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Abstract. As mobile devices are always with users and music listening is a very 

personal and situational behaviour, contextual information could be used to 

greatly enhance music recommendations. However, making such use of 

context, while learning user profiles, is still a challenging problem. We present 

a system for collecting context and usage data from mobile devices, but 

targeted at recommending music according to learned user profiles and specific 

situations. The developed data flow system requires supporting both short 

enough response times and longer asynchronous reasoning on the collected 

data. Furthermore, the mobile phone acts not only as sensor, but is directly 

related to the effectiveness of the music service experience. Thus, this paper 

provides a description of our approach to the system and the initial results of a 

usability test of the mobile application and its backend system. 
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1   Introduction 

Even though music listening is a highly personal and situational activity, and 

recommender systems for music are hardly a new idea, combining contextual data and 

user profiles in a music recommendation service is still an open problem. Depending 

on the application domain and the available data, at least certain contextual 

information can be useful for providing better recommendations [1, 11]. Quality of 

music recommendations is directly influenced by contextual data since people listen 

to diverse songs at different environments or when performing specific activities.  

Context-aware services (CAS) are services enriched with information from their 

execution environment (in this case, users’ mobile phones and situation). CAS are 

able to adapt to the current context to increase their usability and effectiveness [2]. 

Context-awareness and adaptation are key issues in mobile devices. Equipped with 

GPS receivers, RFID tags, microphones, cameras, etc., mobile devices could sense 

their changing environment and act intelligently based on their context. 

In this paper, we present a system developed to explore the inclusion of contextual 

data into the music recommendation process, based on learning from collected data.  

Recently, there has been much research on context-aware recommendation systems 

[4,5,12]. Rocha et al. [3] present the MoCA middleware, a context-aware middleware 



 

 

for the development of collaborative applications. Carrillo et al. [8] propose context-

aware user profiles, in which the profile definitions are associated with particular 

situations encountered by the users. Others have used case-based reasoning, 

collaborative filtering [4], or hybrid approaches [6,7]. Baltrunas et al. [12] present an 

interesting system for the kind of recommendations described here, but it is focused 

only in the “in car” context. Baltrunas and Amatriain [9] present a time-aware 

approach for music recommendation, creating time-based user models, which were 

then used to recommend music artists.  

However, most of the work in the available literature assumes or proposes 

(beforehand) models for context representations or for user tastes (mostly based on 

ranking). Our approach tries to use implicit feedback and not to make assumptions 

about users or what constitutes proper a priori factor selection to represent contexts. 

The described system uses user’s behaviour and music metadata, i.e. besides usage 

data, the current system only processes music metadata for the recommendations; 

music structure is not taken into account nor is any kind of audio signal processing. 

The remainder of this paper is organized as follow. The next section mentions the 

initial design goals of our music recommender system. In section 2 the system 

features are exposed (along with some reasoning on them): architecture, data 

gathering and processing, and user profile creation. Then in section 3, the anatomy of 

core components is explained, such as the contextual platform backend and the 

mobile recommender client including data provider, context-matching engine, and the 

actual contextual music application. Some preliminary tests and results are described 

in section 4; followed by concluding remarks in section 5. 

1.1   Initial Design Goals 

A usable interface is critical to any user-facing application. Increased demands on 

users’ attention in dynamic environments can be addressed through interfaces that 

require less attention [10]. As such, one needs to understand how people interact with 

their surroundings. During the design and development effort described, a decision 

was made to start early with concept design/wireframes, not focusing on yet another 

music player, but on an application for understanding user context and recommending 

when and which songs to play; while, at the same time, getting the flow of data ready 

to handle reasoning on large amounts of data. 

A second goal was focused on how to perform context mapping as to allow 

learning context-specific music preferences for a given user. The third main design 

goal was to build a test bed architecture and system capable of supporting future 

research activities on this kind of data and problem combination.  

2   System Features 

This section provides a high level description of the architecture and an overview of 

the most important steps in its data flow.  



 

2.1   Architecture  

The proposed system combines different environments to tackle the problem. The 

mobile device acts as sensor, collecting contextual information, as well as usage data 

collector. The data is then sent to a backend platform that also handles music specific 

metadata and has access to external data sources. Storage of large amounts of data and 

capabilities to perform reasoning on this data for the music recommendation problem 

are also responsibilities of this backend. 

