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Abstract. Pairwise sequence alignment has received a new motivation
due to the advent of next-generation sequencing technologies, particu-
larly so for the application of re-sequencing—the assembly of a genome
directed by a reference sequence. After the fast alignment between a
factor of the reference sequence and a high-quality fragment of a short
read by a short-read alignment programme, an important problem is to
find the alignment between a relatively short succeeding factor of the
reference sequence and the remaining low-quality fragment of the read
allowing a number of mismatches and the insertion of a single gap in
the alignment. In this article, we present GapMis-OMP, a tool for pairwise
short-read alignment that works on multi-core architectures. It is de-
signed to compute the alignments between all the sequences in a first set
of sequences and all those from a second one in parallel. The presented
experimental results demonstrate that GapMis-OMP is more efficient than
most popular tools.

Availability: http://www.exelixis-lab.org/gapmis

1 Introduction

A gap is a consecutive sequence of holes in an alignment. When applying
alignment algorithms to biological sequence data, it is sometimes desir-
able to globally penalise the formation of long gaps instead of locally
penalising the individual deletion or insertion of letters. A gap in a bi-
ological sequence can be regarded as the absence (resp. presence) of a
region, which is (resp. is not) present in another sequence, because of the
natural diversity among individuals. The gap concept in sequence align-
ments is therefore important in many biological applications because the

⋆ This work was supported in part by the NSF-funded iPlant Collaborative (NSF
grant #DBI-0735191)
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insertion or deletion of an entire region (particularly in DNA) often oc-
curs as a single event. Many of these single mutational events can create
gaps of varying sizes with almost equal likelihood—within a wide, but
bounded, range of sizes.

Our work is motivated by the well-known and challenging problem of
re-sequencing—the assembly of a genome that is directed by using a refer-
ence genome. Continuous advances in sequencing technology are turning
whole-genome sequencing into a routine procedure, resulting in massive
amounts of sequence data that need to be processed. Tens of gigabytes of
data, in the form of short sequences (reads), need to be mapped (aligned)
back to reference sequences, a few gigabases long, to infer the read from
which the genomic location derived. This is a challenging task because of
the high data volume and the large genome sizes. In addition, the per-
formance, in terms of speed, sensitivity, and accuracy, deteriorates in the
presence of inherent genomic variability and sequencing errors, particu-
larly so, for relatively short consecutive sequences of deletions or insertions
in the reference sequence or in the reads.

A broad variety of short-read alignment programmes, (e.g. Bowtie [1],
SOAP2 [2], REAL [3]) has been released recently to address the task of
mapping millions of short reads to a genome, placing emphasis on vari-
ous aspects of the challenge (e.g. time and memory efficiency, sensitivity,
and accuracy). Although all programmes allow for a small number of
mismatches in the alignment, some of them either perform poorly when
allowing the insertion of gaps or do not allow it at all.

The seed-and-extend strategy is applied in most current short-read
alignment programmes [4]. After a fast alignment between a fragment
of the reference sequence and a high-quality fragment of a short read
(positions 1-3 in square brackets in Figure 1) by a short-read alignment
programme, an important problem is to find the alignment between a
relatively short succeeding fragment of the reference sequence and the
remaining low-quality fragment of the read (positions 4-9 in Figure 1);
allowing a number of mismatches (position 8 in Figure 1) and the insertion
of a single gap (positions 5-6 in Figure 1) either in the fragment of the
reference sequence or in the read.

One main observation from Figure 1 is that a gap might need to be
inserted in the leftmost position of the alignment (position 4 in Figure 1),
and that we are unable to know the exact length of the succeeding frag-
ment of the reference sequence to be aligned a priori. Hence, we need an
intermediate approach between the global (e.g. Needleman-Wunsch algo-
rithm [5]) and the local alignment (e.g. Smith-Waterman algorithm [6]),
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[1 2 3] 4 5 6 7 8 9 10 11 12

Reference G C G A C G T C C G A A

| | | | | . |
G C G A ⋆ ⋆ T A C

Fig. 1. Alignment between the fragment of the reference sequence, starting at position
1 and ending at position 9, and the read with one mismatch at position 8 and a single
gap of length two inserted in the read after position 4
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Fig. 2. Distribution of gap lengths in exome sequencing

known as semi-global alignment, that penalises the insertion of a gap in
the leftmost position of the alignment, but ignores the insertion of a gap
at the end.

