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Abstract. A selection of artificial neural network models were built and 
implemented for systematically study the contribution and the sensitivity of the 
main influencing parameters as important contributing factors for the non-
invasive prediction of chromosomal abnormalities. The parameters that had 
been investigated are: the previous medical history of the pregnant mother, the 
nasal bone, the tricuspid flow, the ductus venosus flow, the PAPP-A value, the 
b-hCG value, the crown rump length (CRL), the changes in nuchal translucency 
(deltaNT) and the mother’s age. The main conclusions drawn are: 1) The 
deltaNT is the most significant factor for the overall prediction, while the CRL 
the least significant. 2) The previous medical history of the pregnant mother is 
not a significant factor for the prediction of the abnormal cases. 3) The nasal 
bone, the tricuspid flow and the ductus venosus flow contribute significantly in 
the prediction of trisomy 21 but not in the prediction of the “normal” cases. 4) 
The PAPP-A, the b-hCG and the mother’s age are of intermediate importance. 
Also, a sensitivity analysis of the attributes PAPP-A, b-hCG, CRL, deltaNT and 
of the mother’s age was done. This analysis showed that the CRL and deltaNT 
are more sensitive when their values are decreased, the PAPP-A is more 
sensitive when its values are increased and the b-hCG is insensitive to 
variations in its values. 

Keywords: Artificial neural networks, Chromosomal abnormalities, Sensitivity 
analysis. 

1 Introduction 

It is known that for an effective non-invasive first-trimester screening for fetal 
chromosomal abnormalities, various maternal and feto-placental parameters may be 
explored in an appropriate diagnostic tool ([1], [2], [7]). The most important 
parameters for diagnosing chromosomal abnormalities are the maternal age (MA), the 
previous occurrence of aneuploidies, the fetal nuchal translucency (NT) thickness, the 
crown rump length (CRL), the free β-human chorionic gonadotrophin (b-hCG), the 



pregnancy associated plasma protein-A (PAPP-A), the nasal bone (NB), the tricuspid 
flow (TF) and the ductus venosus flow (DV) [2]. 

The traditional approach to screening for trisomy 21 (T21) (Down Syndrome), is to 
use statistical techniques to estimate the patient-specific risk for aneuploidy. 

In a previous study [7], an accurate system for the non-invasive identification of 
trisomy 21 during the first three months of the pregnancy was suggested. That system 
was tested with 129 unknown cases of T21 and 16,898 unknown cases of normal 
fetuses. The correct classification yield was 99% for the unknown T21 cases and the 
false positive rate was 5%. 

In the present study, artificial neural networks (ANN) had been constructed, 
trained and verified with a large unknown data set in order to explore the importance 
and sensitivity of various contributing parameters for the appraisal of the risk for 
existence of chromosomal abnormalities in the fetuses. 

The data were obtained from the Fetal Medicine Foundation (FMF), which is a UK 
registered charity that has established a process of training and quality assurance for 
the appropriate introduction of NT screening into clinical practice [2]. 

In the study, a large number of different neural network structures had been 
constructed and trained in a systematic manner, aiming at producing good neural 
classifiers/predictors for the non-invasive appraisal of the risk for the presence of 
chromosomal abnormalities in fetuses and hence to establish the importance and 
sensitivities to those parameters. The neural structures that were attempted were 
mainly of the feed-forward type, both of standard multi-layer, as well as of multi-slab 
topologies. 

2 Data 

The data were provided by the Fetal Medicine Foundation of London. They were 
obtained from the greater London area and South-East England for pregnant women 
attending routine clinical and ultrasound assessment for the risk of chromosomal 
abnormalities. 

The database was made of 50,890 cases of pregnant women. The vast majority of 
these (50,489) were normal as far as the chromosomal abnormalities are concerned. 
The remaining 401 cases (0.8%) were confirmed as having trisomy 21. That is, there 
is a prevalence of 0.8%. This is a highly unbalanced data set that makes the prospect 
for building an effective neural network predictor to be a difficult task. 

