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Abstract. Mining frequent patterns on biosequences is one of the important 
research fields in biological data mining. Traditional frequent pattern mining 
algorithms may generate large amount of short candidate patterns in the process 
of mining which cost more computational time and reduce the efficiency. In 
order to overcome such shortcoming of the traditional algorithms, we present an 
algorithm named MSPM for fast mining frequent patterns on biosequences. 
Based on the concept of primary patterns, the algorithm focuses on longer 
patterns for mining in order to avoid producing lots of short patterns. 
Meanwhile by using prefix tree of primary frequent patterns, the algorithm can 
extend the primary patterns and avoid plenty of irrelevant patterns. 
Experimental results show that MSPM can achieve mining results efficiently 
and improves the performance.  
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1   Introduction 

Biosequence patterns usually correspond to some important functional (or structural) 
elements[1] such as conserved sequence patterns, repeated patterns or combinative 
patterns etc. Hence it is very significative to find such patterns in protein family 
analysis, transcriptional regulation analysis, and genome annotation etc. The task of 
biosequence pattern mining [2] is also the key technique for gene recognition, 
biosequence functional prediction and interactions explanation between sequences. It 
is one of the most important research areas in biosequence data mining. 

In the area of data mining, lots of sequential pattern mining algorithms have been 
proposed in recent years. At present the sequential pattern mining algorithms are 
mainly classified as two categories: one is for frequent patterns mining on single 
sequence; the other is for mining in multiple sequences. The former can mine frequent 
patterns only for single sequence[3-4], and is unable to synchronously analyze the 
relation between frequent patterns from a certain sequence and those contained in the 
other sequences. Such analysis is  common and necessary in biosequence data 
mining. For the latter, according to the definition[5] by Agrawal and Srikan in 1995 
based on the analysis of transaction data: given a sequence set and a user-specified 
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support threshold, the problem of sequential pattern mining is to find all frequent 
subsequences, that is to say, the counts of the subsequence appeared in the sequence 
set are not less than the minimal support threshold. In 1996, Strikant et al. proposed 
GSP (generalized sequential pattern mining)[6] which introduced the concept of time 
and level-wise constraints based on Apriori algorithm. It mines all frequent patterns 
by the use of bottom-up and breadth-first search strategy. But when the sequence 
database is a large-scale one, large amount of candidates could be produced and the 
database should be frequently scanned. Especially when the sequences contain long 
patterns, large amount of short candidate patterns may be generated , which could 
cause the problem would be intractable and of lower efficiency. In order to solve this 
problem, in 2000 Pei et al. put forward an algorithm named Prefixspan[7] based on 
pattern growth approach. It adopts divide and conquer method and continuously 
produces much smaller projected databases so as to mine frequent patterns. Since no 
candidates are produced in the algorithm, search space is greatly reduced. Its main 
cost is on the construction of projected databases and its performance is much higher 
than Apriori-based algorithms. Other recent works on sequential pattern mining 
algorithms have been surveyed in [8] by Han et al.  

However, because of the particularity and variety of mining requirements for 
biological data, the previous developed methods can not be applied directly to the 
large-scale biological data mining. Therefore extensive efforts have been devoted to 
developing some special mining algorithms for biological data, such as PTR-based 
algorithms[9-10]

 by Apostolico et al., ATR-based algorithms[11-18] by Delgrange et al.  

