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Abstract. Minimum description length (MDL) principle is one of the well-
known solutions for overlearning problem, specifically for artificial neural 
networks (ANNs). Its extension is called representational MDL (RMDL) 
principle and takes into account that models in machine learning are always 
constructed within some representation. In this paper, the optimization of ANNs 
formalisms as information representations using the RMDL principle is 
considered. A novel type of ANNs is proposed by extending linear recurrent 
ANNs with nonlinear “synapse to synapse” connections. Most of the 
elementary functions are representable with these networks (in contrast to 
classical ANNs) and that makes them easily learnable from training datasets 
according to a developed method of ANN architecture optimization. 
Methodology for comparing quality of different representations is illustrated by 
applying developed method in time series prediction and robot control. 
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1   Introduction 

Machine learning is one of the key paradigms in artificial intelligence, and ANNs 
pretend to be one of the universal approaches to learning. Such properties as self-
adaptability, ability to generalize, and others are usually ascribed to ANNs as opposed 
to the traditional algorithms [1]. But the origin of these properties is rarely strictly 
explained. They are frequently grounded only by the presence of analogy between 
ANNs and real neural networks. At the same time, it can be said from bionic point of 
view that formal and biological neurons have almost nothing in common. Existing 
biophysically detailed neuronal models imitate their behavior much more precisely. 
However, learning is the very feature of neurons that has no plausible biophysical 
models, and thus cannot be really borrowed by ANNs. 
 As the result, there is no general theory of ANN learning. Particular training 
algorithms are proposed for all specific ANN architectures. Moreover, these 



algorithms are quite classical and external to ANNs. Neuroglial networks with 
learning algorithms encoded within astrocytic nets [2] are rather interesting, because 
different learning rules can be made internal for them. However, the origin and 
structure of these rules remain unclear. Thereupon, recurring declarations about self-
learning capabilities of ANNs and their distinctions from the traditional algorithms 
seem to be paradoxical. Apparently, ANNs don’t solve the problem of machine 
learning. In particular, one difficult issue for them is overlearning, which has no good 
explanation in the ANN theory. Indeed, overlearning is typically prevented by 
restricting the training time. Nevertheless, popularity of ANNs is not accidental, but 
one should strictly describe their benefits in order to improve them further. 
 In this paper, ANNs are analyzed in the inductive inference framework. Induction 
is interpreted as construction of a model optimally describing the given data. Such the 
inductive inference methods include a model quality criterion, a model space, and a 
search strategy as their components [3]. 
 The Kolmogorov complexity [4] with the set of all algorithms as the model space is 
known to be the correct basis for universal inductive inference [5]. However, the 
search problem is unsolvable here. Even computable analogs such as the Minimum 
Description Length (MDL) principle [6] and its counterparts [7, 8] are non-strictly 
applied in practice. Even so, they help to solve overlearning problem [9]. Here, 
information-theoretic analysis of ANNs is deepened on the base of the recent 
Representational MDL (RDML) principle [10], which takes into account that models 
are always constructed within certain representations. ANNs can also be interpreted 
as a specific algorithmic representation. This interpretation helped us to explain their 
good properties, which have an effect on all the component of induction. 
 The main contribution of this work is an extension of the information-theoretic 
approach from construction of a single ANN with some architecture to optimizing 
some ANN formalism as a data representation for a given set of learning tasks. 
Application of the RMDL framework for comparing quality of different ANN-based 
representations is illustrated with the use of a developed particular ANN type tested 
on the tasks of time series prediction and robot control. 

2   Previous Works 

Let’s consider ANN learning as the induction problem, which requires introduction of 
a model space, a model quality criterion, and a search procedure. 
 The most widely used model selection criterion is MAP (maximum a posterior 
probability) calculated on the base of the Bayes’ rule. However, its usage leads to the 
fundamental problem of prior probabilities [11], which cannot be inferred within 
statistical methods. These probabilities are sometimes ignored resulting in the 
maximum likelihood approach that leads to overlearning. 
 Theoretical solution of this problem was given quite long ago by several authors [6, 
7, 12] on the base of Kolmogorov complexity introduced in the algorithmic 
information theory. Kolmogorov complexity of the given string (data) D is defined as 



the length l(H) of the shortest program (model) H for the Universal Turing Machine 
(UTM) U reproducing the given string U(H)=D: 

