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Abstract. Minimum description length (MDL) principle is on&f the well-
known solutions for overlearning problem, speclificdor artificial neural
networks (ANNS). Its extension is called represgomal MDL (RMDL)
principle and takes into account that models in hirex learning are always
constructed within some representation. In thisspae optimization of ANNs
formalisms as information representations using BRMDL principle is
considered. A novel type of ANNSs is proposed byeeging linear recurrent
ANNs with nonlinear “synapse to synapse” conneciomost of the
elementary functions are representable with thesvarks (in contrast to
classical ANNs) and that makes them easily leam&tdm training datasets
according to a developed method of ANN architectuwptimization.
Methodology for comparing quality of different regentations is illustrated by
applying developed method in time series predictiod robot control.
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1 Introduction

Machine learning is one of the key paradigms iifieidl intelligence, and ANNs
pretend to be one of the universal approachesaimilgg. Such properties as self-
adaptability, ability to generalize, and others asaally ascribed to ANNs as opposed
to the traditional algorithms [1]. But the origiti these properties is rarely strictly
explained. They are frequently grounded only by phesence of analogy between
ANNs and real neural networks. At the same timeait be said from bionic point of
view that formal and biological neurons have almusthing in common. Existing
biophysically detailed neuronal models imitate thehavior much more precisely.
However, learning is the very feature of neuroret tas no plausible biophysical
models, and thus cannot be really borrowed by ANNSs.

As the result, there is no general theory of AN®rhing. Particular training
algorithms are proposed for all specific ANN arehtures. Moreover, these



algorithms are quite classical and external to ANNeguroglial networks with
learning algorithms encoded within astrocytic H@{sare rather interesting, because
different learning rules can be made internal foen. However, the origin and
structure of these rules remain unclear. Thereuparyrring declarations about self-
learning capabilities of ANNs and their distinctiofrom the traditional algorithms
seem to be paradoxical. Apparently, ANNs don’t sothe problem of machine
learning. In particular, one difficult issue foreth is overlearning, which has no good
explanation in the ANN theory. Indeed, overlearniisgtypically prevented by
restricting the training time. Nevertheless, poptyaof ANNSs is not accidental, but
one should strictly describe their benefits in oetdeimprove them further.

In this paper, ANNs are analyzed in the inductiierence framework. Induction
is interpreted as construction of a model optimdégcribing the given data. Such the
inductive inference methods include a model qualiiterion, a model space, and a
search strategy as their components [3].

The Kolmogorov complexity [4] with the set of aligorithms as the model space is
known to be the correct basis for universal induectinference [5]. However, the
search problem is unsolvable here. Even computatééogs such as the Minimum
Description Length (MDL) principle [6] and its cawnparts [7, 8] are non-strictly
applied in practice. Even so, they help to solverarning problem [9]. Here,
information-theoretic analysis of ANNs is deepenen the base of the recent
Representational MDL (RDML) principle [10], whichKes into account that models
are always constructed within certain represemati®\NNs can also be interpreted
as a specific algorithmic representation. Thisrprtetation helped us to explain their
good properties, which have an effect on all thmponent of induction.

The main contribution of this work is an extensioihthe information-theoretic
approach from construction of a single ANN with soarchitecture to optimizing
some ANN formalism as a data representation forivengset of learning tasks.
Application of the RMDL framework for comparing dity of different ANN-based
representations is illustrated with the use of eetigped particular ANN type tested
on the tasks of time series prediction and robatrch

2 PreviousWorks

Let's consider ANN learning as the induction prablevhich requires introduction of
a model space, a model quality criterion, and acbearocedure.

