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Abstract. In the wake of gene-oriented data analysis in large-scale 
bioinformatics studies, focus in research is currently shifting towards the 
analysis of the functional association of genes, namely the metabolic pathways 
in which genes participate. The goal of this paper is to attempt to identify the 
core genes in a specific pathway, based on a user-defined selection of genomes. 
To this end, a novel methodology has been developed that uses data from the 
KEGG database, and through the application of the MCL clustering algorithm, 
identifies clusters that correspond to different “layers” of genes, either on a 
phylogenetic or a functional level. The algorithm’s complexity, evaluated 
experimentally, is presented and the results on a characteristic case study are 
discussed. 
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1   Introduction 

Metabolomics is the scientific study of chemical processes involving metabolites. 
Specifically, metabolomics is the “systematic study of the unique chemical 
fingerprints that are left behind specific cellular processes”. The metabolome 
represents the collection of all reactants (enzymes, proteins or other chemical 
compounds) in a biological cell, tissue, organ or organism, which are the end products 
of cellular processes.  

In biochemistry, metabolic pathways are series of chemical reactions occurring 
within a cell. In each pathway, a principal chemical is modified by a series of 
chemical reactions. Enzymes catalyze these reactions, and often require dietary 
minerals, vitamins, and other cofactors in order to function properly. Because of the 
many chemicals (a.k.a. “metabolites”) that may be involved, metabolic pathways can 
be quite elaborate. In addition, numerous distinct pathways co-exist within a cell. This 
collection of pathways is called the metabolic network. 



 

 

For the current study, pathway-related information was retrieved from KEGG 
Pathway Database (KEGG) [1], a collection of manually drawn pathway maps 
representing our knowledge on the molecular interaction and reaction networks for 
various processes and systems including “Metabolism”, “Human Diseases” and 
“Cellular Processes” among others. The analysis of completely sequenced genomes 
can yield useful insight into the evolution and multi-level organization of organisms. 
With the current advances in genomics and proteomics, it has become imperative to 
explore its impact as reflected in the metabolic signature of each genome [2]. To this 
end a methodology is presented, which applies a clustering algorithm to genes from 
different species participating in the same pathway. 

2   Problem Description 

Considering the fact that the majority of the known genomes from all three 
domains (Archaea, Bacteria and Eukaryota) use highly similar chemical processes in 
the form of metabolic pathways, it is a logical step to assume that the dissimilarities 
in the particular expressions in the metabolic pathways of different genomes can be 
viewed as the result of the evolution of a reference pathway existent at the common 
ancestor of those genomes. Specifically, considering that each pathway can be 
represented by a graph, then, starting from the graph of the reference pathway, the 
currently formed pathways have emerged essentially after the addition or deletion of 
some nodes and/or edges from the reference graph, while preserving the core body of 
the pathway virtually unchanged. In fact, by observing the graph representing a 
metabolic pathway using several genomes as a reference, several compact sets of 
edges (i.e. reactions) can be distinguished that seem to be highly conserved in the 
genomes, whereas at the same time there exist several sub-graphs that have been 
added or deleted, making evident the differentiation of the pathway expression 
between the genomes. This observation leads us to the conclusion that the 
transformations that have been carried out in the gene-level of the genomes through 
evolution due to mutations of the genome sequences have resulted to changes in the 
topology of the metabolic pathway while retaining the overall process. 

Thus, the objective of the current study is to extract a meaningful clustering of the 
genes participating in a common metabolic pathway of several genomes by 
comparing the genes sequences and by evaluating the degree of homology between 
genes from different genomes. The result of the applied process is the extraction of 
cohesive gene groups that can give us information about the evolutionary similarity 
between the genomes examined or the uniqueness of some reactions in particular 
genomes. This knowledge can then be used in order to correlate some macroscopic 
differences between the genomes with the differences that arise between them in the 
pathway level. 

2.1   Related work  

Genes usually do not act individually but form functional or structure organizations, 
exemplified by metabolic pathways. As metabolic pathways are essential to the 



 

 

survival of organisms, and their evolution has been under debate for more than half a 
century [3], a combined phylogenetic and phenetic analysis of pathway topology 
might expand the understanding of the evolutionary processes molding their form and 
structure. 