 

Fig. 1. System data flow. Mobile client sends contextual and usage data to the backend 

platform and receives recommendations from the REST API. 

 However, as the service focus is on providing adaptation to changes in user 

context, the system, as a whole, also needs to deal with constraints in how long 

request responses and recommendations can take to be generated. Also, even though 

most of the heavy lifting is done on the system backend, the mobile client needs to not 

only detect the current context, but to have enough data and flexibility to recommend 

the current songs (having some level of autonomy for cases when the backend is 

either not available or did not yet provide new data). The overview of the system data 

flow – with some of its constraints – is pictured in Fig. 1. 

 The backend is divided into two major sub-systems: a stateless layer (Fast World), 

focused on quick response times and exposing a REST API, which can be easily 

replicated to scale horizontally; and a MapReduce batch-like layer (Slow World), 

focused on processing of the gathered data and providing intermediary data structures 

– asynchronously – for the fast world cache. The mobile client application sub-

modules are described in more detail in Section 3.2. 

2.2   Data Flow  

The device application collects three sets of data for processing: i) music metadata, 

from each track on the user’s music library; ii) music listening habits of the user 

(which song was played, when, and for how long); and contextual data (i.e. data from 

sensors available on the device), that can later be reasoned over. 



 

 

 A set of miner sub-processes on the mobile device gather raw sensor data and - 

through the use of reasoning modules - try to infer more abstract context information 

(more details on section 3.2). The resulting aggregate data streams are then sent to the 

system backend through a data gathering API (designed to handle un-structured data). 

 The data coming from the device (as loosely-structured objects) is stored on the 

backend platform – a server cluster using a distributed file system environment. 

Scheduled MapReduce jobs are then responsible for processing chained 

recommendation flows. Periodically, the collected dataset, augmented by external 

data sources (e.g. a music catalogue from an international e-commerce music store, an 

artist influence graph, historic song purchase data, etc.), is processed to create/update 

user profiles, identify the most relevant recommendation contexts for each user, and 

generate new recommendations (playlist seeds, songs to buy, etc.). 

The results are transformed into intermediary data-structures, which are exported 

to the fast world of the system backend and stored in a cache database; which is then 

available for queries by the services consumed by the mobile music application. 

2.3 Profile Creation  

User profiles play an important role as they serve as an individualization filter in a 

wide range of possible context adaptation parameters [11]. Profiling can be realized 

by adding a temporal dimension and using it for automatically improving the user 

profile with respect to context (thus adding a form of “learning”). 

In the described system, the first step when processing the collected data is the 

creation of a User Music Profile (UMP), which is used as base for the posterior steps. 

Basically, the UMP is composed of three main parts. The first represents the user 

preferences, where it is possible to identify the user’s favorite artists and music 

genres; and the second contains playlist seeds for each relevant context identified for 

the user based on his/her preferences. As the system also generates recommendations 

for song purchasing and attending nearby concerts, related to the user’s favorite 

artists, these recommendations are embedded in the third part of profile. 

3   Anatomy of Core Components 

This section describes the core components of the system, both of the contextual 

platform backend and the mobile recommender client.  

3.1   Contextual Platform Backend  

As described in the system architecture overview, the contextual platform backend 

(CPB) receives data about both context and usage and generates context-specific 

music recommendations. The generation of user music profile and a set of 

recommenders are the main processes running on the backend platform. The slow 

world recommenders run as often as possible (provided there is new data) to update 

the data on the fast world cache, allowing the users to benefit as much as possible 



 

from their historic data. The fast world is then responsible for answering device 

queries by manipulating the cached data appropriately. 

The CPB system performs seven main tasks in its slow world layer, shown in Fig. 

2: creation of the User Music Profile, identification of relevant usage contexts, kickoff 

of appropriate recommendation generation, identification of related artists, 

recommendation of events for the user to attend, recommendations of songs for online 

purchase, and recommendation of seeds for context-specific playlists. The blue circles 

denote the phases of the system, the green rectangles denote its primary inputs, and 

the yellow circles represent its output (recommendations). 

 

Fig. 2. Recommendation flow, running on CPB’s slow world layer. 