Concerning the length of the gaps, a broad range of lengths is possible.
In practice, however, the length of reads is too small to confidently and
directly detect a large gap. In Figure 2, the distribution of lengths of
gaps in exome sequencing is demonstrated1. The shape of the gap length
distribution is consistent with other studies (cf. [7]). The presented data
reflect a gap occurrence frequency of approximately 5.7× 10−6 across the
exome—the part of the genome formed by exons that codes portions of
genes in the genome which are expressed.

The main observation from Figure 2 is the exponential decrease of
gaps with increasing length, and a preference for lengths which are mul-
tiples of 3 base pairs (bp)—loss or gain of codons. For short reads in
the range of 25-150 bp, the presence of multiple gaps is unlikely given the

1 Data generated by the Exome Sequencing Programme at the NIHR Biomedical
Research Centre at Guy’s and St Thomas’ NHS Foundation Trust in partnership
with King’s College London.
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above gap occurrence frequency, and can greatly reduce the mapping con-
fidence (accuracy) of those reads. Hence, applying a traditional dynamic
programming approach, which allows for multiple mismatches, deletions,
and/or insertions in the alignment, can deteriorate mapping confidence.

In this article, motivated by the aforementioned observations, we con-
sider the problem of approximate string matching with k-mismatches and
a single gap. We present GapMis-OMP, a tool for pairwise short-read align-
ment that works on multi-core architectures. It is based on algorithm
GapMis, introduced in [8], for computing a modified version of the tra-
ditional dynamic programming matrix for sequence alignment to solve
the above problem. GapMis-OMP is designed to compute the alignments
between all the sequences in a first set of sequences and all those from a
second one in parallel.

2 Definitions and notation

An alphabet Σ is a finite non-empty set whose elements are called letters.
A string on an alphabet Σ is a finite, possibly empty, sequence of elements
of Σ. The zero-letter sequence is called the empty string, and is denoted
by ε. The length of a string x is defined as the length of the sequence
associated with the string x, and is denoted by |x|. We denote by x[i], for
all 1 ≤ i ≤ |x|, the letter at index i of x. Each index i, for all 1 ≤ i ≤ |x|,
is a position in x when x 6= ε. It follows that the ith letter of x is the
letter at position i in x, and that

x = x[1 . . |x|]

A string x is a factor of a string y if there exist two strings u and v, such
that y = uxv. Let x, y, u, and v be strings, such that y = uxv holds. If
u = ε, then x is a prefix of y. If v = ε, then x is a suffix of y.

Let x be a non-empty string and y be a string. We say that there
exists an occurrence of x in y, or, more simply, that x occurs in y, when x

is a factor of y. Every occurrence of x can be characterised by a position
in y. Thus we say that x occurs at the starting position i in y when
y[i . . i+ |x|− 1] = x. It is sometimes more suitable to consider the ending
position i+ |x|−1. The Hamming distance δH for two strings of the same
length, is defined as the number of positions where the two strings possess
different letters.

A don’t care letter is a special letter that does not belong to alphabet
Σ, and matches with itself as well as with any letter of Σ. It is denoted
by ⋆. A gap is a finite sequence of such don’t care letters. A gap string is a



GapMis-OMP: pairwise short-read alignment on multi-core architectures 5

finite, possibly empty, sequence of elements of the alphabet Σ ∪{⋆}. Two
letters a and b of alphabet Σ ∪ {⋆} are said to correspond, denoted by
a ≈ b, if they are equal, or, if at least one of them is the don’t care letter.
The G-distance, denoted by δG, for two gap strings of the same length is
defined as the number of positions in which the two strings possess letters
that do not correspond. A gap string x is called single-gap string if there
exist two strings u and v on alphabet Σ and a gap g, such that x = ugv.
Let conc(y′) be an operation that, given a gap string

y′ = y0g0y1g1 . . . yn−2gn−2yn−1

where yi ∈ Σ∗, for all 0 ≤ i < n, and gj ∈ {⋆}∗, for all 0 ≤ j < n − 1,
returns the string y = y0y1 . . . yn−1, such that y ∈ Σ∗.

The approximate string-matching with k-mismatches and a single gap

problem can now be formally defined as follows.