and TRFinder algorithm[19] by Beason. Later Kurtz presented REPuter[15] algorithm 
based on suffix tree which overcame the limitation of the length of input sequences. It 
was based on sequence alignment technique but could hardly find those frequent 
repeats among DNA sequences. In 2007, Wang et al made researches on searching for 
the similar repeated segments[20] and then introduced a new criteria of similarity and 
the concept of SATR(segment-similarity based approximate tandem repeats). They 
designed an algorithm SUA_SATR [21]  based on SUA with no limitations on pattern 
length during the searching process. Moreover, with the same similarity, the 
algorithm is faster than other traditional algorithms for the same DNA sequence,  
although its efficiency should be improved. In 2007 Xiong et al. proposed BioPM 
algorithm[22] specially for protein sequence mining. They introduce the concept of 
multiple supports so as to overcome the disadvantages of traditional algorithms and 
improve its performance and efficiency. But when the minimal support becomes 
lower, it can not keep its high efficiency since numerous projected databases are 
constructed.  In addition, the algorithm still produces large numbers of irrelevant 
short patterns during the mining process. In 2009, Guo et al. addressed MBioPM 
algorithm[23] which is an improvement of BioPM algorithm.  Based on a pattern 
partitioning scheme, the algorithm successfully avoids constructing large amount of 
projected databases. But when the lengths of the patterns exceed k, it requires a large 
buffer for frequent patterns mining which resulted in huge memory space cost. 
Moreover, it also takes large amount of time to align the existing patterns with those 
in the buffer. All these large time-space costs will cause the low efficiency of the  
algorithm. 

To overcome the problems of traditional sequential pattern mining algorithms 
mentioned above, we present a fast and efficient algorithm named MSPM for multiple 



biosequence mining. The algorithm mines all frequent patterns rapidly based on the 
prefix tree of primary frequent patterns which reflects more biological meanings. Our 
empirical studies on the tested data from pfam protein database show that MSPM 
algorithm can obtain higher performance and efficiency than the traditional mining 
algorithms. 

2   Definitions and Concepts 

2.1   The primary patterns 

Definition 1: Let ∑ be the alphabet, and { }1 2,  ,...,  nS S S S=  be a string of ∑ . 

Assuming x is a character  in ∑ , if  for string S, there exists integers 

1 2
1 ...

m
ni i i≤ < < < ≤  such that 

1 2
......

i i im
xs s s= = = = , then we call 

( )
x

ks = 1 ( 1) 1" ...... "ik ik i ks s s+ + −
the kth primary pattern of S with respect to x.  

Example1: Let { }, ,a b c∑ =  and " "S bacaabcbab= , then the primary patterns of 

S with respect to character a are (1) " "
a

acs = , (2) " "
a

as = , (3) " "
a

abcbs = , 

(4) " "
a

abs = .  
From the definition, we can easily get the following lemma. 
Lemma 1 For a string S, let its character set be ( )C S ⊆ ∑ . For an ( )x C S∈ , 

suppose there are xn  primary patterns with respect to x in S, then we have 

1
( )

xn

x
i

i Ss
=

≤∑  and  
( )

x
x C S

Sn
∈

=∑ .  

Lemma 2  For a string S, summation of the lengths of the primary patterns with 
respect to all characters in ( )C S  will satisfy:  

( ) 1
( ) ( )

x

x
x C S i

n
i C S Ss

∈ =

≤ •∑ ∑ . 

Proof: By Lemma 1, we can see that 
( ) 1 ( )

( ) ( )
x

x
x C S i x C S

n
i S C S Ss

∈ = ∈

≤ = •∑ ∑ ∑  

                                                   
Q.E.D 

Because ( )C S ⊆ ∑  and ( )C S ≤ ∑ , it is can be deduced 

that
( ) 1

( )
x

x
x C S i

n
i Ss

∈ =

≤ ∑ •∑ ∑ . 

Lemma 3  For a string S, the average length of  the primary patterns with respect 
to all characters in S will be not more than ( )C S . 



Proof: From lemma 2, we know that the summation  of the lengths of all the 

primary patterns of S satisfies
( ) 1

( ) ( )
x

x
x C S i

n
i C S Ss

∈ =

≤ •∑ ∑ . Furthermore, by lemma 1 

we also know that the number of total primary patterns of S is equal to S . Therefore 

the average length of all the primary patterns of S will be not more than ( )C S . 
                                                                     

Q.E.D 
From the lemmas mentioned above, we can see that all primary patterns can be 

intercepted in ( )SΟ time by scanning S. The framework of the algorithm for 
intercepting the primary patterns is described as follows: 

Algorithm Intercept（S） 
Input: string S; 
Output: the  primary patterns of S; 
begin 

