degree of 

membership function (x) and the function :X[0,1] defines the degree of non-

membership function (x), respectively, of the element xX to the set A, which is a 

subset of X, and AX, respectively; moreover for every xX, 0(x)(x)xX 

must hold [2,3]. The amount (x)((x)(x)) is called the hesitation part, 

which may cater to either membership value or non-membership value, or both. For 

each IF-set in X, we will call (x) as the IF-index of the element x in set A. It is 

obvious that 0(x)for each xX. The value denotes a measure of non-

determinancy. The IF-indices (x) are such that the larger (x) the higher the 

hesitation margin of the decision maker. The k-th if-then rule R


k in FIS

 and R


k in 

FIS

 are defined as follows 

R


k: if x1 is A


1,k AND x2 is A


2,k
 AND ... AND xi is A


i,k

AND ... AND xn is 

A


n,k then y


k= a


1,kx1+a


2,kx2+ ... +a


i,kxi+ ... +a


n,kxn+b

, 

R


k: if x1 is A


1,k AND x2 is A


2,k
 AND ... AND xi is A


i,k

AND ... AND xn is 

A


n,k then y


k= a


1,kx1+a


2,kx2+ ... +a


i,kxi+ ... +a


n,kxn+b

. 

    (3) 

The output y

 of FIS


 (the output y


 of FIS


) is defined in the same way as 

presented in equation (2) for firing weights w


k and w


k, respectively. The output y of 

the IFIS represents a combination of y

 and y




y=(1β)y

βy


,     (4) 

where y is the output of the IFIS, y

 is the output of the FIS


 using the membership 

function (x), y

 is the output of the FIS


 using the non-membership function (x), 

and β is the weight of the output y

. In prior studies [13,14], it was assumed that β=. 

Like IFISs, IT2FISs also represent a generalization of the FISs. The membership 

degree of an interval type-2 fuzzy set is an interval (also known as the footprint of 

uncertainty) bounded from the above and below by two type-1 membership functions, 

Ā(x) (upper membership function) and A(x) (lower membership function). When 

related to IF-sets, A(x)=(x) and Ā(x)=(x)+(x). This fact implies the differences 

between IFISs and IT2FISs. When applying AND operator (MIN t-norm) in if-then 

rules, the firing intervals wk=[ kw ,wk] are obtained. Notice that wk=w


k= 

MIN(x1),x2), … ,xm)) but kw =MIN(x1)+(x1),x2)+(x2), … ,xm)+(xm)) 

while w


k=MIN(x1),x2), … ,xm)). Recently, IT2FISs have been adapted using 

Karnik-Mendel algorithm and its variants [16,17,18], back-propagation algorithm 

[19], fuzzy C-means algorithm [20], or genetic algorithms [21,22]. 

3   IFIS of Takagi-Sugeno Type Adaptation 

There has been developed many approaches to adapt FISs in the literature, e.g. neural 

networks, genetic algorithms, Kalman filter, see e.g. [23,24]. In this paper, we use the 



following algorithms to adapt IFIS (and FISs): subtractive clustering algorithm (SCA) 

[25], Moore-Penrose pseudo-inverse (MPPI), Kalman filter [26], Kaczmarz algorithm 

[27,28], and gradient algorithm [23]. 

The identification of IFISs consists of the following steps. First, cluster centres are 

found to construct the number N of if-then rules and the antecedents of the if-then 

rules. Second, optimize the consequents of the rules, i.e. parameters a


1,k,a


2,k, … 

,a


n,k,b

 and a


1,k,a


2,k, … ,a


n,k,b


. The number of cluster centres c is equal to the 

number of if-then rules N, c=N, and k=1,2, … ,N is the index of the cluster centre. It is 

determined automatically using a SCA. The radius of influence of a cluster ra is 

considered the most important parameter in establishing the number of cluster centres 

c. A large ra results in fewer clusters, while a small ra generates a large number of 

clusters and, thus, can lead to model over-fitting. 

