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Abstract. Thresholding process is a fundamental image processing method.
Typical thresholding methods are based on partitioning pixels in an im-
age into two clusters. A new thresholding method is presented, in this
paper. The main contribution of the proposed approach is the detection
of an optimal image threshold exploiting the empirical mode decomposi-
tion (EMD) algorithm. The EMD algorithm can decompose any nonlin-
ear and non-stationary data into a number of intrinsic mode functions
(IMFs). When the image is decomposed by empirical mode decomposi-
tion (EMD), the intermediate IMFs of the image histogram have very
good characteristics on image thresholding. The experimental results are
provided to show the effectiveness of the proposed threshold selection
method.
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1 Introduction

Image thresholding is one of the main and most important tasks in image analysis
and computer vision. Thresholding principle is based on distinguishing an object
from the background in order to extract useful information from the image.

A large number of image thresholding techniques have been proposed in
the literature [1]. However, the design of a robust and an efficient thresholding
algorithm is far from being a simple process, due to the existence of images
depicting complex scenes at low resolution, uneven illumination, scale changes,
etc.

Thresholding techniques could be categorized in six groups [1] according to
information being exploited. These categories are:

– Shape-based methods, which analyze the shape of the image histogram (i.e.,
the peaks, valleys and curvature). Each method uses different forms of shape
properties, such as distance from the histogram convex hull [2], autoregres-
sive modelling [3], overlapping peaks, etc.
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– Clustering-based methods, which label the gray-level samples as background
or foreground (object), or alternatively they model them as a mixture of two
Gaussians [4–8]. In this category, the gray-level data undergoes a clustering
analysis, with the number of clusters being always equal to two.

– Entropy-based methods, which use the entropy of the foreground and the
background regions, the cross-entropy between the original and the binarized
image etc. [9, 10]. These algorithms exploit the entropy of the distribution
of the gray levels in an image, by maximizing the entropy of the thresholded
image or by minimizing the cross entropy.

– Attribute-based methods, which seek a measure between the gray-level and
the binarized images, such as fuzzy shape similarity, edge coincidence, etc.
[11, 12]. These algorithms evaluate the threshold value by using attributes
quality or similarity measures between the initial gray-level image and the
output binary image, such as edge matching, shape compactness, gray level
moments, connectivity, texture or stability of segments objects [12], or fuzzy
measures [11], etc.

– Spatial methods, which exploit higher-order probability distribution and/or
correlation between the image pixels [13, 14]. The algorithms in this category
utilize not only the gray level distribution, but also the dependency of pix-
els in a neighborhood, for example, the probabilities, correlation functions,
cooccurrence probabilities, local linear dependence models of image pixels,
2-D entropy, etc.

– Local methods, which adapt the threshold value on each image pixel to the
local image characteristics, such as range, variance [15–17], contrast, surface-
fitting parameters of the pixel neighborhoods, etc.

This paper presents a novel, fast and robust image thresholding method. The
method is based on the decomposition of the image histogram by the Empir-

ical Mode Decomposition (EMD) [18] to its Intrinsic Mode Functions (IMFs).
More specific, the decomposition is performed by the Ensemble Empirical Mode

Decomposition (EEMD) [19], which provides noise resistance and assistance to
data analysis. The properties of the desired IMFs [18, 19] will be shown that
provide an efficient threshold for the image under examination.

The remainder of the paper is organized as follows. The thresholding method
is introduced in Section 2. Experimental results are shown in Section 3 and
conclusions are drawn in Section 4.

2 Threshold Selection Based-On EEMD

In this Section, the image threshold selection method is introduced. This method
is fully automated and is based on the IMFs extracted by the EEMD [19] algo-
rithm applied on the histogram of the image under examination. More details
regarding the Ensemble Empirical Mode Decomposition (EEMD) and the de-
rived Intrinsic Mode Functions (IMFs), their properties and all the adopted
assumptions are presented in [18, 19].
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Fig. 1. An image for color blindness test and its normalized histogram.

The histogram h(k) is computed for an input image I with k = 0 . . . G and G

being the maximum luminance value in the image I, typically equal to 255 when
8-bit quantization is assumed. Then, the probability mass function of the image
histogram is defined as the normalized histogram by the total pixel number:

p(k) =
h(k)

N
, (1)

where N is the total number of image pixels. An example of an image and its
normalized histogram is depicted in Figure 1.
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Fig. 2. The IMFs of the histogram for the image depicted in Figure 1 with a Gaussian
noise of amplitude 0.2 and 1000 trials are performed.

In the sequence, the proposed method analyzes the normalized histogram
p(k) of an image into its intrinsic mode functions (IMFs) exploiting the ensemble
empirical mode decomposition (EEMD) algorithm. The IMFs of the histogram of
the image shown in Figure 1, are presented in Figure 2. The IMFs are produced
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using the EEMD algorithm with a Gaussian noise of amplitude equal to 0.2 and
1000 trials. The number of the extracted IMFs (including the residue function)
for a 8-bit quantized image is log2(256) = 8.
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Fig. 3. The histogram of the image shown in Figure 1 (thin line) and the summation
of the c2 to c5 IMFs (fat line).