  For every ( )x C S⊆  do 
     k=1;  

( )
x

ks = ∅ ;  
Let the first position of x appeared in S be l;  

      { }( ) ( )
x x l

k ks s s= U  
i=l; 

repeat  
While (   )

i i
xs s≠ ≠ ∅U  do 

       { }( ) ( )
x x i

k ks s s= U ; 
          i=i+1; 

       End while 
      k=k+1 ;  

{ }( )
x i

ks s= ; 
i=i+1; 

Until 
is = ∅  

End for 
End  

2.2   The table of primary patterns 

After getting all primary patterns of S, we can further build a table of primary patterns 
for S. All the primary patterns are listed in the table in the lexicographic order so as to 
conveniently search. 

Example 2  For the sequence " "S bacaabcbab=  in example 1, after sorting all 
primary patterns of S, the table of primary patterns can be built as shown in Table 1.  



Table1.  The table of primary patterns for s 

Num ms  loc 
1 a 4 
2 ab 9 
3 abcb 5 
4 ac 2 
5 b 10 
6 ba 8 
7 bacaa 1 
8 bc 6 
9 caab 3 
10 cbab 7 

 
In the table, each entry is a vector ( ),  ,  

m
Num locs , where Num is the index of 

the entry in the table, 
ms is the primary pattern and loc denotes the start position of 

ms in S.  
All the primary patterns obtained by algorithm intercept(S) should be sorted so 

as to be arranged in lexicographic order. By Lemma 1, we know that there are S  

patterns. Suppose that S n= , it costs ( )logn nΟ ⋅ time for sorting. Fortunately, for 

biosequences, ∑ is a constant integer. For instance, for gene sequences, 4∑ =  

whereas for protein sequences,  20∑ = . Hence we can use radix sorting method. 
Obviously by lemma 3 we know that the average length of primary patterns is not 
more than ∑ and their length is imbalance. Because of each pattern with different 
lengths, the traditional radix sorting algorithm can’t be applied straightforwardly. 
Therefore, we present the following sorting algorithm.  

Algorithm2  Sort(
ms , ''

ms ) 

Input:
ms : the primary patterns of S; 

Output: ''
ms : the ordered primary patterns table; 

Begin 
   Let the initial character of

mis be
ix and l = ∑ . If there is 

1 2
...

lx x x< < < in ∑ , 

then according to the initial characters of all patterns in
ms , we can divide them into 

some buckets as 
1 2
,  ,  ... , 

m m mls s s ; 

'
ms = ∅  

For  i=1 to l  do 
After emitting the first character of 

mis , we can get a new string set '
mis . 

Delete all the empty strings from '
mis  . 

If  '
mis = ∅  then ' ' '

m m mis s s= ∪  End if 



End for 
Sort( ', '' m ms s ); 

For  i=1 to l  do 
For each string y in ''

mis do &
i

y y x= ; end for 
endfor 
Group 

1 2
'',  '',  ... , '' m m mls s s  into ''

ms ; 
End 
By lemma 2, we know that the summation of  the  lengths of all primary patterns 

is not more than ( )C S S• . Since the algorithm Sort classifies all the characters of 

every  primary pattern exactly once, its complexity is ( ( ) )C S SΟ • . Because 

( ) | |C S ≤ Σ is a constant, its complexity is just ( )SΟ . 

Example 3 Let D={S1, S2, S3, S4} be a set of strings, 
1

" "abcbacs = , 

2
" "acbcas = , 

3
" "bcbabcs =   and 

4
" "acbabcs = .  Their primary pattern tables 

are shown in Table 2.   

