
An Efficient and Fast Algorithm for Mining Frequent
Patterns on Multiple Biosequences

Wei Liu1,2, Ling Chen1,3

1 Institute of Information Science and Technology, Yangzhou University , Yangzhou, China

2 School of Information Technology, Nanjing Xiaozhuang University , Nanjing, China
3National Key Lab of Novel Software Tech, Nanjing University, Nanjing, China

yzliuwei@126.com, lchen@yzcn.net

Abstract. Mining frequent patterns on biosequences is one of the important
research fields in biological data mining. Traditional frequent pattern mining
algorithms may generate large amount of short candidate patterns in the process
of mining which cost more computational time and reduce the efficiency. In
order to overcome such shortcoming of the traditional algorithms, we present an
algorithm named MSPM for fast mining frequent patterns on biosequences.
Based on the concept of primary patterns, the algorithm focuses on longer
patterns for mining in order to avoid producing lots of short patterns.
Meanwhile by using prefix tree of primary frequent patterns, the algorithm can
extend the primary patterns and avoid plenty of irrelevant patterns.
Experimental results show that MSPM can achieve mining results efficiently
and improves the performance.

Keywords: Biological sequence; Frequent Pattern Mining; Primary Patterns

1 Introduction

Biosequence patterns usually correspond to some important functional (or structural)
elements[1] such as conserved sequence patterns, repeated patterns or combinative
patterns etc. Hence it is very significative to find such patterns in protein family
analysis, transcriptional regulation analysis, and genome annotation etc. The task of
biosequence pattern mining [2] is also the key technique for gene recognition,
biosequence functional prediction and interactions explanation between sequences. It
is one of the most important research areas in biosequence data mining.

In the area of data mining, lots of sequential pattern mining algorithms have been
proposed in recent years. At present the sequential pattern mining algorithms are
mainly classified as two categories: one is for frequent patterns mining on single
sequence; the other is for mining in multiple sequences. The former can mine frequent
patterns only for single sequence[3-4], and is unable to synchronously analyze the
relation between frequent patterns from a certain sequence and those contained in the
other sequences. Such analysis is common and necessary in biosequence data
mining. For the latter, according to the definition[5] by Agrawal and Srikan in 1995
based on the analysis of transaction data: given a sequence set and a user-specified

mailto:yzliuwei@126.com
mailto:lchen@yzcn.net

support threshold, the problem of sequential pattern mining is to find all frequent
subsequences, that is to say, the counts of the subsequence appeared in the sequence
set are not less than the minimal support threshold. In 1996, Strikant et al. proposed
GSP (generalized sequential pattern mining)[6] which introduced the concept of time
and level-wise constraints based on Apriori algorithm. It mines all frequent patterns
by the use of bottom-up and breadth-first search strategy. But when the sequence
database is a large-scale one, large amount of candidates could be produced and the
database should be frequently scanned. Especially when the sequences contain long
patterns, large amount of short candidate patterns may be generated , which could
cause the problem would be intractable and of lower efficiency. In order to solve this
problem, in 2000 Pei et al. put forward an algorithm named Prefixspan[7] based on
pattern growth approach. It adopts divide and conquer method and continuously
produces much smaller projected databases so as to mine frequent patterns. Since no
candidates are produced in the algorithm, search space is greatly reduced. Its main
cost is on the construction of projected databases and its performance is much higher
than Apriori-based algorithms. Other recent works on sequential pattern mining
algorithms have been surveyed in [8] by Han et al.

However, because of the particularity and variety of mining requirements for
biological data, the previous developed methods can not be applied directly to the
large-scale biological data mining. Therefore extensive efforts have been devoted to
developing some special mining algorithms for biological data, such as PTR-based
algorithms[9-10]

 by Apostolico et al., ATR-based algorithms[11-18] by Delgrange et al.

