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Abstract. In this paper, we introduce Physical Bongard Problems (PBPs)
as a novel and potentially rich approach to study the impact the con-
straints of a physical world have on mechanisms of concept learning and
scene categorization. Each PBP consists of a set of 2D physical scenes
which are positive or negative examples of a concept that must be iden-
tified. We discuss the properties that make PBPs challenging, analyze
computational and representational requirements for a computational
solver, and describe a first implementation of such a system. It can solve
a subset of non-trivial PBPs using a version space approach for achiev-
ing its scene categorizations. The key element is a physics engine that is
used both for the construction of information-rich physical features and
for the prediction of how a given situation might evolve.
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1 Introduction

Despite the complex and dynamic nature of the world we live in, we are able
to make sense of what happens around us. Already in early childhood, we build
a sophisticated conceptual knowledge of our physical reality and are able to
predict and visualize the outcome of many dynamic situations. Attempts to un-
derstand these striking abilities and their underlying processes need to take into
account the important role of our physical embodiment [1]. Being embodied in a
physical world requires the ability to rapidly capture the ‘essence’ of situations
with respect to their physical interaction properties. This includes recognizing
configurations that can provide physical support for an intended action, judg-
ing the feasibility of moving pieces, or ‘perceiving’ the imminent instability in a
particular arrangement.

Having studied aspects of this challenge using advanced robot platforms in
the context of grasping and manipulation [2], we here wish to introduce a com-
plementary approach whose aim is to provide a maximally parsimonious, yet
very rich framework to study mechanisms of physics-based categorization. To
this end we introduce a novel class of problems inspired by and extending earlier
work on pattern categorization [3]. Their essential characteristic is the embed-
ding of an analogy detection task in the domain of physical situations. We call
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these problems Physical Bongard Problems (PBPs). Each PBP consists of a set
of 2D physical scenes, containing four positive and four negative examples of the
concept to be learned.

We argue that this problem class is well suited for research on our ability to
conceptualize physical situations and make appropriate decisions in dynamic and
interactive settings. Insights can be gained both by analyzing how humans solve
PBPs, e.g., using questionnaires or eye tracking techniques, and by combining
this empirical work with the development and analysis of computational solvers.
In this paper, we introduce the domain of PBPs and give an overview of their
properties and what makes them intricate to solve. We discuss the role of physical
knowledge for PBPs, how it can be modeled using a standard physics engine and
how a particular version space based solver implementation performs.

2 Physical Bongard Problems

In the design of Physical Bongard Problems we took inspiration from the class
of Bongard problems (BPs), which are a set of 100 visual pattern recognition
and categorization tasks, originally created by M. Bongard and extended by
Douglas Hofstadter and Harry Foundalis [3–5]. Each BP consists of twelve im-
ages, six of them on the left and six on the right, all with an arbitrary pattern
in black and white. The task is to identify the conceptual distinction between
both sides. While many of the BPs are solved by humans rather intuitively, their
computational solution is still an outstanding challenge.

In Physical Bongard Problems, while the task is the same, the images are
taken from a physical domain, shifting the focus away from low-level visual
processing towards dynamics and interaction. Instead of arbitrary static pat-
terns, the images contain snapshots of 2D physical scenes depicted from a side
perspective. PBPs can be considered as BPs which are more constrained by be-
ing ‘embedded in physics’, on the one hand, but can, on the other hand, as a
consequence represent concepts not within the reach of the non-physical BPs.
The scenes in PBPs may contain arbitrary-shaped non-overlapping rigid objects
which do not move at the time t = t0 of the snapshot. The solution of PBPs can
be based on descriptions of the whole scene or parts of the scene at any point
in time or on the reaction of objects to simple kinds of interaction, e.g., push-
ing. We have so far designed 34 PBPs, which can be viewed online [6]. Figure 1
depicts four of them.