Table2.  The primary pattern table of four sequences 

The primary pattern table of S1 

Num ms  loc 
1 abcb 1 
2 ac 5 
3 bac 4 
4 bc 2 
5 c 6 
6 cba 3  

The primary pattern table of S2 

Num ms  loc 
1 ab 5 
2 acbc 1 
3 b 6 
4 bca 3 
5 cab 4 
6 cb 2  

The primary pattern table of S3 

Num ms  loc 
1 abc 4 
2 ba 3 

3 bc 1,5 
4 c 6 

5 cbab 2  

The primary pattern table of S4 

Num ms  loc 
1 abc 4 
2 acb 1 
3 ba 3 
4 bc 5 
5 c 6 
6 cbab 2  

2.3  Merging the Primary Pattern tables 

After getting all primary pattern tables of multiple sequences, we can merge them in 
order to obtain a merged primary pattern table as shown in Table 3. 



Table3.  The merged primary pattern table of multiple sequences 

Num ms  Seq 
1 ab 2 
2 abc 3,4 
3 abcb 1 
4 ac 1 
5 acb 4 
6 acbc 2 
7 b 2 
8 ba 3,4 
9 bac 1 
10 bc 1,3,4 
11 bca 2 
12 c 1,3,4 
13 cab 2 
14 cb 2 
15 cba 1 
16 cbab 3,4 

 
In Table3, each entry is denoted as a vector ( ),  ,  

m
Num Seqs , where Num is its 

index in the table, 
ms is the primary pattern and Seq denotes the sequences where 

ms appears. 

2.4. The primary frequent patterns mining 

Definition 2(Distribution support[22]):Given a set of biosequences D and a 
subsequence T, the distribution support of subsequence T in D is defined as 

_ sup ( ) |{ | , }|dis D T s s D T s= ∈ ⊂ , which is  the number of strings in D 
containing the subsequence T.  

Definition 3: A primary pattern P is called a frequent primary pattern if 
dis_supD(P)≥ mindis_sup,  where positive integer mindis_sup is the minimum 
support.  

By the above definitions,  we can build a frequency table for a string set D. For 
instance the frequency table for primary patterns of string set D in Example 3 is as 
shown in Table 4.. 

Table4.  The frequency table for primary patterns on multiple sequences 

Sm Freq 
a 4 
ab 4 
abc 3 
abcb 1 
ac 3 



acb 2 
acbc 1 

b 4 
ba 3 
bac 1 
bc 4 

bca 1 
c 4 

cab 1 
cb 4 

cba 3 
cbab 2 

 
In table4, each entry is denoted as ( ) ,  

m
Freqs , where

ms is a primary pattern and 

Freq denotes the distribution support of
ms in the set of multiple sequences D.  

Let dis_sup be 2, and then based on Table 4, we can easily mine all primary 
frequent patterns:  

a（frequency: 4）, ab（frequency: 4）, abc（frequency: 3）, ac（frequency: 
3）, acb（frequency: 2）; b（frequency: 4）, ba（frequency: 3）, bc（frequency: 
4）; c（frequency: 4）, cb（frequency: 4）,cba（frequency: 3）,cbab（frequency: 
2）. 

Based on above primary frequent patterns and table2, we can easily build the 
following two-dimension table respect to primary frequent patterns on multiple 
sequences. 

Table5.  The two-dimension table of primary frequent patterns on multiple 
sequences 

Sequence  
Frequent patterns  S1 S2 S3 S4 

a {1,5} {1,5} {4} {1,4} 
ab {1} {5} {4} {4} 
abc {1} ∅  {4} {4} 
ac {5} {1} ∅  {1} 
acb ∅  {1} ∅  {1} 
b {2,4} {3,6} {1,3,5} {3,5} 

ba {4} ∅  {3} {3} 
bc {2} {3} {5} {5} 
c {3,6} {2,4} {2,6} {2,6} 

cb {3} {2} {2} {2} 
cba {3} ∅  {2} {2} 
cbab ∅  ∅  {2} {2} 

  
The element{ }1 2

  ,   ,...,  
kl l l in the table denotes the set of starting positions of 

primary pattern in S. For example, the element {1, 5} in the first row of table5 



denotes the primary pattern “a” are respectively in the 1st and 5th positions of S1. 
Furthermore, we can build the following table similar to Table1: 