In the subtractive clustering algorithm, each data point is considered as a potential 

cluster centre. A measure of potential of data point xk is defined as follows 
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where α=4/ra
2
. Thus, a data point xk with many neighbouring points xj has a high 

potential value Pk. The data point with the highest potential represents the cluster 

centre of the first cluster. Then, an amount of potential from each data point is 

subtracted as a function of its distance from the first cluster centre 
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where x1
*
 is the centre of the first cluster, P1

*
 is the potential of x1

*
, and β=4/rb

2
. The 

positive constant rb represents the radius defining the neighbourhood that will have 

measurable reductions in potential Pk. 

Let each input vector xk
*
 is decomposed into two component vectors yk

*
 and yk

*
, 

where yk
*
 contains first n elements of xk

*
 (input data) and yk

*
 contains the output 

component (for a multi-input and single-output system). Each cluster centre xk
*
 is 

considered an if-then rule. The output y is represented by a weighted average of the 

output of each rule (2). Since we use a IFIS of Takagi-Sugeno type of the first order, 

i.e. f(x1,x2, ... ,xm) is a linear function, we can compute the yk
* 

as follows 

yk
*
=Gkyk+hk,     (7) 

where Gk is a constant vector and hk is a constant. The estimation of the parameters of 

the given model can be understood as least squares estimate (LSE) in the form AX=B, 

where B is a matrix of output values, A is a constant matrix, and X is a matrix of 

parameters to be estimated. 

Let P is the set of linear parameters and X is an unknown vector whose elements 

are parameters in P. Then, we seek the optimal solution of X using a LSE X*. In this 

process, the squared error ||AX–B||
2
 is minimized. The LSE X* can be calculated 

using the pseudo-inverse of X as follows 



X*=(A
T
A)

-1
A

T
B,     (8) 

where A
T
 is a transpose of A, and (A

T
A)

-1
A

T
 is the pseudo-inverse of A if A

T
A is non-

singular. A generalization of the inverse matrix A
-1

 is called MPPI A
+
. 

A sequential method of LSE (also known as recursive LSE) can be used to 

compute X* [23]. This method is more efficient, especially for a low number of linear 

parameters. Let ai
T
 is is the i-th input vector of matrix A and bi

T
 is the i-th element of 

B. Then X can be calculated using the following formulas (online version) 

Xi+1=Xi+Si+1ai+1(b
T

i+1–a
T

i+1Xi), Si+1=1/λ[Si–(Siai+1a
T

i+1Si)/(λ+a
T

i+1Siai+1)],    (9) 

where Si is the covariance matrix, λ is the forgetting factor, and X*=Xn. The initial 

conditions are X0=0 and S0=γI, where γ is a positive large number and I is the identity 

matrix. A small λ shows on the fast effects of old data decay. The LSE of X can be 

interpreted as the Kalman filter for the process [26] 

X(k+1)=X(k), Y(k)=A(k)X(k)+e,    (10) 

where e is noise, X(k)=Xk, Y(k)=bk and A(k)=ak. Therefore, the sequential method of 

the LSE presented above is referred to as the Kalman filter algorithm. Kalman filters 

have been used to optimize the output function parameters FISs of Takagi-Sugeno 

type [29], to extract if-then rules from a given rule base of FISs [30], and to tune the 

input membership functions [31]. Another method used to compute the LSE X* is the 

Kaczmarz algorithm. This algorithm is based on the following formula 

k

k

T

k

T

kkk
kk a

aa

Xab
XX


1

. 
   (11) 

Another possibility to adapt an IFIS is represented by gradient algorithms. Let the 

i-th error is defined as Ei=(yi–oi)
2
, where yi is the actual output and oi is the predicted 

output. Then, the total error E is given as E=ΣEi. The derivative of the overall error 

measure E with respect to a generic parameter α is 


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The update formula for the generic parameter α is defined as 
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where η is the learning rate, h is the step size and the length of each gradient transition 

in the parameter space. Usually, we can change the value of h to vary the speed of 

convergence. Some practical difficulties associated with gradient descent are slow 

convergence and ineffectiveness at finding a good solution [31]. 