K(D) = min
H

l (H ) |U(H) = D[ ] . (1) 

 Here, the model space contains all the algorithms. It appeared to be useful to divide 
each model into two parts: regular and random components. The best model can be 
defined using the conditional Kolmogorov complexity: 

H * = arg min
H

l (H ) + K (D | H )[ ] , (2) 

where K(D |H) = min
R

l (R) |U(HR) = D[ ], and the string R is the input to the program 

H necessary to reconstruct the data D (or the data description encoded with the model 
H). This leads to the MDL principle, in which the best model is determined by 
minimizing the sum l(H)+K(D|H). Using connection between information quantity 
and probability, one can write [13]: –log2P(H)=l(H) and –log2P(D|H)=K(D|H). 
 Prior probabilities of models are defined on the base of lengths of corresponding 
UTM programs leading to the universal priors, which are still under discussion [14]. 
Besides the search problem, these priors are inapplicable, because particular induction 
tasks require large amount of prior information influencing the model selection 
criterion. For this reason, the MDL principle is used in its inexact verbal form, and 
heuristic coding schemes are contrived in order to compute description lengths. 
 In particular, the MDL principle was applied in this heuristic way to solve the 
problem of ANN architecture optimization [15-17]. In these works, components of the 
description length are calculated within some ANN coding schemes. Partial solution 
of the overlearning problem is achieved here, because increase of the model precision 
at the cost of increase of its complexity (the number of neurons and connections) is 
allowed only in the case, when it decreases the total description length [9, 18]. 
 However, heuristic coding schemes are ungrounded. They introduce non-optimal 
inductive bias into model selection criteria, and specify arbitrary model space 
containing regularities, which can be inadequate for the given learning task. For 
example, activation functions are rarely considered as model components that also 
should be optimized. Moreover, ANNs with restricted architecture (e.g., radial basis 
function networks [19] or multilayer perceptrons [9]) are typically considered. The 
possibility of inclusion of ANN formalisms themselves into the optimization process 
on the base of information-theoretic criteria has not been considered yet, despite the 
fact that such the optimization can be more significant than optimization of a single 
ANN within particular formalisms. 

3   Methodology 

Particular ANN formalisms define algorithmically incomplete model spaces, which 
adequacy is not analyzed. Consequently, regularities in the data can be inexpressible 
within the selected formalism leading to bad learning capabilities. This fact is 
typically ignored because of the well-known proof that ANNs are universal 



approximators [20]. This proof is cited even in the papers devoted to the MDL-based 
ANNs [17]. This contradiction arises from a lack of understanding that approximation 
of any function with preset accuracy is insufficient in machine learning. If some 
regularity in the data is not expressible in the given model space, overlearning cannot 
be completely avoided: Ptolemy's epicycles can approximate planetary orbits only 
with precision restricted by observation errors, because they don’t capture underlying 
regularities and thus cannot generalize in contrast to Kepler’s model. Arbitrary 
regularities are expressible only with the use of the algorithmically complete model 
space, but the search in this space is currently unachievable. Thus, narrowing the 
model space is unavoidable in applied tasks. But this just means that special attention 
should be paid to the problem of the model space selection (also, in the case of 
ANNs). Heuristic coding schemes not only specify restricted model spaces, but also 
introduce inductive bias assigning different complexities for models. 
 The formalized notion of representation replaces heuristic coding schemes within 
the RMDL principle that focuses attention on the selection of an optimal 
representation for any given class of inductive inference tasks. This principle was 
applied to construction of “essentially” learnable computer vision methods [21], but 
its significance can be extended on the fundamental issues of machine learning. 
 It can be noted that ANNs of the same type are trained on different data samples 
independently. Thus, we can set a mass problem of induction. Let a set D={Di} of 
data samples is given, and the best model for each sample Di should be constructed 
independently. Data samples can contain mutual information (at least in the form of 
similar regularities). Consequently, the sum of their individual complexities K(Di) 
will be much higher than the complexity of their concatenation K(D1…Dn). 
 Thus, the universal criterion (1) is not applicable in this case, because individual 
models of Di will be much worse than their common model. However, we can include 
some prior information S into the method developed specially for the mass problem 
D, and each data sample Di will be described conditionally with the given S. 
 Independent descriptions of Di with the given S can be almost as efficient as their 
common description. Here, one should require that (∀D ∈ D)(∃H,R)U(SHR) = D . 
Such program S can be called representation, within which a model H can be 
constructed for each data D. Optimal representation can be chosen using 

K (D1D2...Dn ) ≈ min
S

K (Di | S)
i=1

n

∑ + l (S)
 

 
 

 

 
 , S* = arg min

S
K (Di | S)

i=1

n

∑ + l (S)
 

 
 

 

 
  . 