Problem 1. Given a text t of length n, a pattern x of length m ≤ n, an
integer k, such that 0 ≤ k < m, and integers α and β, such that 0 ≤ α ≤ β

and β < n, find all prefixes of t, such that for each prefix y

– either there exists a single-gap string y′, with a gap g, such that y =
conc(y′), δG(x, y

′) ≤ k, and α ≤ |g| ≤ β

– or there exists a single-gap string x′, with a gap g, such that x =
conc(x′), δG(x

′, y) ≤ k, and α ≤ |g| ≤ β

– or δH(x, y) ≤ k and α = 0

Example 1. Let t = AGCAGAGGAGCAGGCGTTCCGTGGT, x = ACCGT, k = 2,
α = 6, and β = 7. The solution to this problem instance is the set
{11, 17, 22} of ending positions. For example, the solution contains 11
since there exists a single-gap string x′ = ACC⋆ ⋆ ⋆ ⋆ ⋆⋆GT, with a gap
g = ⋆ ⋆ ⋆ ⋆ ⋆⋆, such that x = conc(ACC⋆ ⋆ ⋆ ⋆ ⋆⋆GT), δG(x

′, t[1 . . 11]) = 2,
and |g| = 6.

Let G[0 . . n, 0 . . m] be a matrix, where G[i, j] contains the minimum
number of mismatches of the alignment between factor t[1 . . i] of t and
factor x[1 . . j] of x allowing the insertion of a single gap either in t[1 . . i]
or in x[1 . . j], for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. We say that x[1 . . j] matches
t[1 . . i] with at most k-mismatches and a single gap if and only if G[i, j] ≤
k, for all 1 ≤ j ≤ m, 1 ≤ i ≤ n.

In order to compute the exact location of the inserted gap, either in the
text or in the pattern, we also need to compute a matrix H[0 . . n, 0 . . m],
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such that

H[i, j] =







j − i if G[i, j] = G[i, i] and i ≤ j

i− j if G[i, j] = G[j, j] and i > j

0 otherwise

Example 2. Let t = AGGTCAT, x = GGGTA, and β = 2. Table 1a and
Table 1b illustrate matrix G and matrix H, respectively.

0 1 2 3 4 5

ǫ G G G T A

0 ǫ 0 0 0
1 A 0 1 1 1
2 G 0 0 1 1 1
3 G 0 0 1 1 1
4 T 1 1 1 1
5 C 1 1 2
6 A 1 1
7 T 2

(a) Matrix G

0 1 2 3 4 5

ǫ G G G T A

0 ǫ 0 1 2
1 A 1 0 0 0
2 G 2 0 0 0 2
3 G 0 0 0 1 2
4 T 0 0 0 1
5 C 2 1 0
6 A 2 0
7 T 0

(b) Matrix H

Table 1. Matrix G and matrix H for t = AGGTCAT, x = GGGTA, and β = 2

3 Algorithm GapMis

Algorithm GapMis, introduced in [8], computes matrices G and H. It
takes as input the text t of length n, the pattern x of length m, and the
threshold β.

Proposition 1 ([8]). There exist at most 2β + 1 cells of matrix G that

yield a solution for Problem 1.

Proposition 2 ([8]). Problem 1 can be solved by algorithm GapMis in

time O(mβ).

As soon as we have computed matrices G and H, we can apply a simple
alignment scoring scheme, depending on the application of the algorithm,
to compute the maximum score among all possible alignments of t and x

in time Θ(β) by Proposition 1.
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ALGORITHM GapMis(t, n, x, m, β)
{Initialise matrices G and H }

1: for i← 0 to n do

2: G[i, 0]← 0;
3: H[i, 0]← i;
4: for j ← 0 to m do

5: G[0, j]← 0;
6: H[0, j]← j;
{Computing matrices G and H}

7: for i← 1 to min{n,m+ β} do
8: for j ← max{1, i− β} to min{m, i+ β} do
9: if i < j then

10: u← G[i− 1, j − 1] + δH(t[i], x[j]);
11: v ← G[i, i];
12: G[i, j]← min{u, v};
13: if v < u then

14: H[i, j]← j − i;
15: else

16: H[i, j]← 0;
17: if i > j then

18: u← G[i− 1, j − 1] + δH(t[i], x[j]);
19: v ← G[j, j];
20: G[i, j]← min{u, v};
21: if v < u then

22: H[i, j]← i− j;
23: else

24: H[i, j]← 0;
25: if i = j then

26: G[i, j]← G[i− 1, j − 1] + δH(t[i], x[j]);
27: H[i, j]← 0;
28: return G and H;

4 Implementation

GapMis-OMP was implemented in the C programming language, and was
developed under the GNU/Linux operating system. We used the Open
Multi-Processing (OpenMP) application programming interface that sup-
ports multi-platform shared-memory multiprocessing programming.