The most widely used model selection criteriorMIAP (maximum a posterior
probability) calculated on the base of the Bayat.rHowever, its usage leads to the
fundamental problem of prior probabilities [11], ialn cannot be inferred within
statistical methods. These probabilities are samesti ignored resulting in the
maximum likelihood approach that leads to overlaayn

Theoretical solution of this problem was giventguong ago by several authors [6,
7, 12] on the base of Kolmogorov complexity introdd in the algorithmic
information theory. Kolmogorov complexity of thevgn string (datalp is defined as



the lengthl(H) of the shortest program (modél)for the Universal Turing Machine
(UTM) U reproducing the given stririg(H)=D:

K(D):qin[l(H)|U(H):D] . )

Here, the model space contains all the algorithteppeared to be useful to divide
each model into two parts: regular and random camapts. The best model can be
defined using the conditional Kolmogorov complexity

H* =argmidl (H)+K(D |H)] , 2

where K(D |H) = mRin[I (R) [U(HR) = D], and the stringR is the input to the program

H necessary to reconstruct the datéor the data description encoded with the model
H). This leads to the MDL principle, in which the sbanodel is determined by
minimizing the suml(H)+K(DJH). Using connection between information quantity
and probability, one can write [13]: —lgj(H)=I(H) and —logP(D|H)=K(D|H).

Prior probabilities of models are defined on tleséd of lengths of corresponding
UTM programs leading to the universal priors, wharle still under discussion [14].
Besides the search problem, these priors are iicajppe, because particular induction
tasks require large amount of prior informationluehcing the model selection
criterion. For this reason, the MDL principle isedsin its inexact verbal form, and
heuristic coding schemes are contrived in ordeotopute description lengths.

In particular, the MDL principle was applied inighheuristic way to solve the
problem of ANN architecture optimization [15-17h these works, components of the
description length are calculated within some ANdiog schemes. Partial solution
of the overlearning problem is achieved here, beeancrease of the model precision
at the cost of increase of its complexity (the nembf neurons and connections) is
allowed only in the case, when it decreases tla dietscription length [9, 18].

However, heuristic coding schemes are ungroundibdy introduce non-optimal
inductive bias into model selection criteria, angedfy arbitrary model space
containing regularities, which can be inadequate the given learning task. For
example, activation functions are rarely consideasdmodel components that also
should be optimized. Moreover, ANNs with restriciathitecture (e.g., radial basis
function networks [19] or multilayer perceptrong)[@re typically considered. The
possibility of inclusion of ANN formalisms themsely into the optimization process
on the base of information-theoretic criteria has Ibeen considered yet, despite the
fact that such the optimization can be more sigaift than optimization of a single
ANN within particular formalisms.

3 Methodology

Particular ANN formalisms define algorithmicallycmmplete model spaces, which
adequacy is not analyzed. Consequently, regulaiitigche data can be inexpressible
within the selected formalism leading to bad leagnicapabilities. This fact is
typically ignored because of the well-known prodfatt ANNs are universal



approximators [20]. This proof is cited even in thepers devoted to the MDL-based
ANNSs [17]. This contradiction arises from a lackwsfderstanding that approximation
of any function with preset accuracy is insuffidien machine learning. If some
regularity in the data is not expressible in theegi model space, overlearning cannot
be completely avoided: Ptolemy's epicycles can @pprate planetary orbits only
with precision restricted by observation errors;éhese they don't capture underlying
regularities and thus cannot generalize in conttasKepler's model. Arbitrary
regularities are expressible only with the usehaf algorithmically complete model
space, but the search in this space is currenthchiavable. Thus, narrowing the
model space is unavoidable in applied tasks. Batjtist means that special attention
should be paid to the problem of the model spadecten (also, in the case of
ANNS). Heuristic coding schemes not only specifgtrieted model spaces, but also
introduce inductive bias assigning different comjiles for models.

The formalized notion of representation replacesristic coding schemes within
the RMDL principle that focuses attention on thelestion of an optimal
representation for any given class of inductivesiahce tasks. This principle was
applied to construction of “essentially” learnalslemputer vision methods [21], but
its significance can be extended on the fundamésgaks of machine learning.

It can be noted that ANNs of the same type ar@dchon different data samples
independently. Thus, we can set a mass problemdhfction. Let a seb={D;} of
data samples is given, and the best model for sanipleD; should be constructed
independently. Data samples can contain mutuatnimdtion (at least in the form of
similar regularities). Consequently, the sum ofirthidividual complexitieskK(D;)
will be much higher than the complexity of theimcatenatiork(D;...Dy).