User Music Profile (UMP) - The main source of information for the creation of a 

UMP is the set of scrobbling events generated as users listen to music. Scrobbling 

events contain metadata for the song being played and are generated when a user 

starts listening to a song. Subsequent event are also generated according to the same 

rules proposed and used by the Last.fm1 service, wherein the track is considered to 

have been listened to when either 4 minutes or half of the song has been played. 

Scrobbling events in our system are enriched because the player application also 

knows the context in which each song was played. Specifically, it tries to determine 

the action or activity and the environment the user is in based on the sensory data 

from the device (c.f. section 3.2). In addition, user location and event time are sent in 

each scrobble event. Thus, scrobbling events contain the following context attributes: 

a) music metadata (title, album name, artist, genre, and track length); b) user location; 

c) user activity (running, walking…); d) environment (restaurant, library…); e) time 

of the day. The set of attributes mentioned represents a context.  

With this data the system is able to generate the profile for the user, a behaviour 

based profile, applying a statistical usage approach. The profile for the user tells what 

user has listened in each context. The basic profile consists of the total number of 

tracks listened and counts for each artist and genre of the listened tracks, both from 

tracks belonging to each context and for the full history of the user. 

The initial version of the profiler is actually rather simple in determining the most 

common contexts for each user. The UMP process computes histograms for each 

context, which gives us a distribution of contexts based on the play count. Then from 

                                                           
1 http://www.lastfm.com 



 

 

this distribution contexts are taken from the top until the combined event count 

exceeds 30% of the total number of events. 

Identification of Relevant Contexts - Some issues are detected at this point. First, 

time and location need to be discretized in order to be useful. When using time, we 

simply take the day of the week and time of the day as the relevant quantities. For 

week day we can use all days in the week or aggregate to weekdays and the weekend, 

giving nine discrete values. In the case of time the day is divided into four quarters. 

The device is responsible for providing location information latitude, longitude 

pairs and simply binning them will not provide good results. Therefore the location 

data for each user is clustered to find out their key locations. The locations are 

assumed to be found if there are few (one to three) dense clusters with significant 

number of events. An algorithm that uses the k-means iteratively, while stripping 

away “unnecessary” points, is utilized to reduce the dataset. 

At first, k-means is run for the whole dataset for the user. From the resulting 

clusters the points furthest away from the cluster centroid are removed. The same 

procedure is repeated until clusters are found such that points in each cluster are 

within 1 Km of the centroid and the points in all of the clusters comprise at least half 

of the full location data for that user.  

After this all of the data to determine the relevant contexts for each user has 

discrete values and we can simply count the most common ones. However, it might 

not be feasible to use the full five dimensional (activity, environment, day, time, 

location) data to find the clusters as the data simply might be spread too thin. Thus, if 

not enough data is available we  find the key contexts for the following cases while 

aggregating over the others: a) all five values with all days of week; b) all five values 

with day as weekday/weekend; c) only activity and environment; d) only day of week 

and time. From this we must take away possible duplicates; in these cases the more 

generic one is considered the more relevant one. 

Recommenders - On the backend platform, several algorithms fed with the UMPs 

form the set of recommenders. For each relevant recommendation context identified 

in the previous step, a set of playlist seeds (recommended song IDs) is generated by 

using user preferences and historic data on the system.  

From the preferences identified on the UMP, other recommendations are also 

generated: i) events recommendations; and ii) music purchase recommendations. 

Details of these recommendations processes are outside the scope of this paper. 

3.2   Mobile Recommender Client  

The mobile client includes primarily two processes: a daemon process, responsible for 

collecting context-related data, as well as music-related usage data; and the music 

application itself, the user-facing side of the system, responsible for interfacing with 

the user and playing the appropriate songs for each context. Fig. 3 shows the internal 

modules of these processes. 

Data Provider - Contextual data retrieval is performed by the data provider daemon, 

which is composed of: i) a set of miners, each one responsible for gathering music 

data or data from a specific context attribute sub-module; ii) a serializer layer, 



 

responsible for translating the mined data into intermediary objects, assembling the 

scrobbling events structure, and serializing the events; and iii) the distribution engine, 

responsible for interacting with the Data Gathering API on the backend system. 

 

Fig. 3. Device-side processes. 

Context attribute miners here can be seen, according to the semantic context 

interpretation and abstraction layers presented in [13], as belonging to the High-Level 

Context layer, where the lower level sensory information is semantically interpreted.  
The activity miner classifies what the user is doing based on readings from the 

phone accelerometer, and its output classifications vary among walking, running, 

bicycling, etc. The environment miner tries to infer where the user is at a given 

moment by getting audio input samples and comparing them to a trained database of 

classified samples. Possible values include meeting lecture, office, bus, and others. 