Several groups have carried out phylogenetic analyses based on metabolic 
pathways, deriving phylogenetic trees from the information of individual pathways 
[4-6], the presence and absence of entire pathways [7], or the reaction content of 
entire pathways [8]. These studies have provided valuable insight into the evolution 
of metabolism; however, as phylogenetic trees, they have generally diverged 
substantially from trees based on 16S rRNA, the most used molecule for phylogeny 
reconstruction. A common feature of phylogenetic trees based on metabolic 
information is that, owing to similar evolutionary pressures, organisms in similar 
habitats tend to be clustered together, and Aguilar et al. [9] therefore regarded such 
trees as phenetic rather than phylogenetic. Furthermore, one group showed that trees 
based on different subsets of metabolic networks were different [9], and another result 
also indicated a similar situation when several different pathways were used to 
construct trees separately [6]. 

On the other hand, phylogenetic profiles are commonly used in evolutionary 
studies, as they are based on sequence similarity. There are several recent approaches 
that either directly utilize phylogenetic profiles for functional prediction of gene 
clusters [10] or combine them with other biological data sources for increased 
sensitivity [11]. A slightly different approach, and an intermediate step towards the 
work presented in this paper, is to produce a tree-like structure of gene clusters in 
order to reconstruct the evolutionary relationships between them [12]. However, it is 
shown that the output of large-scale reconstructions is notably more difficult to 
interpret biologically. Our approach extends this work by aiming to extract close gene 
associations from metabolic pathways through unsupervised clustering at a sequence 
level. This level of association can be enhanced if the phylogenetic relationship of the 
corresponding genomes is taken under consideration. 

3   Algorithm overview 

The algorithm accepts as input a KEGG pathway map identifier mapID, and a list 
of n genome identifiers that comprise the target data set. A specific clustering 
algorithm (MCL [13] or EM [14]) is also selected for the current run and some 
parameters can be set i.e. the inflation parameter for MCL and the e-Value threshold 
for the construction of the homology matrix. We have determined through extensive 
experimentation the optimal value for the inflation parameter (‘12’) and the 
recommended value for the execution of the methodology (Table 1). Specifically, 
setting the inflation parameter to the optimal value stabilizes the number of clusters 
produced by the algorithm while at the same time yielding the optimal results 
(maximum values) with regards to the average intra-cluster similarity and homology. 

By retrieving specific data (gene identifiers, FASTA sequences and the 
corresponding EC identifiers) about the ki genes (i = 1 … n) from each genome that 
participate in mapID, n blastable databases are constructed. In the next step, blast 



 

 

searches are performed, leading eventually to a matrix containing the phylogenetic 
profiles of all genes participating in the study. The homology between genes is 
determined using the default BLAST values and an e-Value threshold of 10-5. The 
data in this homology matrix P are then clustered using the MCL or EM algorithm 
and a custom similarity metric based on the jaccard metric, given from the following 
equation: 

 
sim𝑗𝑎𝑐 = 𝑚11+𝑚00

𝑚01+𝑚10+𝑚11
  (1) 

 
where: 

 m11 represents the number of genomes where both genes (the distance 
of which is calculated) have a homologue, 

 m00 represents the number of genomes where both genes do not have a 
homologue and 

 m10 (m01) represents the number of genomes where the first gene 
(second gene) has a homologue while the second one (first one) does 
not. 

After thorough experimentation using both the MCL and the EM clustering 
algorithms (data not shown), we have concluded that the clusters generated with MCL 
are more robust and more closely correlated to the biological aspect of the problem, 
while the clusters produced by EM cannot be readily interpreted. Generally, in many 
cases the EM’s results tend to closely resemble with the respective results acquired 
with MCL. However, although they both generate almost the same number of clusters 
and have over 70% similarity between the “corresponding” clusters, they do not 
provide an equivalent level of granularity regarding the resulted clustering. Moreover, 
in all the experimental setups that were performed, EM cannot attain the distinction in 
separate groups of the genes belonging to a specific genome from the entire dataset, 
something that is achieved by MCL. On the other hand, in sharp contrast with EM, 
the MCL algorithm leads to a degenerate clustering (i.e. singleton cluster) when the 
organisms selected for a test case have a close phylogenetic relationship. Thus, in 
case resulting clusters form EM can be sufficiently interpreted from a biological 
aspect, then we can assume that EM is more advantageous than MCL in cases of 
limited phylogenetic diversity. For the current study however, the development of the 
overall methodology is based on the use of MCL as the genes’ clustering algorithm. 