Thus, the universal criterion (1) is not appliealn this case, because individual
models oD; will be much worse than their common model. Howewe can include
some prior informatiors into the method developed specially for the masblpm
D, and each data sampe will be described conditionally with the givéh

Independent descriptions B with the givenS can be almost as efficient as their
common description. Here, one should require tiab 0 D)(CH,R)U(SHF)=D.
Such programS can be calledepresentation within which a modelH can be
constructed for each dalta Optimal representation can be chosen using

K(D,D,..D,) = msgn[z K(D; |9 +I (S)J, S = argsmi{z K(D; |9 +I (S)j . ©
i=l i=1

This gives the mentioned RMDL principle for chawgithe best representation for
the given seD, which minimizes the summed description lengtlalbdata samples
and the representation itself. Each ANN formalism aochitecture has its own
executing algorithm, which precisely corresponds ttee definition of the
representation. These algorithms aren’t affectathduANN learning on the specific
dataD;, but they can be optimized for each mass proleusing the criterion (3).



4 A Modd Representation with Dynamic ANNs

The criterion (3) gives quantitative evaluatiorrefresentation quality, but it can also
be estimated qualitatively by analysis of a setxgfressible regularities. For example,
outputs of a feedforward network with linear activa function are linear
combinations of its inputs independent from the hamof hidden neurons. Thus,
such the ANN can represent only linear models. Beeeaof this severe limitation,
nonlinear activation functions are typically inttadtd. However, let's consider linear
dynamic (recurrent with continuous time) ANN contag M neurons, which
activitiesx;(t) follow the law:
. u 4
)= =3 w0 “
=1

wherew; are connection weights constituting a mathix

Starting from some initial valueg(0), activitiesx(t) will evolve producing some
functions as an output. Well-known general solutidrthe system of homogeneous
linear differential equation has the form ewftj corresponding to the mixture of
harmonic, exponential, and polynomial functionsjohitappear to be representable by
such ANNs. Consequently, even linear dynamic ANNs be called “universal
approximators” that can fit any regular functiomeOinteresting application is time
series forecasting, in which the ddPee{y(ty),...,y(t,)} is given, where the values
y(t)=(ya(t), ..., yn(t)) of N-dimensional vector are observed at some momertimef
t; [0, Tmay- The task is to predict valuggt) for t >Ta

Such the connection weighig and such the initial activitieg(0) should be found
that the activitiesx(t) are most precisely correspond to the valygy. Naive
approach leads to minimization of the mean-squace:e
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The number of neurord should be not less than the dimendibpf the vectoly,
but it can be larger. In this case, additional nearcan be treated as hidden dynamic
variables. They are not included into the MSE dote (5). Apparently, increase of
the number of additional neurons will result in @dese of the MSE as well as in
overfitting. In accordance with the MDL principliae model complexity should also
be taken into account in addition to the descriptength of the data encoded within
the model that can be estimatechd#og,E (accurate to a constant).

ANN model description includes information aboutetnumber of neurons
(roughly logM bits), established connections (roughly,kglog,C(K,M?) bits), their
weights (0.Klog,n bits), and initial values of activity (0Miogyh bits). Total MDL
criterion for the ANN withM neurons ané& connections can be roughly estimated as

L =nNlog, E +log, M +log, K +log, C'\'; , +05(M +K)log,n . (6)



To find the best ANN, one should consider and rojzte ANNs with different
number of neurons and connections. In order toaeadwmputational complexity of
this process, we utilized an iterative scheme, liictv new neurons are consequently
added and redundant connections are removed i thesrations result in reduction
of the description length criterion (6). We conse&ttand implemented a combination
of several optimization techniques (stochastic gratddescent, genetic algorithms,
and simulated annealing) for optimizing ANNs witkefd architecture. Unfortunately,
detailed analysis of this search problem goes ket ylom scope of the paper.

Experimental validation of the developed algoritehowed that low-sized ANNs
are automatically chosen if the dddais generated using combinations of harmonic,
polynomial, and exponential functions. These ANMBapolated the given functions
with relative errors less than 2% on intervBlf, 2Tma. Such precision is difficult to
achieve with the use of conventional ANNs with rio@hr activation function,
because all these elementary functions are notlsineously representable by such
ANNSs. But they are representable by linear dynafiitNs, which can extract these
regularities from few data points and can make goredlictions following from their
high efficiency in terms of the RMDL principle.