We implemented algorithm GapMis as a function to compute the
optimal semi-global alignment between two sequences with a single gap.
We applied a simple alignment score scheme for DNA (resp. protein) se-
quences, that uses the scoring matrix EDNAFULL (resp. EBLOSUM62) [9]
to assign scores for every possible nucleotide (resp. residue) match or mis-
match; and affine gap penalty to score the insertion of a single gap. The
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Fig. 3. Processing times of needle, water, and GapMis-OMP for aligning 10, 000 pairs
of sequences

penalty for a gap of n > 0 positions is computed as

gap opening penalty + (n− 1) ∗ gap extension penalty

The total score of each alignment is obtained by adding these two
scores, and the optimal alignment is the one with the maximum to-
tal score. The same alignment score scheme is applied in package EM-
BOSS [10].

The programme takes as input arguments two files with the two sets
of sequences (DNA or protein) in FASTA format. It consists of an outer
for loop, going through the sequences of the second set (target sequences),
and an inner for loop, going through the sequences of the first set (query
sequences), to compute the optimal semi-global alignment for each pair.
We used the omp parallel for directive to effectively define the inner
for loop as a parallel region, as there exists no dependency between those
tasks (pairs). The number of threads to be used can be set by the user.
The programme produces an EMBOSS-like text file with all the optimal
semi-global alignments as output.

5 Experimental results

To the best of our knowledge, GapMis-OMP is the first tool for pair-
wise short-read alignment between two sets of sequences. In [11], in or-
der to highlight the suitability of algorithm GapMis, we compared it
against EMBOSS needle, which implements the Needleman-Wunsch al-
gorithm for global alignment, and EMBOSS water, which implements the



GapMis-OMP: pairwise short-read alignment on multi-core architectures 9

 0

 2000

 4000

 6000

 8000

 10000

 12000

75, 100 125, 150 175, 200

P
ro

ce
ss

in
g 

tim
e 

[s
]

Length of query sequences, Length of target sequences [-]

-t 1
-t 4
-t 8

-t 16
-t 32
-t 48

Fig. 4. Processing times of GapMis-OMP for aligning 100, 000 query sequences and 100
target sequences

Smith-Waterman algorithm for local alignment. At present, these two pro-
grammes are two of the most widely used pairwise sequence alignment
programmes. We demonstrated that needle and water can, by design,
not guarantee the insertion of at most one gap in the alignment.

In this article, in order to evaluate the efficiency of GapMis-OMP, we
compared its performance to the respective performance of needle and
water. We simulated 10, 000 pairs of 100 bp-long DNA sequences, such
that each pair consists of two identical sequences; and then we inserted,
in one of the two sequences, a single gap of random length ranging from
1 to 30 and a random number of mismatches ranging from 1 to 10. We
repeated the same experiment by simulating 150, 200, and 250 bp-long
sequences. Two versions of GapMis-OMP were used; one with the modifier
-m 30 to set β = 30 and use the Θ(mβ) algorithm, and one without it to
use the Θ(mn) algorithm.

As it is demonstrated by the results in Figure 3 GapMis-OMP was able
to complete the assignment much faster than needle and water. The
version with the modifier -m 30 was always the fastest confirming our
theoretical results.

In order to evaluate the parallel efficiency of GapMis-OMP, we simu-
lated a set of 100, 000 75 bp-long query sequences and 100 100 bp-long
target sequences. Six versions of GapMis-OMP were used: with 1 thread
(-t 1); with 4 threads (-t 4); with 8 threads (-t 8); with 16 threads (-t
16); with 32 threads (-t 32); and with 48 threads (-t 48). We repeated
the same experiment with 150 and 200 bp-long target sequences. As de-
picted in Figure 4, the -t 4 version is able to complete the assignment
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up to 4× faster, the -t 8 version up to 7.8× faster, the -t 16 version
up to 15.5× faster, the -t 32 version up to 30.6× faster, and the -t 48

version up to 41.7× faster than the -t 1 version.
The experiments were conducted on 1 node of a cluster architecture

using 1 to 48 2.4 GHz AMD 6136 processors and 125 GB of main memory,
and running the GNU/Linux operating system. GapMis-OMP is distributed
under the GNU General Public License (GPL).
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