Following that step, a clustering validation is performed to determine the similarity 
and consequently the significance of the clusters generated and the FASTA files for 
each of the clusters are retrieved from KEGG. The homology score for each pair of 
clusters i and j (at index i,j of the homology matrix) is the total number of 
homologues found between clusters i and j divided by the product of the total 
numbers of genes in clusters i and j. The homology between each pair of genes is 
determined by executing blast searches for all pairs of FASTA sequences 
corresponding to the genomes participating in the current test case and considering 
that an e-Value score lower than 10-5 indicates the existence of homology between the 
examined genes. The similarity score for each pair of clusters i and j is the sum of the 
distances (Eq. 1) between all pairs of genes in clusters i and j divided by the product 
of the total numbers of genes in clusters i and j. The validation process is performed 
by comparing the intra-cluster similarity and homology to the respective inter-cluster 



 

 

values. In all cases (data not shown), it was confirmed that the ratio of intra-cluster to 
inter-cluster values was in the range of 10, with the notable exception of a few minor 
clusters were the ratio was closer to 1. 

Table 1. Statistical overview of several different runs of the methodology using MCL for 
various values of the inflation parameter. The reference pathway is the Glycolysis / 

Gluconeogenesis and the examined organisms are Escherichia Coli K-12 MG1655 (eco), 
Arabidopsis Thaliana (ath) και Homo Sapiens (hsa). 

         MCL      
         inflation 

                 
 

Results 

2 6 10 12 16 20 24 30 

Number of 
clusters 2 3 3 4 4 4 2 1 

Average inter-
cluster similarity 0.29 0.42 0.42 0.48 0.48 0.48 0.29 - 

Standard 
deviation of inter-
cluster similarity 

0 0.21 0.21 0.28 0.28 0.28 0 - 

Average intra-
cluster similarity 1.92 1.39 1.39 1.81 1.81 1.81 1.92 0.77 

Standard 
deviation of intra-
cluster similarity 

1.53 0.41 0.41 0.86 0.86 0.86 1.53 0 

Average inter-
cluster homology 0.035 0.02 0.02 0.016 0.016 0.016 0.035 - 

Standard 
deviation of inter-
cluster homology 

0.035 0.017 0.017 0.014 0.014 0.014 0.035 - 

Average intra-
cluster homology 0.12 0.14 0.14 0.18 0.18 0.18 0.12 0.08 

Standard 
deviation of intra-
cluster homology 

0.045 0.018 0.018 0.07 0.07 0.07 0.045 0 

 
Finally, a post-processing procedure is applied to the data of the clusters in order to 

extract additional information regarding the composition of the clusters and the 
distribution of similar genes across the genomes and the acquired results are used to 
retrieve the customized colored versions of the examined metabolic pathways by 
cluster and by genome. The flowchart of the algorithm is shown in Fig. 1. 

3.1   Algorithm complexity and efficiency 

The maximum data size processed using that algorithm involved 325 genomes and 
10,327 genes, due to memory space limits, considering 4 GBs of available memory 
space. The corresponding execution time of the algorithm reached about 15 hours 
using a 3.0 GHz Quad-Core Processor. The overall complexity of the implemented 
methodology is shown in Fig. 2. 



 

 

 
Fig. 1. Flowchart demonstrating the steps of the algorithm. 

 

             
       a.                                                                    b. 

Fig. 2. Execution of the algorithm for different number of genes [a] and genomes [b]. In both 
cases the exponential character of the algorithm is evident. 

3.1   Software implementation 

The implementation of the algorithm outlined in the paper incorporates several 
different software tools and libraries that are combined and interconnected on top of a 
Java-based application framework. Specifically, data retrieval from KEGG database 
is achieved through SOAP-based web-services provided by the KEGG API. The 
construction of the blastable databases and the consequent BLAST searches are 
performed using the BLAST libraries (version 2.2.25+) provided by NCBI, whereas 



 

 

the output of the BLAST runs is read and organized using a custom XML DOM 
parser. The gene clustering is performed using the MCL implementation provided by 
the author of the original paper [15] while the EM’s implementation used is the one 
provided by WEKA Suite [16]. Finally, the application makes use of certain functions 
derived from the Matlab Bioinformatics toolbox [17] for the calculation of 
phylogenetic profiles using metabolic data in conjunction with information extracted 
from the resulted genes clustering. Those functions are accessed via Matlab generated 
Java components that are executed with MCR runtime engine [18]. The overall 
application is built on top of a common Java layer which is, besides the combination 
and coordination of the aforementioned heterogeneous tools and libraries, responsible 
for several pre/post-processing, evaluation and data mining tasks. Finally, the java 
tool that has been implemented is publicly available from the following url: 
http://olympus.ee.auth.gr/~fpsom/alignPaths-pkg_Bundle_v0.9.tar.gz 

4   Results overview 

The proposed method was applied on several different pathways and genome sets 
and validated through both statistical methods and literature reviews. A characteristic 
test case is presented here, namely the application of the method on the Glycolysis / 
Gluconeogenesis metabolic pathway (KEGG identifier map00010) which is a well 
known and extensively documented pathway. 