(3) 

 This gives the mentioned RMDL principle for choosing the best representation for 
the given set D, which minimizes the summed description length of all data samples 
and the representation itself. Each ANN formalism or architecture has its own 
executing algorithm, which precisely corresponds to the definition of the 
representation. These algorithms aren’t affected during ANN learning on the specific 
data Di, but they can be optimized for each mass problem D using the criterion (3). 



4   A Model Representation with Dynamic ANNs 

The criterion (3) gives quantitative evaluation of representation quality, but it can also 
be estimated qualitatively by analysis of a set of expressible regularities. For example, 
outputs of a feedforward network with linear activation function are linear 
combinations of its inputs independent from the number of hidden neurons. Thus, 
such the ANN can represent only linear models. Because of this severe limitation, 
nonlinear activation functions are typically introduced. However, let’s consider linear 
dynamic (recurrent with continuous time) ANN containing M neurons, which 
activities xi(t) follow the law: 

′ x i (t) = dxi (t)
dt

= w ji x j (t)
j=1

M

∑  , 
(4) 

where wji are connection weights constituting a matrix W. 
 Starting from some initial values xi(0), activities xi(t) will evolve producing some 
functions as an output. Well-known general solution of the system of homogeneous 
linear differential equation has the form exp(Wt) corresponding to the mixture of 
harmonic, exponential, and polynomial functions, which appear to be representable by 
such ANNs. Consequently, even linear dynamic ANNs can be called “universal 
approximators” that can fit any regular function. One interesting application is time 
series forecasting, in which the data D={y(t1),…,y(tn)} is given, where the values 
y(ti)=(y1(ti),…, yN(ti)) of N-dimensional vector are observed at some moments of time 
ti ∈ [0,Tmax]. The task is to predict values y(t) for t >Tmax. 
 Such the connection weights wij and such the initial activities xi(0) should be found 
that the activities xi(t) are most precisely correspond to the values yi(t). Naïve 
approach leads to minimization of the mean-square error: 

E2 = 1
n

y j (t i ) − x j (t i )( )2

j=1

N

∑
i=1

n

∑  . 
(5) 

 The number of neurons M should be not less than the dimension N of the vector y, 
but it can be larger. In this case, additional neurons can be treated as hidden dynamic 
variables. They are not included into the MSE criterion (5). Apparently, increase of 
the number of additional neurons will result in decrease of the MSE as well as in 
overfitting. In accordance with the MDL principle, the model complexity should also 
be taken into account in addition to the description length of the data encoded within 
the model that can be estimated as nNlog2E (accurate to a constant). 
 ANN model description includes information about the number of neurons 
(roughly log2M bits), established connections (roughly log2K+log2C(K,M 2) bits), their 
weights (0.5Klog2n bits), and initial values of activity (0.5Mlog2n bits). Total MDL 
criterion for the ANN with M neurons and K connections can be roughly estimated as 

nKMCKMEnNL K
M 22222 log)(5.0loglogloglog 2 +++++=  . (6) 