The location miner provides (lat, long) coordinates, which can be more or less precise 

depending on the active source (GPS, Cell-ID), or other location-related items like 

Wi-Fi MAC addresses, or Bluetooth IDs, associated to the last know position. 

 Finally, the music metadata miner observes the user's local music catalogue –

keeping the backend aware of eventual addition or removal of songs – and the mobile 

platform’s underlying media framework for music playing events to be translated into 

scrobbling events. Metadata, context and scrobbling events are then serialized and 

sent via the proper API to the backend. 

Context Matching Engine - As mentioned when describing the UMP, whenever the 

backend has new relevant profile data, the music recommender application fetches 

this data and caches it locally to use it as input for feeding context-specific structures.  

 In order to decide when and what types of song to play, the application needs to 

figure out what the user wants to listen in a given moment. This context detection 

engine uses the data in the user profile and from the sensor readings in the data 

provider, trying to find the best possible matches, therefore assembling a dynamic 



 

 

playlist containing only songs that belong to that specific context. If the user context 

changes, the engine decides whether the current playlist is no longer suitable for the 

user and repopulates it with the new context's songs. 

 The context identification involves aggregating the current context attributes and 

comparing the resulting set with the different sets in the UMP. Currently the set with 

the most matches is the one selected as current appropriate context. 

Contextual Music Application - The concept behind the application is that the UI 

shall allow the user to explore its local (to the phone) catalogue of songs and, from 

usage data, start to suggest context-appropriate songs for playing or purchasing (as 

well as other content-related data, e.g. nearby events from related artists/bands). Fig. 4 

shows the two most important screens according to this concept. The “What is 

new?” screen is the main recommendation panel on the application and surrounds the 

currently playing song with recommendations for the current context: to play (songs 

from the user’s local catalogue), to purchase (songs from artist similar to the ones the 

user listens in the detected contexts), and to augment (e.g. event suggestions). 
The second screen shows one of the available panels when playing the song. It 

shows more purchase suggestions (on the list at the top), and the next 

recommendation on the created playlist for the current context (at the bottom). 

 As 3G services provide network access capabilities on the device, other side-

scrollable panels provide more related data (as for example discography or band 

information about the artist being played), as well as services that are independent 

from our main system (e.g. what other close by users are listening to). 

 

Fig. 4. Main screen and purchase recommendations. 



 

4   Preliminary Tests and Results 

While a complete user evaluation is beyond the scope of this paper, ongoing 

experiments suggest the described system produces interesting results, provided users 

have specific behaviours. A two-step trial was executed to evaluate both the usability 

of the concept and the actual contextual recommendations. At a first stage a small test 

lasting one week was performed with 10 users (5 male, 5 female, from age 18 to 32) 

that are active music listeners and listen to songs in a range of activities and places.  

 As this test focused on the comprehension of the recommender concept, a set of 

tasks had to be completed by the participants; which later were interviewed to gather 

their preferences, needs and opinions on possible improvements. This first experiment 

generated 3,704 scrobbling events and allowed us to track how users’ initial to final 

perceptions improved. Some key points from the first trial were: 

 All users seemed very interested in the recommendation of events; 

 Six of the ten users were initially confused by the lack of direct control over 

which songs were played, but towards the end most were satisfied with the 

recommendation to play or purchase (7 out of 10; 4 mentioning that the 

recommendations exceeded their expectations in certain scenarios); 

 Three users declared to be always curious to see what the system would suggest; 

While nine out of the ten participants were not used to buying songs online, all 

considered the experience of discovering a new song interesting and attractive; and 

commented that they felt encouraged, by the recommendations, to buy new songs. 

Based on this feedback, refinements were made to the UI and some minor changes 

were applied to the system data flow. A more extensive trial was initiated with 59 

users in 4 different countries, which generated additional 22,467 scrobbling events. 

 As quality for activity/environment specific recommendations is subjective, the 

analysis of the collected data and participant opinions has not been concluded yet. So 

far only around 20% of the users were debriefed and, of these, most were neutral 

regarding the application user interface and more than half mentioned enjoying the 

recommendations.  A full analysis of the trial results will be published appropriately. 