Table 6.  The primary frequent pattern table of D 

Num Sm Loc_set 
1 a {1,5}, {1,5}, {4}, {1,4} 
2 ab {1}, {5}, {4}, {4} 
3 abc {1}, ∅ , {4}, {4} 
4 ac {5}, {1}, ∅ , {1} 
5 acb ∅ , {1}, ∅ , {1} 
6 b {2,4}, {3,6}, {1,3,5}, {3,5} 
7 ba {4}, ∅ , {3}, {3} 
8 bc {2}, {3}, {5}, {5} 
9 c {3,6}, {2,4}, {2,6}, {2,6} 

10 cb {3}, {2}, {2}, {2} 
11 cba {3}, ∅ , {2}, {2} 
12 cbab ∅ , ∅ , {2}, {2} 

 
In Table 6, each entry is denoted as a vector ( ),  ,  _

m
Num loc sets , where Num is 

the index of this entry  in the table, 
ms is a primary pattern and loc_set denotes the 

set of start positions of
ms  in each sequence. 

3  The Prefix Tree of Primary Patterns 

3.1  Aggregation Vector and Its Operations 

To mine all the frequent patterns in a given biosquence set, a prefix tree is used. In 
order to fully comprehend the construction process of the prefix tree, first we give the 
following definitions.   

Definition 4: Let ( )1 2,  ,  ... , nT T T T=  be a vector, where iT  is a set, we call T is 
an aggregation vector.  

Definition 5: Given an aggregation vector T, its support function D(T) can be 
defined as the number of nonempty sets in T, that is: ( ) { };1i iD T T T i n= ≠ ∅ ≤ ≤ . 

Definition 6: Assuming ( )1 2,  ,  ... , nT T T T=  and ( )1 2,  ,  ... , nS S S S=  are two 
aggregation vectors , their intersection is defined as 

( )1 1 ,...,   n nT S T S T S∩ = ∩ ∩ . 

Definition 7: Given a set ( )1 2,  ,  ... , kt t t t=  and a number l, the addition operation 

of them is defined as { }1 2,   ,..., kt l t l t l t l+ = + + + . 



Definition 8: The addition operation on a given  aggregation vector 
( )1 2,  ,  ... , nT T T T=  and a number l is defined as { }1 2,   ,..., nT l T l T l T l+ = + + + . 

3.2  The Prefix Tree Construction of Primary Frequent Patterns 

By algorithm 2  can not only sort the  primary patterns, but also can obtain the 
number of each primary pattern. And during the recursive process, the number of 
primary patterns with the prefix of substring y can also be obtained. By summing up 
the numbers of the primary patterns with the prefix of a certain character or substring 
y, the scope [ ],l u  of those primary patterns in the sorted primary pattern table can 
also be computed. Therefore, while implementing algorithm 2, we can also 
expediently construct a prefix tree of primary patterns. 

Definition 9  For a table of primary patterns, its corresponding prefix tree is a 
rooted tree. The path from the root to each leaf denotes a primary pattern and each 
edge in the path denotes a character. Children of the same node denote different 
characters. 

Once the prefix tree is construced, all the primary pattern can be obtained by listing 
all characters in sequence of each path, one. 

From the definition of the prefix tree, we can design an algorithm for building the 
prefix tree of primary patterns. It is a recursive process. The algorithm repeatedly 
builds the prefix subtree for the nodes from the root to the leaves  level by level. 
Therefore, we present an algorithm named node-extend (S, d) which constructs a 
prefix tree rooted as d for the set S of primary patterns. The framework of the 
algorithm node-extend is shown as follows. 