4   Experimental Results 

The following regression datasets were selected for the modelling using IFISs: 

Friedman benchmark function [32], daily electricity energy [33], stock prices [34], 

and auto MPG dataset [35], for details see Table 1. 

Table 1. Description of regression datasets. 

 

Dataset 

Friedman Energy Stock AutoMPG 

Origin Artificial Real world Real world Real world 

Input variables 5 6 9 5 

Real / integer / nominal 5/0/0 6/0/0 9/0/0 2/3/0 

Instances 1200 365 950 392 

 

Friedman dataset is a synthetic benchmark dataset where the instances are 

generated using the following method. Generate the values of n=5 input variables, 

x1,x2, ... ,x5 independently each of which uniformly distributed over [0.0, 1.0]. Obtain 

the value of the target variable y using the equation y=10(sin(π)x1x2)+20(x3–

0.5)
2
+10x4+5x5+e, where e is a Gaussian random noise N(0,1).  

The Energy problem involves predicting the daily average price of TkWhe 

electricity energy in Spain. The data set contains real values from 2003 about the 

daily consumption in Spain of energy from hydroelectric, nuclear electric, carbon, 

fuel, natural gas and other special sources of energy.  

In the stock prices dataset, the data provided are daily stock prices from January 

1988 through October 1991, for ten aerospace companies. The task is to approximate 

the price of the 10th company given the prices of the rest.  

The AutoMPG dataset concerns city-cycle fuel consumption in miles per gallon 

(Mpg), to be predicted in terms of 1 multi-valued discrete and 5 continuous attributes 

(two multi-valued discrete attributes (Cylinders and Origin) from the original dataset 

are removed). 

Datasets were divided into training and testing data in relation 1:1. This division 

was realized five times. The quality of regression was measured by RMSE on testing 

data. We conducted the experiments in Matlab Fuzzy Logic Toolbox using the 

adaptation algorithms available at [36]. 

The parameters of FISs and IFISs are set in the following way. The initial setting 

of FISs and IFISs was conducted using SCA. The number N of if-then rules (and the 

numbers of membership and non-membership functions at the same time) depends on 

the choice of parameter ra in SCA primarily. In order to avoid over-fitting, we tested 

different values of ra={0.1,0.2, … ,0.9}. For the IFISs, the IF-index is set on π=0.3 

(medium level of hesitancy recommended in [14]) and, therefore, the membership and 

non-membership functions are defined in the following way 
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The settings of FISs and IFISs parameters are presented in Table 2. In our 

experiments, we used the following settings of adaptation methods: 

- Gradient algorithm: maximum number of epochs was set to 500, step size h=0.01, 

step increasing rate to 1.1, and step decreasing rate to 0.9; 

- Kaczmarz algorithm: maximum number of sweeps was set to 10; 

- Kalman filter: data forgetting factor was set to λ=1.0 and its increasing factor to 1.0; 

- MPPI: no parameters; 

Table 2. Parameters of FISs and IFISs. 

Dataset Friedman Energy Stock AutoMPG 

Type of (x) and (x) Gaussian Gaussian Gaussian Gaussian 

Radius ra 0.6 0.7 0.5 0.7 

N of if-then rules 26 7 12 4 

t-norm MIN MIN MIN MIN 

 

Experiments were realized for various weights β={0.0,0.1, … ,1.0} of the 

subsystems with non-membership functions (x). Concretely, if β=0.0 the output of 

the IFIS is determined only by the subsystem with membership functions (x) while 

for β=1.0 only the output of the subsystem with non-membership functions (x) has 

impact on the IFIS output. The results of the experiments for β with minimum RMSE 

on testing data is presented in Table 3. The FISs and IFISs with adaptation achieved 

significantly lower RMSE (values in bold based on paired sample t-test at p=0.05) 

than those without adaptation (SCA). For all the datasets, using adapted IFISs resulted 

in the decrease in RMSEs.  

Table 3. RMSE and its standard deviation on benchmark datasets. 