5   Concluding Remarks 

This paper described a CAS for music recommendation whose goals were to explore 

the problem space and to allow a good degree of quality to the user experience in 

receiving music recommendations. The system employs a number of techniques and 

approaches to both deal with the necessary data flow (in quantity and different data 

types) and to generate quality recommendations. The implementation of the described 

architecture for collecting contextual data, reasoning on it and generating situational 

recommendations provided many insights and opportunities for improvement. 

 The initial results suggest that the system can properly identify and recommend 

song per context. A more in depth analysis of the trial results we already have is our 

first objective. Some other immediate goals are: improvements to efficiency, 

optimization of battery usage on device, and improvements to the offline case.  



 

 

 However, context specific music recommenders are complex systems and much 

remains to be done and other features are just starting to be explored, such as 

relevance feedback and clustering. Combination of content-based and collaborative 

filtering to predict interests (similar to Yeung et al. [6] approach in the news domain) 

and other forms of social data (e.g. ongoing research concerning the extension of 

context profiling to groups of users [11]) is also on the agenda.  

6   Acknowledgments 

We’d like to thank Francimar Maciel and Maysa Martins for all the help in setting and 

running the trials. We would also like to thank Ingemar Larsson for being the tireless 

champion of this idea, and for making sure everything ran as smoothly as possible. 

References 

[1] Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A 
survey of the state-of-the-art and possible extensions. IEEE Trans. Knowledge and Data 
Engineering, vol. 17 (6), pp. 734--749 (2005) 

[2] Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. International 
Journal of Ad Hoc and Ubiquitous Computing vol. 2 (4), pp. 263--277 (2007) 

[3] da Rocha, R., Endler, M.: Context Management in Heterogeneous, Evolving Ubiquitous 
Environments. IEEE Distributed Systems Online, vol. 7 (4), IEEE Comp. Society (2006) 

[4] Chen, A.: Context-Aware Collaborative Filtering System: Predicting the User’s Preference 
in the Ubiquitous Computing Environment. In: Strang, T., Linnhoff-Popien, C. (eds.) 
Location and Context Awareness 2005. LNCS, vol. 3479, pp. 75--81. Springer (2005) 

[5] Woerndl, W., Brocco, M., Eigner, R.: Context-Aware Recommender Systems in Mobile 
Scenarios. Intl. Journal of Information Technology and Web Engineering, vol. 4 (2009) 

[6] Yeung, K.F., Yang, Y., Ndzi, D.: Context-Aware News Recommender in Mobile Hybrid 
P2P Network. In: 2nd International Conference on Computational Intelligence, 
Communication Systems and Networks - CICSYN (2010) 

[7] Said, A.: Identifying and Utilizing Contextual Data in Hybrid Recommender Systems. In: 
4th ACM Conference on Recommender Systems - RecSys  (2010) 

[8] Carrillo-Ramos, A., Villanova-Oliver, M., Gensel, J., Martin, H.: Contextual User Profile 
for Adapting Information in Nomadic Environments. In: Personalized Access to Web 
Information Workshop (PAWI), LNCS, vol. 4832, Springer-Verlag, pp. 337--349 (2007) 

[9] Baltrunas, L.,   Amatriain, X.:  Towards time-dependant recommendation based on 
implicit feedback. In: Workshop on Context-Aware Recommender System - CARS (2009) 

[10] Tarasewich, P.: Designing mobile commerce applications. Communications of the ACM - 
Mobile computing opportunities and challenges, vol. 46 (12), Dec. 2003, USA (2003) 

[11] Do, T. M. T., Blom, J., Gatica-Perez, D.: Smartphone usage in the wild: a large-scale 
analysis of applications and context. In: 13th International Conference on Multimodal 
Interfaces - ICMI (2011) 

[12] Baltrunas, L., Kaminskas, M., Ludwig, B., Moling, O., Ricci, F., Aydin, A., Luke, K.H., 
Schwaiger, R.: InCarMusic: Context-Aware Music Recommendations in a Car. In: 12th 
International Conf. on Electronic Commerce and Web Technologies - EC-Web (2011) 

[13] Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., 
Riboni, D.: A survey of context modelling and reasoning techniques. In: Pervasive and 
Mobile Computing, vol. 6 (2), pp. 161-180 (2010) 