For each pregnant woman, a number of relevant parameters were collected, 
encoded/converted into appropriate numbers that made them suitable to be used for 
the training of neural networks. These parameters are: 

 
1. The maternal age 
2. The previous medical history 
3. The fetal nuchal translucency thickness 
4. The crown rump length 
5. The free β-human chorionic gonadotrophin 
6. The pregnancy associated plasma protein-A 
7. The nasal bone 
8. The tricuspid flow 
9. The ductus venosus flow 

 
The fetal CRL, the NT thickness, and the fetus heart rate were measured during a 

transabdominal ultrasound examination that was performed by certified sonographers 



who had received the appropriate FMF certificates of competence. During such 
examination other possible major fetal defects were also diagnosed and recorded. 

A subset of 16,807 cases (33%) were isolated and kept aside to be used as a totally 
unknown database to be used in order to check the predictability of each attempted 
neural network, and later for the evaluation of the importance of each factor as 
significant parameter that contributes to an accurate prediction of the risk of 
occurrence of the genetic abnormality of interest. In this unknown data set, there were 
130 cases (0.7%) of T21 chromosomal defect. It is emphasized that these cases were 
never used during the learning procedures of training of the neural networks, and thus, 
they were a reliable way for assessing the predictability of each network. Because the 
number of anomalous cases is very small, and such cases cannot be artificially 
generated, the abnormal cases in the verification set were confined to only a small, 
but substantial, percentage. 

 

 

Fig. 1. The typical neural network structure that was ultimately selected and used for the 
diagnosis of chromosomal defects. 

3 The neural network predictor 

Various feed-forward neural structures of standard multilayer type, having different 
number of layers and activations, as well as different neurons per layer were 
systematically built, trained and tested. Also, multi-slab topologies of different 
structures, sizes, and activation functions, were systematically built, trained and 
verified, in order to find the best performing structure with regards to the prediction of 



the unknown verification data set. This was done in a planned and systematic manner 
so that the best performing architecture would be obtained and finally used. Tables 5 
and 6 show a summary of the attempted structures and of the performances achieved 
for the unknown verification data set of the 16,807 cases.  

The best performing neural structure that was found for this particular application 
is a feed-forward multilayer perceptron having three layers as it is typically depicted 
in Figure 1. All the weights were initialized to 0.1, the learning rate used for all the 
connections was 0.1, and the momentum rate was 0.4 for all the links. The learning 
scheme that was used was the momentum backpropagation.  

4 Methodology 

Each of the parameters was independently and individually studied. The methodology 
used is as follows. 

For the case of the investigation of the importance of the previous medical history, 
60 models were built and tested. The vector of the attributes contained three elements 
that are related to the history of the patient, labeled “Previous T21”, “Previous T18” 
and “Previous T13”, indicating a specific chromosomal abnormality that occurred in a 
previous pregnancy. The contribution of these three attributes was examined by 
creating two groups of ANN models. In the first group the entire attribute set was 
used, while in the other group we removed the three attributes related to the patient’s 
history and we compared the results.  

As for the investigation of the attributes that contained information retrieved from 
ultrasound scans, i.e the presence or absence of the nasal bone, the tricuspid flow and 
the ductus venosus flow, we created 8 groups of a total of 48 models. In each group 
we removed one or two of the attributes that we were testing (8 combinations). The 
first group contained models that were built using the entire attribute set (Table 1).   

 
In a third series of experiments we examined the contribution and the sensitivity of 

“Mother’s age”, “b-hCG”, “PAPP-A”, “CRL” and “deltaNT”. The contribution of 
these five attributes was examined by creating 6 models and comparing the results of 
each model with the results of the same model when the entire attribute set was used 
as input vector in the network. In each of the 5 models, one attribute was removed 
from the attribute set and in the 6th model all the five attributes were removed. The 
sensitivity of the attributes was tested by changing the values of each parameter in the 
evaluation set by a specific factor. Thus, an artificial evaluation set was created 
having a vector that its values are changed and is used to test the model that was 
initially trained with the correct values. We expect to see more misclassified cases 
since one vector at each time was multiplied by a factor in the range [0.001 - 10]. We 
observed the importance on the tolerance of a possible error for each of the attributes 
that were tested.  

All the neural models that were built had three layers. An input layer, a hidden 
layer and an output layer. The number of neurons in the input layer was always the 
number of the attributes used as input parameters to the network. The output layer had 
always one neuron and the transfer function was the sigmoid. The difference in the 
architecture of each one of the models is in the number of neurons and the activation 
function used in the hidden layer. We used two activation functions and for each 
activation function we built models with 40, 50 and 60 neurons.  