 To find the best ANN, one should consider and optimize ANNs with different 
number of neurons and connections. In order to reduce computational complexity of 
this process, we utilized an iterative scheme, in which new neurons are consequently 
added and redundant connections are removed if these operations result in reduction 
of the description length criterion (6). We considered and implemented a combination 
of several optimization techniques (stochastic gradient descent, genetic algorithms, 
and simulated annealing) for optimizing ANNs with fixed architecture. Unfortunately, 
detailed analysis of this search problem goes beyond the scope of the paper. 
 Experimental validation of the developed algorithm showed that low-sized ANNs 
are automatically chosen if the data D is generated using combinations of harmonic, 
polynomial, and exponential functions. These ANNs extrapolated the given functions 
with relative errors less than 2% on interval [Tmax, 2Tmax]. Such precision is difficult to 
achieve with the use of conventional ANNs with nonlinear activation function, 
because all these elementary functions are not simultaneously representable by such 
ANNs. But they are representable by linear dynamic ANNs, which can extract these 
regularities from few data points and can make good predictions following from their 
high efficiency in terms of the RMDL principle. 
 Even linear dynamic ANNs can be rather useful, but still they define very restricted 
model space. Only extension of representable regularities can help to increase their 
learning power (and extrapolation capabilities) further. Thus, some type of 
nonlinearity should be introduced. However, typically used nonlinear activation 
functions violate the representability of the mentioned elementary functions. 
 In this context, it is not surprising that hybrid systems gain growing popularity. 
They include methods with different representable regularities, e.g., nonlinear ANNs 
and linear auto-regressive models [1]. However, the search problem in the 
heterogeneous model spaces is more difficult. Here, we propose a homogeneous 
representation, within which both linear and nonlinear models can be described. 
 It is natural to construct such the extension of the linear ANNs that will also 
incorporate models of nonlinear dynamic theory. These models are typically 
described with differential equations, which can be linear or can contain nonlinearity. 
 We propose to introduce optional nonlinearity by adding connections from neurons 
to other connections (“synapses on synapses”). The 2nd-order connections exert 
nonlinear influence on signals propagating through ordinary connections, but don’t 
change the connection weights themselves. Neurophysiologic prototypes are the 
modulating neurons. These connections can be introduced in the following way. 
Consider the system containing 3 neurons shown on the figure 1a. 
 

 
Fig. 1. General form of “connection on connection” (a); minimal (b) and automatically 
constructed (c) ANNs reproducing logarithmic function. 
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 Let the postsynaptic neuron activity be described by the following equation: 

′ x 1(t) = wx2
qx3( t )+1(t)  . (7) 

 ANNs with this structure can simply represent power functions as well as 
logarithmic functions (Fig. 1b). Chaotic modes of the dynamic systems are also 
representable. For example, a network reproducing the Lorenz attractor can be easily 
(manually) constructed. It can be seen that these ANNs define the wide model space 
containing perspicuous regularities. The mentioned above learning (search) procedure 
can be applied to these extended dynamic ANNs almost without modifications. 
 Our experiments showed that simple non-chaotic functions are automatically 
recovered rather reliably. However, even for the basic elementary functions the best 
network is not always constructed, because of complexity of the search problem. For 
example, the network on the figure 1c was reconstructed for the logarithmic function. 
This network contains two unnecessary connections. Nevertheless, its extrapolation 
error on the doubled time interval appeared to be less than 1%. 

The search problem becomes very difficult in the case of chaotic time series. 
Although different chaotic sequences are representable, the necessary ANN can 
hardly be found by the direct approximation of the data points. Apparently, this 
difficulty is connected with instability of chaotic trajectories of the dynamic systems 
that results in very non-monotonic landscape of the quality criterion under 
optimization. Since the individual trajectories of chaotic dynamic systems are almost 
irreproducible, it is more reasonable to reconstruct their invariant measure. This also 
can be done within the RMDL framework applied to the dynamic ANNs, if one uses 
such the representation that encodes the values y(ti) in accordance with the 
hypothesized invariant measure (defined by a particular ANN) instead of encoding the 
deviations of the output of this ANN from y(ti). Unfortunately, discussion of this 
method goes beyond the scope of the paper and requires additional research. 

5   Experiments 

At first, the developed ANN type and the method for its optimization were tested on 
the well-known Wolf annual sunspot time series. Wolf numbers till 1979 were used as 
the training sample. The constructed ANN contained 4 neurons, 11 connections, and 2 
second-order connections. Obtained prediction MSE value for 1980–1988 years 
equals to 220. The other methods mentioned in [18] show the MSE between 214 and 
625. Thus, the proposed ANN type is usable. Judging by the prediction accuracy and 
the ANN size, it can be concluded that overlearning is avoided. 
 Then, we performed comparison of the ANN-based representations on mass 
problems. These representations included linear ANNs, ANNs with non-linear 
activation function, and ANNs with second-order connections. The data samples Di 
were taken from a number of financial time series. The complexity of representations 
under comparison is similar, so we ignored l(S) term in the criterion (3); however, this 
term can be crucial in more advanced cases in order to avoid overlearning on the level 



of representations. Table 1 shows the value of the RMDL criterion (divided on the 
number of data samples), and the relative prediction error (10 points ahead). 