Even linear dynamic ANNs can be rather useful dbilltthey define very restricted
model space. Only extension of representable regatcan help to increase their
learning power (and extrapolation capabilities)tHiar. Thus, some type of
nonlinearity should be introduced. However, tydicalised nonlinear activation
functions violate the representability of the menéid elementary functions.

In this context, it is not surprising that hybsgistems gain growing popularity.
They include methods with different representablgutarities, e.g., nonlinear ANNs
and linear auto-regressive models [1]. However, #earch problem in the
heterogeneous model spaces is more difficult. Hese,propose a homogeneous
representation, within which both linear and nosdinmodels can be described.

It is natural to construct such the extension hf tinear ANNs that will also
incorporate models of nonlinear dynamic theory. sSEhemodels are typically
described with differential equations, which carlibear or can contain nonlinearity.

We propose to introduce optional nonlinearity bigiag connections from neurons
to other connections (“synapses on synapses”). THerder connections exert
nonlinear influence on signals propagating throoegtinary connections, but don’t
change the connection weights themselves. Neuraglbg& prototypes are the
modulating neurons. These connections can be intextl in the following way.
Consider the system containing 3 neurons showhefigure 1a.

2) y b) @
@ . X'(t)= 11/x(t) @

x(t)=In(t)

Fig. 1. General form of “connection on connection” (a);nimal (b) and automatically
constructed (c) ANNs reproducing logarithmic funati



Let the postsynaptic neuron activity be describgthe following equation:
X () = w0 (t) ()

ANNs with this structure can simply represent powenctions as well as
logarithmic functions (Fig. 1b). Chaotic modes bf tdynamic systems are also
representable. For example, a network reprodudiad_brenz attractor can be easily
(manually) constructed. It can be seen that thdsblAdefine the wide model space
containing perspicuous regularities. The mentioagolve learning (search) procedure
can be applied to these extended dynamic ANNs dlmitisout modifications.

Our experiments showed that simple non-chaoticctfans are automatically
recovered rather reliably. However, even for theib&lementary functions the best
network is not always constructed, because of cexilyl of the search problem. For
example, the network on the figure 1c was reconstdufor the logarithmic function.
This network contains two unnecessary connectiblesertheless, its extrapolation
error on the doubled time interval appeared tcebs than 1%.

The search problem becomes very difficult in theecaf chaotic time series.
Although different chaotic sequences are reprebémtahe necessary ANN can
hardly be found by the direct approximation of tii&a points. Apparently, this
difficulty is connected with instability of chaoticajectories of the dynamic systems
that results in very non-monotonic landscape of tngality criterion under
optimization. Since the individual trajectoriesabfactic dynamic systems are almost
irreproducible, it is more reasonable to reconstthieir invariant measure. This also
can be done within the RMDL framework applied te ttynamic ANNs, if one uses
such the representation that encodes the valfgs in accordance with the
hypothesized invariant measure (defined by a pdaicANN) instead of encoding the
deviations of the output of this ANN from(t). Unfortunately, discussion of this
method goes beyond the scope of the paper andesadditional research.

5 Experiments

At first, the developed ANN type and the methodifsroptimization were tested on
the well-known Wolf annual sunspot time series. iMoimbers till 1979 were used as
the training sample. The constructed ANN contahegturons, 11 connections, and 2
second-order connections. Obtained prediction MSiues for 1980-1988 years
equals to 220. The other methods mentioned in $h8jv the MSE between 214 and
625. Thus, the proposed ANN type is usable. Judginthe prediction accuracy and
the ANN size, it can be concluded that overlearmsnavoided.

Then, we performed comparison of the ANN-basedresgntations on mass
problems. These representations included linear $§{NANNs with non-linear
activation function, and ANNs with second-order ections. The data samplBs
were taken from a number of financial time serigse complexity of representations
under comparison is similar, so we ignot€g) term in the criterion (3); however, this
term can be crucial in more advanced cases in ¢od&void overlearning on the level



of representations. Table 1 shows the value ofRMDL criterion (divided on the
number of data samples), and the relative prediaioor (10 points ahead).