 
Algorithm3:Algorithm node-extend(S, d); 

Input: S: the set of primary patterns and their starting positions in the alphabetical 
order table. Each primary pattern in S takes the form of（s, e）which denotes an 
entry of the primary pattern table, where s is a primary pattern and e is the starting 
position set of s.  
d :  the node to be extended.  
mindis-sup:  the minimal support threshold; 

Output: the prefix tree rooted at d for the set S of primary patterns; 
Begin 

   Suppose there are r different first characters in the strings of S; then the strings 
of S can be divided into r groups according to their first  characters; 

Let the group with the first character xi be Si; 
      For i= 1 to r do  
        Ti=Ф; 

For all strings P of Si do  
Emit the first character xi of P and obtain a string P’; 
If P’≠ Ф then  { '}i iT T P= ∪  End if  
 If | | min dis-supiT ≥  then  

Generate a child  di  for d; 
Label the edge(d, di) using character xi ; 



The starting position set E(d) on the node d defines assigned as the 
starting position set of strings in Ti; 

Node-extend(Ti, di); 
End if 

End for  
End for 

End  
Let the primary patterns table of D be D(H), the prefix tree of primary patterns of D 

can be built by calling the recursive process Node-extend(D(H), root). 
 
Example 4  For the frequent primary patterns in Table 6, the prefix tree of primary 

frequent patterns by the above recursive algorithm can be built as shown in Fig. 1. 
 

 

Fig.1. Prefix tree of primary frequent patterns for D 

In the prefix tree shown in fig.1, each character x in the edge denotes the character 
or substring that the node represents, { }1 2

  ,   ,...,  
kl l l denotes the set of starting 

position sets of primary patterns with the prefix of x in D. Each inner node b stores a 
starting node aggregation vector T )(b = ( ) ( ) ( )

1 2{ , ,..., }b b b
kT T T , where )(b

iT is the starting 
positions set of the substring corresponding to the ith string. 

Each leaf node b stores a node-depth bD . Moreover, there are a start-node 
aggregation vector T )(b = ( ) ( ) ( )

1 2{ , ,..., }b b b
kT T T  and a terminative node aggregation 

vector Ｅ )(b = ( ) ( ) ( )
1 2{ , ,..., }b b b

kE E E , where Ｅ )(b = T )(b + bD . )(b
iE  is the terminative 

positions set of the substring corresponding to the ith string. Listing all characters on 
the edges of each path from the root to each leaf, one primary frequent pattern can be 
obtained. 

4  Mining Algorithm 

4.1  The Generic Frequent Patterns Mining 

The limitation of primary frequent pattern is that there is no same character as the first 
character in the pattern. The primary frequent pattern table on multiple sequences 



mentioned above can only mine primary frequent patterns, but can not mine all the 
frequent patterns. We can use the prefix tree of frequent primary patterns to mine 
larger frequent patterns by aggregation vector operations on the vectors at each node.  
For example, in Fig.1 the frequent pattern”cbabc” can be obtained by expanding the 
primary frequent pattern ”cbab”. After getting the prefix tree as fig.1, we can easily 
find the path of pattern ”cbab” and then its terminative node vector (∅ , ∅ , {6}, {6}) 
also can be obtained at the leaf. Next we return to the root of the tree and perform 
intersection operations respectively on the starting node vectors of the root’s sons and 
the terminative node vectors of the primary pattern. For instance in fig.1,  after the 
intersection operation on the child c , ({3,6}, {2,4}, {2,6}, {2,6})∩(∅ , ∅ , {6}, 
{6})=( ∅ , ∅ , {6}, {6}), its support is 2. This means the pattern is frequent. 
Therefore we can expand frequent pattern”cbab” by the 
operation{ } { } { }cbab c cbabc∪ = and a longer frequent pattern”cbabc” is obtained. 

From the analysis mentioned above, based on the prefix tree of primary frequent 
patterns we propose an algorithm named Span(s, E(s), a) for mining all frequent 
patterns. It is a recursive process. The algorithm starts from the root and extends 
patterns for each node level by level. The framework of the algorithm Span(s, E(s), a) 
is as follows: 

 
 Algorithm 4:Algorithm Span(s, E(s), a) 

Input:  a: the node where a is; s: the string that be extended; 
  E(s)＝ ( ) ( ) ( )

1 2{ , ,..., }s s s
kE E E : the terminative vector set of s;  

Freq-set: the set of frequent substrings;  
mindis-sup : the minimal support threshold; 

Output: the Freq-set after update 
Begin  
  For each child b of a do  

        Assuming that the starting vector of b is T )(b = ( ) ( ) ( )
1 2{ , ,..., }b b b

kT T T and the 
character on edge (a, b) is x.  