Table 1. The values of the RMDL criterion and the relative error for different types of ANNs 

ANN type RMDL, bits error, % 
Linear 651 15,8 

Activation function 617 10,1 
2nd–order connections 608 9,9 

 
 Although we obtained an agreement between the short-term prediction precision 
and the RMDL criterion in average, one can agree with the statement: “MSE and 
NMSE are not very good measures of how well the model captures the dynamics” 
[18]. One can hope that the MDL criterion is the better measure of how well the 
model captures the underlying regularities, and the RMDL principle helps to extend 
this criterion on representations. 
 Another considered mass problem for the ANN-based representations is the robotic 
control. Here, we used a wheel robot with two motors and sonar for measuring the 
distance to the obstacles. In this case, additional sensory neuron was included into the 
network. The training data samples Di were obtained by recoding the sensory input 
and the motor commands from the robot under the manual control used for obstacle 
avoidance. It should be pointed out that the quality criterion included only the 
approximation precision of motor commands (not the sensory input), and such the 
network could be constructed that directly approximates commands ignoring the 
sensory data. An example of successful extrapolation of a sequence of motor 
commands is given on the figure 2. It can be seen that the prediction results are 
relatively successful (and the robot controlled by the trained network performs free 
roaming with adequate reaction to obstacles). This implies that such the ANN was 
constructed, in which the sensory neuron was connected to the rest network in such 
the way that it helped to increase both approximation quality (in terms of the MDL 
criterion) and prediction accuracy. 

 
Fig. 2. Robot control commands reproduction (extrapolation is after vertical solid line). 

 
 The results of estimation of the RMDL criterion on a set of data samples were 1826 
bits for linear ANNs, 1793 bits for ANNs with the nonlinear activation function, and 
1798 bits for ANNs with 2nd-order connections. 



 In this case, the extrapolation precision is meaningless, because human chooses 
direction of movement during the obstacle avoidance randomly. Sometimes, the 
choice made by an ANN precisely corresponds to the human choice; but it cannot be 
guaranteed. So, one can rely only on the RMDL criterion that will hopefully reflect 
general adequacy of the robot movement. 
 The RMDL criterion values for both ANN types are compatible, but the ANN with 
the 2nd-order connections showed more interesting behavior. This result is 
understandable, because the control command sequences (as non-smooth functions) 
are not expressible within all the ANN-based representations under comparison. 

5   Conclusions 

The problem of comparison of learning power of ANN formalisms was considered as 
the optimization of model representations in the tasks of inductive inference. Model 
spaces defined by different ANN types are subsets of the set of all algorithms, so they 
can be optimized within the approach based on the algorithmic information theory. 
The simplicity of the descriptions of regularities, which presence is expected in the 
datasets, specifies the inductive bias defining prior probabilities of corresponding 
models and thus necessary amount of information for their reconstructions. 
 Such new modification of the ANN formalism was proposed, within which 
regularities corresponding to the elementary functions are representable as opposed to 
the ANNs with nonlinear activation functions. The method for optimization of such 
ANNs was developed. The number of neurons and connections between them is also 
controlled by the information-theoretic criterion in order to avoid overlearning. The 
methodology based on the RMDL principle for comparing quality of different 
representations was proposed and experimentally verified with the use of the 
developed method on tasks of time series prediction and robot control. Different 
representations appeared to be more efficient depending on the task. 

Our research showed that the RMDL principle can be used to compare the quality 
of representations while solving inductive mass problems. However, efficiency of 
representations cannot be reduced only to their RMDL quality. Even in the case of 
very simple nonlinear representations, it is very difficult to find the best model even if 
it exists in the specified model space. Representations should give not only the 
optimal inductive bias for some mass problem, but also should make the model search 
process more efficient. The speed priors are known [22], but one can expect that they 
also depend on the representation. Thus, the speed priors can be extended with the 
notion of representation, or equivalently the RMDL principle should incorporate the 
model search speed. 
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