Derived from the Greek stem glyk-, “sweet,” and the word lysis, “dissolution”, 
glycolysis is an ancient pathway employed by a host of organisms. It is the sequence 
of reactions that metabolizes one molecule of glucose to two molecules of pyruvate 
with the concomitant net production of two molecules of ATP. Glycolysis is an 
energy-conversion pathway in many organisms, and it is tightly controlled. 
Gluconeogenesis is the opposite pathway from glycolysis, generating glucose from 
non-carbohydrate carbon substrates such as lactate, glycerol, and glucogenic amino 
acids. Gluconeogenesis and glycolysis are reciprocally regulated. 

The three genomes participating in the test case are Arabidopsis Thaliana (ath), 
Escherichia Coli K-12 MG1655 (eco) and Homo Sapiens (hsa), and were selected for 
sufficient phylogenetic diversity. The total number of genes in this dataset is 209, 
distributed across the three genomes as follows: ath: 105, eco: 39 and hsa: 65. The 
selected algorithm was MCL and the results are presented in detail in the following 
section. 

4.1   Experimental results 

The results of the test case are presented here along with some interesting 
observations. Specifically, the pathway images shown below depict the distribution of 
the genes both by cluster and by genome after the clustering is performed and provide 
useful information about the internal structure of a single pathway as a result of 
genomes evolution. 



 

 

            
            Arabidopsis Thaliana          Escherichia Coli K-12 MG1655                 Homo Sapiens  

Fig. 3. The Glycolysis/Gluconeogenesis pathway for the three genomes in the case study. 

In each pathway image (Fig. 3) the EC identifiers of the corresponding genome are 
highlighted according to the cluster their genes belong to. A special case is the EC 
identifiers highlighted in black; they contain genes from more than one cluster. 
However, it must be noted that each gene is assigned to a single cluster, whereas an 
EC identifier, corresponding to several genes, may in turn belong to different clusters. 

Fig. 4 shows the distribution of the gene clusters across the pathway. It is 
interesting to note that Cluster 1 contains EC numbers corresponding to genes that 
constitute the main process of the pathway (core pathway), whereas the EC identifiers 
of the fourth cluster contain genes only from the human genome. The second cluster 
contains genes only from Homo Sapiens and Arabidopsis Thaliana, as opposed to 
Cluster 3 that contains genes only from Escherichia Coli and Arabidopsis Thaliana. 
Finally, there exist several cases where an EC identifier corresponds to genes that 
individually belong to different clusters. These cases are shown collectively as a fifth 
cluster, but are also highlighted in each cluster diagram when the EC identifier 
contains at list one gene of the specific cluster. 

 

             
      Cluster 1           Cluster 2               Cluster 3 



 

 

                    
        Cluster 4            Multi cluster 

Fig. 4. The Glycolysis/Gluconeogenesis pathway for each of the four produced clusters, and the 
case of EC identifiers with genes from multiple clusters (highlighted in black).  

For validation purposes, the produced clusters were evaluated using both the 
modified jaccard similarity metric (Eq. 1) and the gene homology. The average intra-
cluster similarity and homology (≈ 1.813 and 0.182, respectively) was significantly 
higher than the average inter-cluster similarity and homology (≈ 0.479 and 0.016 
respectively). Moreover, every similarity and homology value calculated within a 
cluster is higher than every corresponding value calculated between the clusters (Fig. 
5). The aforementioned results are indicative to the significance and validity of the 
produced clusters. 

                   
          a.          b.  

Fig. 5. Inter-cluster and intra-cluster homology [a] and similarity [b] figure. 

5   Discussion 

Although these are only preliminary results, some interesting observations can be 
made. The presented test cases were among several different experimental setups. In 
all cases however, the first cluster always contained EC identifiers along the main 
reaction chain of the pathway, leading to the tentative conclusion that it may 
correspond to the highly conserved genes. Moreover, by superimposing the 
highlighted pathway diagrams along the implied phylogenetic distance of the 
genomes, one may infer sub-chains of the pathway that have been transformed or 



 

 

evolved across the species. A thorough investigation of this problem, together with 
rigorous experimentation on several different sets of pathways / genomes may 
provide more information in these areas. 
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