 



Table 1.  Eight groups of models to investigate the contribution of the attributes “Nasal bone”, 
“Tricuspid flow” and “Ductus venosus”. 
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A √ √ √ √ √ √ √ √ √ √ √ 

B √ √ √ √ √ √ √ √ √  √ 

C √ √ √ √ √ √ √  √ √ √ 

D √ √ √ √ √ √ √ √  √ √ 

E √ √ √ √ √ √ √ √   √ 

F √ √ √ √ √ √ √  √  √ 

G √ √ √ √ √ √ √   √ √ 

H √ √ √ √ √ √ √    √ 

 

5 Results 

From the results obtained for each group we created a decision procedure composed 
of two steps, aiming to assign a quality value in the comparison between the groups. 
That is, we needed to know if a model increases or decreases its performance by 
removing one attribute. If the system increases its performance after the removal of an 
attribute, then we concluded that the specific attribute rather confuses the predictive 
system instead of contributing to a better diagnostic yield.  

In the first step of the decision procedure, the results of each model in groups B to 
H are compared with the results of the models in group A. For each group 6 models 
were built using different architecture schemes of artificial neural networks. The 
results of the models in group A were kept as reference results since these were built 
by using the entire attribute set. Each time a comparison is done, a plus (+) or a minus 
(-) is added in the vector of six bin length (six models) representing the result of the 
comparison. In the second step of the decision procedure, we counted how many 
models increased and how many decreased their performance in comparison with the 
models in group A, by simply counting the pluses and the minuses in the vector, and 
divided this number by 6, which is the total number of the models in each group. In 
the case that the number of the models that have higher prediction compared to the 
models in group A is equal or higher to 4, the attribute is considered as contributing 
positively.  

We additionally computed the average of the increment and decrement of the 
performance of the models. This value gives supplemental information on the power 
of the attribute that is tested. For example the attribute “nasal bone” proved to be very 
important since all of the models that were built without the “nasal bone” in the input 
vector had a reduced performance compared with the models that were built using the 
“nasal bone” in the input vector, and the average of the decrement in the performance 
is above 2% in the prediction of the T21 cases (Table 5). 



 

5.1 Importance of the attributes of “previous medical history” 

We examined the contribution of the three attributes “Previous T21”, “Previous T18” 
and “Previous T13” by creating 12 models and comparing results. The results are 
shown in Table 2.  

Table 2. Results on 12 models for the investigation of the importance of the previous medical 
history. The performance of the normal cases were kept the same for each pair and the 
performance of the prediction of the T21 cases is examined. The last row shows the difference 
between the performance of each model in group B and the respective model in group A. 

Model Removed Model 1 Model 2 
  Normal T21 Normal T21 
Α None 95.20% 96.92% 95.09% 96.92% 
B History 95.12% 96.15% 95.01% 96.92% 

Difference B-A   -0.77%  0.00% 
Model Removed Model 3 Model 4 

  Normal T21 Normal T21 
Α None 95.30% 95.38% 97.00% 93.08% 
B History 95.54% 97.69% 97.00% 94.62% 

Difference B-A   2.31%  1.54% 
Model Removed Model 5 Model 6 

  Normal T21 Normal T21 
Α None 96.67% 92.31% 96.62% 93.08% 
B History 96.62% 90.77% 96.23% 90.77% 

Difference B-A   -1.54%  -2.31% 

 
The models in group A were built using the entire attribute set, while in group B we 
built 6 models in which we removed the three attributes under consideration from the 
input vector. We present the results by keeping the performance of the normal cases 
to be nearly the same between the reference model and the comparison model. This 
was done by changing the threshold in the classification process. A higher threshold 
will give a higher prediction in the normal cases and lower prediction on the T21 
cases. In models 1, 2 and 3 we keep the prediction of the normal cases at around 
95.0%, in models 5 and 6 we keep the performance of the normal cases at around 
96.6% and in model 4 at 97.0%. In this way we compare the differences of the 
performance on the prediction of the T21 cases. In models 1, 5 and 6 the performance 
in the prediction of the T21 decreased by 0.77% on average and in models 3 and 4 the 
performance in the prediction of the T21 increased by 0.64% on average (Table 3).  
 