   If b is not an leaf node then  
       num=0; 

For i= 1 to k do 
( ) ( )b s

i i iF T E= ∩  ; 
 If  iF ≠ Φ  then num=num+1; endif  

End for  
            Assuming that the set is 1 2{ , ,..., }kF F F F=  

If dis min supnum ≥ −  then  
              If x ≠ ∅  then  
                 Freq-set=Freq-set { }s x∪ ∗ ; 
                 Span ( , , )s x F b∗ ; 
               Else   

Span ( , , )s F b ; 
              End if  



         End if  
       Else    

E（b） = ( ) ( ) ( )
1 2{ , ,..., }b b b

kE E E */  
            E（s） =E(b); 

Span (s, E(s), root);  
  End for 
End  
 
Based on algorithm 4, we present an  algorithm Freq-Mining for mining frequent 

patterns on the string set S. 
 
 Algorithm 5: Algorithm Freq-Mining（S,root） 

  Input:  S: the strings for mining;  
root: the root of prefix tree of primary sub-patterns for S; 

Output: Freq-set: the set of frequent pattern of S; 
Begin  
    Freq-set=Ф;   

E={T1, T2, …, Tk}; where Ti={1,2,…,|Si|}; 
Span (Ф, E, root) ; 

End. 

4.2. MSPM Algorithm 

In this section, we present algorithm MSPM（Multiple Sequential Pattern Mining for 
Biological Data）for mining the frequent patterns in a biosequence set S. Algorithm 
MSPM first mine all frequent primary patterns. Then these frequent primary patterns 
can be extended to get all the frequent patterns. Framework of algorithm MSPM is as 
follows. 

 
Algorithm MSPM（S, minloc_sup） 

Input: S ; an biosequence set;   
 mindis_sup: the minimal support threshold; 

Output: Freq-set : the set of all frequent patterns;  
Begin 

For each biosequence Si in S do 
  Intercept (Si); 

Sort(
mis , ''

mis ); 
 End for 
Merging all primary pattern tables of multiple sequences and sorting all patterns 

by calling algorithm 2; 
Building the frequency table of primary patterns and getting set H of all primary 

frequent patterns; 
Building the two-dimension table respect to frequent primary patterns and then 

the frequent primary pattern table of S can be obtained; 



Constructing the prefix tree T of frequent primary patterns by calling the 
recursive algorithm Node-extend( S(H), root); 

Freq-Mining（S,root）; 
End. 

5  Experimental Results and Analysis 

To test the efficiency of our algorithm MSPM, we made an experiment on two groups 
of data for comparisons. In the experiment of first group, the traditional Apriori 
algorithm, BioPM algorithm, MbioPM algorithm and our algorithm MSPM are tested 
to compare their performance.  The experimental results show that the change of 
minimal support threshold makes a slight impact on our algorithm MSPM. The test on 
the second group compares the computation times of algorithm BioPM, MbioPM 

algorithm and MSPM to validate that our algorithm is more effective and faster than 
other ones under the same minimal support threshold. 

5.1  Test  Data and Computational Environment 

All testing data in the experiments are from pfam protein database
（ http://pfam.sanger.ac.uk/） , and the average length of our selected protein 
sequences is 1000[24] which ensures the experimental validity. All experiments were 
conducted on a 3.00GHZ Pentium 4 with 2.00GB memory. All codes were complied 
using Microsoft Visual C++6.0.  

5.2  Comparison  of  the Performance 

The purpose of the first group experiment is to prove that the change of minimal 
support threshold makes a slight impact on our algorithm MSPM. We took protein 
sequence samples from three protein families (G-alpha, Calici Coat, 
Glyco_hydro_19）of pfam database as testing data. During the process of experiment, 
we chose 50 protein sequences with the similar length respectively from three protein 
families as a testing data set so as to ensure the diversity of the test data. With each 
specified support, we tested 50 sequences using three algorithms. Fig.2 shows the 
running time of algorithms Aprior[6], BioPM[22], MbioPM[23] and MSPM for the same 
biological data set with different minimal supports. 