One can easily notice in Figure 2 that the first IMF c1 mainly carries the
histogram “noise”, irregularities and the sharp details of the histogram, while
IMFs c6, c7 and the residue R mostly describe the trend of the histogram. On
the other hand, IMFs c2 to c5 describe the initial histogram with simple and
uniform pulses. This is the main reason that the proposed method is focused on
c2 to c5 IMFs. Let us now define the summation cm of these IMFs as follows:

cm =

5
∑

i=2

ci. (2)

Figure 3 depicts the summation cm (fat line) in contrast to the initial nor-
malized histogram (thin line). One can notice that this summation cm describes
the main part of the histogram leaving out all its meaningless details.

The minimum of summation cm is given by:

T ∗ = arg

{

min
0≤T≤G

cm(T )

}

, (3)

where T ∗ is the desired image threshold. Since the summation cm provides a
better, more clear and uniform formation of the image histogram, its minimum
can be considered as an optimal threshold for the input image and its efficiency
will be experimentally shown in the next Section.

Finally, the overall algorithm could be summarized in Figure 4.
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Fig. 4. The histogram of the image shown in Figure 1 (thin line) and the summation
of the c2 to c5 IMFs (fat line).

3 Experimental Results

In this Section, the performance of the proposed method is examined by pre-
senting numerical results using the introduced thresholding approach on vari-
ous synthetic and real images, with different types of histogram. The obtained
results are compared with the corresponding results of four well-known thresh-
olding methods [11, 4–6]. In all the experiments, the EEMD algorithm was used
with a noise of amplitude equal to 0.2 and 1000 trials are performed.

(a) (b)

(c) (d)

Fig. 5. Various images (left column) and their corresponding thresholded images pro-
duced by the proposed method (right column).

Figure 5 presents various real and synthetic images and their corresponding
thresholded images obtained by the proposed approach. The left column shows
the initial images, while the right column depicts the corresponding thresholded
images produced by the proposed algorithm. One can clearly see that the pro-
posed method can efficiently threshold the images under examination. Table 1
confirms the results in terms of the well known Tanimoto/Jaccard error [20] E(·)
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Fig. 6. Thresholded images: (a) ground truth, (b) proposed method, (c) Kittler’s
method, (d) Otsu’s method, (e) Huang’s method and (f) Kwon’s method.
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defined here as:

E(o,m) = 1−

∫

Io∩Im

dxdy

∫

Io∪Im

dxdy

, (4)

where Im and Io are the extracted and the desired thresholded images respec-
tively. In Table 1, the desired thresholded images have been extracted manually
and then, compared (4) with the acquired thresholded images produced by the
proposed method and four well known thresholding methods [11, 4–6]. The er-
rors of the proposed methods are small enough to enforce one to claim that they
are insignificant. On the contrary, the other four methods produce larger errors,
a fact that is also depicted in Figure 6. The thresholded images produced by the
proposed algorithm are more efficient. In Table 1, is also shown, the thresholds
produced by the corresponding algorithms (the value in the parenthesis).

Table 1. Threshold values determined by five threshold selection methods with the
corresponding area difference measure results.

Method Color blindsness MRI image Doc. image 1 Doc. image 2
(Fig. 5(a)) (Fig. 5(b)) (Fig. 5(c)) (Fig. 5(d))

Proposed 0.006 (46) 0.006 (135) 0.017 (126) 0.136 (75)
Kittler’s [4] 0.738 (179) 0.834 (193) 0.998 (195) 0.136 (75)
Otsu’s [6] 0.615 (136) 0.100 (86) 0.091 (45) 0.781 (140)
Huang’s [11] 0.711 (169) 0.230 (1) 0.085 (170) 0.760 (122)
Kwon’s [5] 0.577 (110) 0.228 (48) 0.063 (152) 0.730 (101)

Figure 6 presents the thresholded images extracted by the proposed and
the rest algorithms [11, 4–6]. Figure 6a shows the ground truth which manually
extracted in order to calculate the numerical results depicted in Table 1. Figure
6b depicts the thresholded images produced by the proposed algorithm, while
Figures 6c-6f show the thresholded images acquired by the Kittler’s method [4]
(Fig. 6c), Otsu’s method [6] (Fig. 6d), Huang’s method [11] (Fig. 6e) and Kwon’s
method [5] (Fig. 6f).

Finally, Figure 7 shows various images (left column) and their corresponding
thresholded images acquired by the proposed method. All images in Figure 7
depict complex scenes, especially Figure 7(d). However, the proposed algorithm
thresholds these images in a very reasonable way, a fact that is also proved in
Figures 5 and 6 and in parallel provides better performance than the other four
methods.

However, the algorithm fails to threshold an image correctly when the desired
cluster is too small.
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Fig. 7. Various images (left column) and their corresponding thresholded images pro-
duced by the proposed method (right column).

4 Conclusion

In this paper, a novel image thresholding method is introduced. The proposed ap-
proach exploits ensemble empirical mode decomposition (EEMD) to analyze the
normalized histogram of the image under examination into a number of intrinsic
mode functions (IMFs). The proposed algorithm uses only specific components,
the intermediate IMFs of the EEMD decomposition, in order to evaluate an
optimal image threshold. The effectiveness of the proposed threshold selection
method is proved in the experimental results Section where the proposed thresh-
olding algorithm is applied to various images with simple and complex scenes.
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