Table 1. The values of the RMDL criterion and the relativefor different types of ANNs

ANN type RMDL, bits error, %
Linear 651 15,8
Activation function 617 10,1
2" order connections 608 9,9

Although we obtained an agreement between thet-gdron prediction precision
and the RMDL criterion in average, one can agreth the statement: “MSE and
NMSE are not very good measures of how well the ehedptures the dynamics”
[18]. One can hope that the MDL criterion is theté&e measure of how well the
model captures the underlying regularities, andRMDL principle helps to extend
this criterion on representations.

Another considered mass problem for the ANN-basgdesentations is the robotic
control. Here, we used a wheel robot with two m®tand sonar for measuring the
distance to the obstacles. In this case, additiselasory neuron was included into the
network. The training data samplBs were obtained by recoding the sensory input
and the motor commands from the robot under theuadacontrol used for obstacle
avoidance. It should be pointed out that the quatititerion included only the
approximation precision of motor commands (not $kasory input), and such the
network could be constructed that directly apprates commands ignoring the
sensory data. An example of successful extrapolatb a sequence of motor
commands is given on the figure 2. It can be séan the prediction results are
relatively successful (and the robot controlledthg trained network performs free
roaming with adequate reaction to obstacles). Thjgies that such the ANN was
constructed, in which the sensory neuron was cdadeo the rest network in such
the way that it helped to increase both approxiomatjuality (in terms of the MDL
criterion) and prediction accuracy.

. 'Tvﬂuf T r/,."1; f.\Hr‘\f\
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Fig. 2. Robot control commands reproduction (extrapolaisoafter vertical solid line).

The results of estimation of the RMDL criterion aset of data samples were 1826
bits for linear ANNs, 1793 bits for ANNs with themlinear activation function, and
1798 bits for ANNs with Z-order connections.



In this case, the extrapolation precision is megleiss, because human chooses
direction of movement during the obstacle avoidanmedomly. Sometimes, the
choice made by an ANN precisely corresponds tchtimman choice; but it cannot be
guaranteed. So, one can rely only on the RMDL ioitkethat will hopefully reflect
general adequacy of the robot movement.

The RMDL criterion values for both ANN types am@ntpatible, but the ANN with
the 2%order connections showed more interesting behavibitis result is
understandable, because the control command sezgi¢as non-smooth functions)
are not expressible within all the ANN-based repngations under comparison.

5 Conclusions

The problem of comparison of learning power of Afd¥malisms was considered as
the optimization of model representations in theks$aof inductive inference. Model
spaces defined by different ANN types are subsetiseoset of all algorithms, so they
can be optimized within the approach based on kyerithmic information theory.
The simplicity of the descriptions of regularitiaghich presence is expected in the
datasets, specifies the inductive bias definingrpgrobabilities of corresponding
models and thus necessary amount of informatiothfir reconstructions.

Such new modification of the ANN formalism was jposed, within which
regularities corresponding to the elementary fumstiare representable as opposed to
the ANNs with nonlinear activation functions. Thetimod for optimization of such
ANNSs was developed. The number of neurons and atioms between them is also
controlled by the information-theoretic criteriom drder to avoid overlearning. The
methodology based on the RMDL principle for compagriquality of different
representations was proposed and experimentallyfiecerwith the use of the
developed method on tasks of time series predictiod robot control. Different
representations appeared to be more efficient diépgon the task.

Our research showed that the RMDL principle carused to compare the quality
of representations while solving inductive massbfgms. However, efficiency of
representations cannot be reduced only to their RMDality. Even in the case of
very simple nonlinear representations, it is vefffadilt to find the best model even if
it exists in the specified model space. Represemnttshould give not only the
optimal inductive bias for some mass problem, tad ahould make the model search
process more efficient. The speed priors are kn@&h but one can expect that they
also depend on the representation. Thus, the gpéaic can be extended with the
notion of representation, or equivalently the RMpiinciple should incorporate the
model search speed.
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