2.1 Challenging Aspects

There are several challenging aspects of PBPs that make them both intricate to
solve and an interesting object of research. In the following list, the first three
aspects are unique to PBPs, while the further ones are shared by PBPs and
classical BPs.
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Physical Bongard Problem #8 Physical Bongard Problem #12

Physical Bongard Problem #31 Physical Bongard Problem #33

Fig. 1. Four Physical Bongard Problems. Solutions: (try yourself, first!) #8: configura-
tion unstable vs. stable. #12: small object falls down vs. stays on large one. #31: circle
is blocked vs. can be lifted. #33: construction stays intact vs. gets destroyed. See [6].

Physics. The need to invoke implicit physical knowledge of how the depicted
object configuration will evolve (or respond to imagined physical interventions)
for solving a problem is the main distinguishing characteristic of a PBP. This
involves ‘natural’ assumptions, such as the association of some mass with each
object and the presence of a downward directed gravity force. Using these as-
sumptions, we can make physical judgments, e.g., about the stability of a config-
uration or predict likely states of motion (e.g., a ‘ball’ accelerating on a ramp).

Interaction. Physical understanding includes judgments about how objects might
respond to imagined interventions. This is important in many situations in life,
e.g., to judge whether some location can support my body, or how objects can
be moved in a scene without causing unwanted inference to others.

Time. To see a scene as physical allows us to see it as a snapshot of a dynamical
process. This connection generates a rich set of additional features arising from
forward and backward predictions of the expected changes and can augment the
scene with events that themselves are not depicted, like the collision of objects.

Grouping. Based on common features, relations or roles, several objects of one
scene might have to be interpreted as a group to find a solution. There can be
relations between groups or even groups of groups.

Focusing. In scenes with many objects, it is inefficient to consider the relations
between all object pairs. Instead, a few important objects might have to be
picked out while the others can be considered as ‘background’.



4 E. Weitnauer, H. Ritter

Correspondence. When scenes contain groups of objects or relations between
objects play a role, the mapping of two scenes requires to identify correspondence
between two structured representations, which is highly non-trivial. This task is
often referred to as analogy-making, an exciting research topic in itself.

Context. A suitable representation of a physical scene cannot be given a-priori,
but depends on the context that is set by the other scenes. A single scene could
be used in several PBPs and have a different interpretation in each of them, e.g.,
a different choice of what is the main object and what is the ‘background’.

3 Computational Solvers for PBPs

3.1 Modeling Physical Knowledge

It is essential for solving PBPs to be able to predict and visualize the outcome of
dynamic situations and interactions. We model this ability by giving the solver
access to a physics engine1 (PE). It is used in two ways: First, for the prediction
of the unfolding of actions in the scenes. By constructing and simulating the
scenes in the PE, the solver can inspect them at any time between the initial
snapshot t0 and the time all motion has stopped. Second, the engine is used
to estimate physical object features. This includes features like object speed,
acceleration and collision events, as well as concepts depending on interactions
with objects in the scenes like pushing and pulling. We construct a basic notion
of object stability by pushing the object briefly and observing its reaction. Its
stability is judged by the distance it moves, where less movement correlates with
more stability. A notion of the ‘motion potential’ or ‘movability’ of objects can
be constructed by measuring the distance the objects can be pulled using a small
force. A last feature derived from interaction is the role of an object as supporter
of other objects in the scene. By imagining the scene without the object, i.e., by
removing the object, it can be observed how the stability of the other objects
depends on the removed one.

3.2 Implementation of a Basic Solver

An important and non-trivial decision for implementing any solver is the choice
of a suitable input representation. Since PBPs are embedded in a physical world
and only contain closed objects above some ground, the outlines and positions
of these objects can be used as input representation without restricting the
problem domain or making the problems significantly easier to solve. Using this
input representation, we implemented a basic solver based on the version space
algorithm for concept learning [7]. The hypothesis space contains all vectors
<side, numbers, distances, sizes, shapes, stabilities>, where side is the
side of the PBP (‘left’ or ‘right’), numbers is a range of object count and the