Method 

Dataset 

Friedman Energy Stock AutoMPG 

FIS-SCA 1.538±0.020 0.494±0.030 2.378±0.584 3.405±0.254 

IFIS-SCA  1.538±0.020 

(β=0.0) 

0.494±0.030 

(β=0.0) 

2.378±0.584 

(β=0.0) 

3.405±0.254 

(β=0.0) 

FIS-gradient 1.353±0.026 7.443±1.579 1.423±0.227 3.702±0.211 

IFIS-gradient 1.332±0.032 

(β=0.1) 

4.776±2.776 

(β=0.5) 

1.402±0.219 

(β=0.1) 

3.684±0.195 

(β=0.1) 

FIS-Kaczmarz 1.759±0.099 0.619±0.246 1.888±0.267 3.991±0.355 

IFIS-Kaczmarz 1.581±0.159 

(β=0.3) 

0.505±0.034 

(β=0.1) 

1.708±0.340 

(β=0.2) 

3.880±0.554 

(β=0.1) 

FIS-Kalman 1.412±0.031 0.760±0.551 0.944±0.046 2.881±0.113 

IFIS-Kalman 1.353±0.039 

(β=0.2) 

0.437±0.031 

(β=0.6) 

0.914±0.044 

(β=0.2) 

2.825±0.100 

(β=0.3) 

FIS-MPPI 1.411±0.047 0.474±0.038 0.943±0.045 2.866±0.113 

IFIS-MPPI 1.352±0.049 

(β=0.2) 

0.435±0.027 

(β=0.6) 

0.913±0.044 

(β=0.2) 

2.821±0.101 

(β=0.3) 

 

For comparison, FISs and IFISs with corresponding adaptation methods are shown. 

In the case of Friedman dataset, the dependence of RMSE (testing data) on β is 



depicted in Fig. 1 (SCA) and Fig. 2 (gradient algorithm). When IFIS is identified 

using SCA only (i.e. it is not adapted subsequently), RMSE increases with rising β for 

all datasets (minimum RMSE for IFIS-SCA is achieved for β=0.0). In the case of 

gradient algorithm it is possible to reduce RMSE when combining the outputs of both 

subsystems with β=0.1. For the Friedman dataset (the most complex dataset in terms 

of N and the numbers of membership and non-membership functions), gradient 

algorithm provided the best result but for the Energy dataset this algorithm did not 

converge and for the Stock and AutoMPG datasets it was outperformed by the 

Kalman filter and MPPI, respectively. For the Energy dataset, the behaviour of IFIS 

differs from that one for the other datasets. The lowest RMSE is achieved for the 

Kalman filter and MPPI with β=0.6, i.e. both subsystems (with membership and non-

membership functions) contribute with a similar magnitude.  

 
Fig. 1. Relation between β and RMSE for IFIS identified by SCA on Friedman dataset. 

 
Fig. 2. Relation between β and RMSE for IFIS adapted by gradient algorithm on Friedman 

dataset. 

5   Conclusion 

In this paper, we have introduced IFIS of Takagi-Sugeno type. We have proposed 

several methods to adapt the parameters of this class of systems. We conclude that 

Kalman filter and MPPI are suitable to adapt the linear functions in the consequents 

of the IFIS if-then rules. However, gradient algorithm may perform better than these 



methods for more complex problems. The antecedents parts of if-then rules, 

membership functions (x) and non-membership functions (x) were identified 

using SCA. For all the tested datasets, it was possible to significantly decrease RMSE 

on testing data when both an appropriate adaptation method was applied and the 

subsystems with membership and non-membership functions were combined 

properly. 

In further research we plan to use a wider range of benchmark datasets to test the 

relation between data complexity and behaviour of IFISs (the value of IF-index 

especially). We also suggest comparing the two related concepts, IFISs and IT2FISs 

of Takagi-Sugeno type on regression problems (using also other performance 

measures such as R
2
 or MAE) to show the differences between these two 

generalizations of FISs. Finally, IFISs should be tested on data with additional noise 

since generalizations of FISs have been proven to be especially beneficial in the cases 

where data was corrupted by measurement or estimated noise [37]. 
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