 

http://pfam.sanger.ac.uk/
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Fig.2  Comparison of the computational times by the four algorithms under different 
minimum supports  

From fig.2 we can see that four algorithms becomes faster when the minimal 
support increases. But MSPM algorithm is rather stable and always faster than the 
other three ones especially with the lower minimal supports. That is because with 
lower minimal supports, Apriori algorithm would produce more short candidate 
patterns which necessarily result in the growth of computation time and inefficiency. 
Similar to Apriori, the inefficiency of BioPM algorithm is caused by the fact that it 
must spend more time in frequently building projective databases. MBioPM algorithm 
mines from the patterns with a certain length but it takes large amount of time for 
comparing the existing patterns with the patterns in buffer zone. While MSPM uses 
primary patterns with longer length for mining, which avoids producing lots of short 
patterns and more candidates. Through the merging operation and pattern growth 
method based on the prefix tree of primary frequent patterns, the algorithm can 
accelerate mining procedure. The above analysis shows that our algorithm MSPM is 
more efficient, stable and faster. 

5.3  Comparison of the computational Time  

We test the algorithms on the second data group to compare their computational time 
with the same minimal support threshold. The experimental results show our 
algorithm MSPM is more effective. We took protein sequence samples with the 
similar length respectively from ten protein families（ Globin, short chain 
dehydrogenase, SBP_bac_9, Acety-ltransferase, GNAT family, ATPase family, 
Glyco_hydro_19, G-alpha, Calici coat, Birna VP2）of pfam database. We fixed the 
minimal support as 15%, and compared the computational times by the algorithms 
BioPM, MBioPM and MSPM on data sets consisting of different number of 
sequences from 100 to 600. Fig.3 shows the comparison of their computation times.  
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Fig.3. Comparison of the computational times by the three algorithms on data sets 
consisting of different number of sequences  

It can be observed from fig.3 that the running speeds of three algorithms become 
slower when the number of sequences increases. But the MSPM algorithm is rather 
stable and always faster than other two algorithms. The reason is BioPM algorithm 
produces lots of short patterns during the process of iterations at first and then 
frequently builds projective databases. All of these operations will necessarily 
increase the time cost of the algorithm. MBioPM algorithm mines from the patterns 
with a certain length but it takes large amount of time to align the existing patterns 
with the patterns in buffer zone when mining the k-length frequent patterns. It also 
repeatedly creates or eliminates buffer zone during the process of pattern growth. All 
of these cause the algorithm be less efficient. MSPM mines frequent patterns from 
primary patterns with longer length, which avoids producing lots of short candidate 
patterns and reduces the computation time. The merged operation and pattern growth 
based on the prefix tree of primary frequent patterns also avoid producing the 
redundant patterns and greatly improve mining efficiency of our algorithm. 

6  Conclusion 

Based on the mining requirements and characteristics of biosequential patterns, we 
present an efficient and fast algorithm MSPM for multiple biosequence mining. The 
algorithm first builds multiple primary pattern tables according to all primary patterns 
of multiple sequences. Then through merging operation, the corresponding merged 
primary pattern table can be obtained. Based on this merged primary pattern table, all 
primary frequent patterns can be easily mined. Furthermore, we also present  an 
algorithm for general frequent patterns mining on multiple sequences. The algorithm 
constructs a prefix tree of primary frequent patterns based on primary frequent 
patterns table and thereby mines all frequent patterns rapidly by the use of 
aggregation vector operations on the prefix tree. During the process of pattern growth, 
the algorithm neither produces any candidates nor constructs a mass of projective 
databases. This makes our mining results reflect more biological meanings and also 
improves mining efficiency. Our empirical studies on the tested data from pfam 



protein database show that MSPM algorithm can obtain higher performance and 
efficiency than the traditional mining algorithms. 
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