1 A physics engine is a piece of software that can perform physical simulations. We
used the free Box2D physics engine in our experiments. See http://box2d.org/.
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remaining elements are disjunctions of feature values (‘small’, ‘medium’, ‘large’
or ‘rectangle’, ‘circle’, ‘triangle’, ’other’ or ’stable’, ‘unstable’, ‘moving’ or ‘near’,
‘far’, respectively). All elements except side can also take the value ’?’, in which
case they match any scene. For example, the meaning of the hypothesis <left,
1-3, ?, small or large, ?, stable> is “all left scenes (and none of the right
scenes) contain one to three objects that are small or large-sized and stable”.
The algorithm starts with a set of all possible hypotheses and then removes the
incompatible ones for each scene. Finally, among the remaining hypotheses, the
one with the shortest length is chosen as solution. If no solution could be found
at t = t0, the algorithms is applied to the scenes at t = tend.

Results The presented algorithm can solve the PBPs 1 to 5, 8, 11 and 18. It
demonstrates the successful application of a physics engine in concept learning of
dynamic physical scenes and constitutes a baseline for PBP solvers. Yet, due to
its simplicity, the subset of PBPs that it solves still is small. It could be extended
by adding more object and scene features. However, there are some principal
limitations that cannot be overcome this way. Of the challenging aspects listed in
Section 2.1, the present algorithm addresses physics, interaction and time, where
the handling of time is only rudimentary and not sensitive to changes, durations
or events. The other complexity sources of grouping, focusing, correspondence
and context sensitivity cannot be adequately addressed by the present algorithm
because ‘flat’ feature vectors are used to describe the scenes. Therefore, e.g., the
selection of key objects in the scene and relations between objects cannot be
captured (See PBP 12, 31 and 33 in Figure 1). The step to a more powerful
algorithm will involve the use of structured scene representations. Building and
mapping these representations is a task of analogy-making, and we will report
in a subsequent paper on extensions along this line.

4 Related Work

The interpretation of and reasoning about physical scenes has a long tradition
in artificial intelligence in the field of qualitative physics, where physical knowl-
edge is represented as high-level logical rule systems [8, 9]. We chose to provide
physical knowledge in another, less rigid and more analog form: with a physics
engine. This way, we are not committed to a certain level of abstraction and can
start building representations at a low level.

Traditionally, much research on concept learning has been done in the context
of unstructured domains where a concept can be represented as a set of attribute
values [10]. Recently, more attention was paid to learning structured concepts
in the domain of description logics [11]. The learning of concepts from dynamic
examples as presented in this work, has not been in the focus of concept learning
research, so far.

There have only been few attempts to develop computational solvers for clas-
sical Bongard problems. The only solver that is able to come up with solutions
of some BPs without using hand-crafted input representations is the ‘Phaeaco’
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system by H. Foundalis [5]. It builds and maps representations in a process of
analogy-making performed by a complex adaptive system. See [12] for a sum-
mary of computational approaches to analogy-making.

5 Conclusion

In this paper, we made two main contributions. First, we introduced Physical
Bongard Problems as a novel research tool for concept learning and scene cat-
egorization by agents situated in a physical world. We discussed the aspects
of Physical Bongard Problems that make them a challenge for computational
solvers, which are physics, interaction, time, grouping, focusing, correspondence
and context sensitivity. As a second contribution, we demonstrated how a physics
engine can be effectively used to equip an algorithm with the physical under-
standing necessary to solve PBPs. The engine is used for both scene prediction
and construction of information-rich physical features through simulated object
interactions. We showed the feasibility of this approach with a basic PBP solver
implementation and discussed its limitations, which are mainly a result of using
unstructured collections of features as scene representations.

The step to a more powerful solver will require the use of structured represen-
tations and the extension of the basic solver with dynamic scene-encoding and
structure-mapping capabilities. These two abilities are central topics in analogy-
making and we are currently exploring how existing analogy-making algorithms
can be adapted for the use in a PBP solver.
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