Table 3. Results on 12 models for the investigation of the importance of previous medical 
history. First row shows the percentage on the models that had an increment, decrement and no 
change in the performance after the removal of the attributes that were tested. The last row 
shows the average increment/decrement in the performance. 

 
Removed  Increased Decreased No diff 

Sum of 6 models 33% 50% 17% History attributes 
Performance (avg) 0.64% 0.77%  

 
In model 2 the performance had no change in the prediction of the T21. From the 
results we conclude that the attribute “previous medical history” contributes 
positively, since 50% of the models built had higher prediction when the attribute was 
used in contrast to 33% of the models that had lower prediction when the attributes 
were not used. 



5.2 Importance of the attributes “nasal bone”, “tricuspid flow” and “ductus 
venosus flow” 

The procedure followed in this experiment aims to investigate the importance of three 
attributes in the dataset. We examined the contribution of the “ductus venosus flow” 
(DV), “tricuspid flow” (TF) and “nasal bone” (NB), by creating 48 models and 
comparing the results. The results of the models are shown in Table 4.  

 
Table 4. Results on 48 models for the investigation of the importance of the attributes “ductus 
venosus”, “nasal bone” and “tricuspid flow”. 

 
Renoved  Increased Decreased No difference 

Sum of 6 models 33% 33% 33% DV 
Average performance 0.51% 0.77%   

Sum of 6 models 0% 100% 0% 
NB 

Average performance 0.00% 2.56%   
Sum of 6 models 83% 0% 17% 

TF 
Average performance 1.67% 0.00%   

Sum of 6 models 0% 100% 0% 
DV + TF 

Average performance 0.00% 2.31%   
Sum of 6 models 83% 0% 17% 

DV + NB 
Average performance 2.44% 0.00%   

Sum of 6 models 50% 0% 50% 
NB + TF 

Average performance 0.77% 0.00%   
Sum of 6 models 17% 83% 0% 

DV + TF + NB 
Average performance 0.13% 2.44%   

 
In the first row, a comparison between the models that used the entire attribute set and 
the models in which the “ductus venosus” was removed is presented. Similarly, in 
rows 2 and 3 the “Nasal bone” and the “tricuspid flow” are compared with the models 
that used the entire attribute set. We observe that the attribute “ductus venosus” is 
contributing by an average 0.77%, the attribute “nasal bone” by 2.56% while the 
“tricuspid flow” is confusing the system since when removed, the performance 
increased by 1.67%. In the case we removed the “ductus venosus flow” and the 
“tricuspid flow” the performance decreased by 2.31% even though we observed that 
the “tricuspid flow” confuses the system. In the 5th row of Table 4 we observe that 
even though the attributes “DV” and the “NB” are contributing to the performance, 
when both are removed, the performance has increased. It seems that “NB” without 
“DV” gives better results. In the 6th row, the “NB” and the “TF” were removed from 
the attribute set. We observe that the performance increased by 0.77% and this is 
probably because as we see at the third row where the “TF” is examined, this attribute 
is confusing the system. When we removed all of the three attributes, the performance 
decreased by 2.44%. 

 

5.3 Importance of the attributes “Mother’s age”, “b-hCG”, “PAPP-A”, “CRL” 
and “deltaNT” 

In this section, the importance and the sensitivity of the attributes “Mother’s age”, “b-
hCG”, “PAPP-A”, “CRL” and “deltaNT” will be examined. 

 
For an investigation of the importance of these attributes we built six models and 

we compared them with the model that was built using the entire attribute set. In each 
one of the models, an attribute was removed. The results of the models are shown in 
Table 5. At a first look we observe that all the attributes that were examined are 



contributing to the system. More specific, when we removed all the five attributes the 
performance on the prediction of the T21 cases dropped from 96% to 81%. The most 
important attribute based on our investigations is the “deltaNT” since when it was 
removed from the system, the performance of the T21 dropped from 96% to 76%. 
The rest of the four attributes are contributing by approximately 6% each. The least 
significant attribute is found to be the “Mother’s age”. 

 
Table 5. Importance of the attributes “Mothers age”, “b-hCG”, “PAPP-A”, “CRL” and 

“deltaNT”. 
 

Removed attributes Performance 
  Normal T21 

None 95.78% 96.15% 
b-hCG, PAPP-A, CRL, deltaNT, Age 95.75% 80.90% 

b-hCG 95.60% 90.77% 
CRL 95.81% 90.77% 

deltaNT 98.14% 76.15% 
PAPP-A 95.74% 91.54% 

Age 95.70% 93.85% 

 
We also examined the sensitivity of each of the four attributes “CRL”, “PAPP-A”, 

“b-hCG” and “deltaNT”. To test the sensitivity of each attribute we changed the 
values of the attribute we wanted to check with wrong values (multiply the vector by 
a factor in the range [0.001 – 10]) and we were re-evaluating the evaluation set. A big 
drop in the performance shows high sensitivity of the attribute that was tested. 

We followed similar comparison procedure with the ones in previous sections by 
keeping the performance of the normal cases to be closely the same between the 
models we were comparing and we were observing differences in the performance on 
the T21 cases. Five erroneous vectors were created for each one of the attributes we 
were testing. This approach resulted in 20 evaluation sets. The five factors that were 
multiplied in each attribute are the numbers 10, 5, 2, 0.1, and 0.001. As shown in 
Table 6, the attribute CRL is not sensitive when the number is increased and is also 
shown that when we multiplied the vector by 10, the results are still the same with the 
results of the model that the values were correct. It is also shown that the attribute 
“CRL” is very sensitive when the number is decreased. We see that when we 
multiplied the vector by 0.1 the performance on the T21 dropped to 28%. On a 
contrary, “PAPP-A” is more sensitive when the values are being increased and less 
sensitive to a decrement. As shown in Table 6 in the first row esults, when the 
“PAPP-A” has been multiplied by a factor of ten, the performance on the T21 
dropped to 22%, while even when it was multiplied by a factor of 0.001 the 
performance in the T21 was the same as with the cases evaluated with the correct 
values. The attribute “b-hCG” is the least sensitive. The performance when we 
multiplied the vector with a factor of 10 and a factor of 0.001 dropped from 96% to 
84%. The “deltaNT” showed that it is more sensitive when the values are decreased 
where when the vector is multiplied by 0.001 the performance on the T21 dropped to 
72%. 

 
Table 6. Sensitivities of the attributes “CRL”, “PAPP-A”, “b-hCG” and “Delta NT”. 

 
Factor CRL PAPP-A b-hCG Delta NT 

  Normal T21 Normal T21 Normal T21 Normal T21 
10 95.43% 95.38% 95.07% 22.31% 95.57% 83.85% 95.72% 83.85% 
5 95.48% 95% 95.57% 51.54% 95.51% 95% 95.27% 87.67% 
2 94.90% 98.46% 95.21% 93.85% 94.81% 96.15% 95.27% 93.08 

0.1 99.69% 28.46% 95.35% 93.85% 95.54% 86% 95.91% 83.08% 
0.001 99.76% 25.38% 95.42% 96.15% 95.53% 83.85% 95.32% 71.54% 

 



 
6. Conclusions  
 
The main conclusion of this research work is that the “previous medical history 

attributes” are not significant contributors for the diagnosis of chromosomal 
abnormalities. It is not clear whether eventually three previous medical history 
attributes are contributing positively, since some of the models had higher 
performance in the prediction of the T21 when these attributes were removed from the 
input space. We also found that the most important attribute is the “deltaNT”. This 
attribute contributes to the prediction of the T21 by 20%. The attributes “b-hCG”, 
“PAPP-A” and “CRL” are also contributing to the system performance, since each 
one was tested separately and had an increment in the performance of about 6%. The 
attribute “mother’s age” contributed by only 3% in the prediction of the T21 cases. 
The attributes “nasal bone” and “ductus venosus” had contributed by 2.6% and 0.8% 
respectively in the prediction of the T21. Quite importantly, the parameter “tricuspid 
flow” confused the system and it decreased the performance by 1.7%. The attribute 
“CRL” is sensitive to errors lower to 10% of its value, the “PAPP-A” is sensitive to 
errors higher than 10% if its value and the attributes “b-hCG” and “deltaNT” are less 
sensitive to either lower or higher of the 10% of their values. 
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