and TRFinder algorithm[19] by Beason. Later Kurtz presented REPuter[15] algorithm
based on suffix tree which overcame the limitation of the length of input sequences. It
was based on sequence alignment technique but could hardly find those frequent
repeats among DNA sequences. In 2007, Wang et al made researches on searching for
the similar repeated segments[20] and then introduced a new criteria of similarity and
the concept of SATR(segment-similarity based approximate tandem repeats). They
designed an algorithm SUA_SATR [21] based on SUA with no limitations on pattern
length during the searching process. Moreover, with the same similarity, the
algorithm is faster than other traditional algorithms for the same DNA sequence,
although its efficiency should be improved. In 2007 Xiong et al. proposed BioPM
algorithm[22] specially for protein sequence mining. They introduce the concept of
multiple supports so as to overcome the disadvantages of traditional algorithms and
improve its performance and efficiency. But when the minimal support becomes
lower, it can not keep its high efficiency since numerous projected databases are
constructed. In addition, the algorithm still produces large numbers of irrelevant
short patterns during the mining process. In 2009, Guo et al. addressed MBioPM
algorithm[23] which is an improvement of BioPM algorithm. Based on a pattern
partitioning scheme, the algorithm successfully avoids constructing large amount of
projected databases. But when the lengths of the patterns exceed k, it requires a large
buffer for frequent patterns mining which resulted in huge memory space cost.
Moreover, it also takes large amount of time to align the existing patterns with those
in the buffer. All these large time-space costs will cause the low efficiency of the
algorithm.

To overcome the problems of traditional sequential pattern mining algorithms
mentioned above, we present a fast and efficient algorithm named MSPM for multiple

biosequence mining. The algorithm mines all frequent patterns rapidly based on the
prefix tree of primary frequent patterns which reflects more biological meanings. Our
empirical studies on the tested data from pfam protein database show that MSPM
algorithm can obtain higher performance and efficiency than the traditional mining
algorithms.

2 Definitions and Concepts

2.1 The primary patterns

Definition 1: Let ∑ be the alphabet, and { }1 2, ,..., nS S S S= be a string of ∑ .

Assuming x is a character in ∑ , if for string S, there exists integers

1 2
1 ...

m
ni i i≤ < < < ≤ such that

1 2
......

i i im
xs s s= = = = , then we call

()
x

ks = 1 (1) 1" "ik ik i ks s s+ + −
the kth primary pattern of S with respect to x.

Example1: Let { }, ,a b c∑ = and " "S bacaabcbab= , then the primary patterns of

S with respect to character a are (1) " "
a

acs = , (2) " "
a

as = , (3) " "
a

abcbs = ,

(4) " "
a

abs = .
From the definition, we can easily get the following lemma.
Lemma 1 For a string S, let its character set be ()C S ⊆ ∑ . For an ()x C S∈ ,

suppose there are xn primary patterns with respect to x in S, then we have

1
()

xn

x
i

i Ss
=

≤∑ and
()

x
x C S

Sn
∈

=∑ .

Lemma 2 For a string S, summation of the lengths of the primary patterns with
respect to all characters in ()C S will satisfy:

() 1
() ()

x

x
x C S i

n
i C S Ss

∈ =

≤ •∑ ∑ .

Proof: By Lemma 1, we can see that
() 1 ()

() ()
x

x
x C S i x C S

n
i S C S Ss

∈ = ∈

≤ = •∑ ∑ ∑

Q.E.D

Because ()C S ⊆ ∑ and ()C S ≤ ∑ , it is can be deduced

that
() 1

()
x

x
x C S i

n
i Ss

∈ =

≤ ∑ •∑ ∑ .

Lemma 3 For a string S, the average length of the primary patterns with respect
to all characters in S will be not more than ()C S .

Proof: From lemma 2, we know that the summation of the lengths of all the

primary patterns of S satisfies
() 1

() ()
x

x
x C S i

n
i C S Ss

∈ =

≤ •∑ ∑ . Furthermore, by lemma 1

we also know that the number of total primary patterns of S is equal to S . Therefore

the average length of all the primary patterns of S will be not more than ()C S .

Q.E.D
From the lemmas mentioned above, we can see that all primary patterns can be

intercepted in ()SΟ time by scanning S. The framework of the algorithm for
intercepting the primary patterns is described as follows:

Algorithm Intercept（S）
Input: string S;
Output: the primary patterns of S;
begin

 For every ()x C S⊆ do
 k=1;

()
x

ks = ∅ ;
Let the first position of x appeared in S be l;

 { }() ()
x x l

k ks s s= U
i=l;

repeat
While ()

i i
xs s≠ ≠ ∅U do

 { }() ()
x x i

k ks s s= U ;
 i=i+1;

 End while
 k=k+1 ;

{ }()
x i

ks s= ;
i=i+1;

Until
is = ∅

End for
End

2.2 The table of primary patterns

After getting all primary patterns of S, we can further build a table of primary patterns
for S. All the primary patterns are listed in the table in the lexicographic order so as to
conveniently search.

Example 2 For the sequence " "S bacaabcbab= in example 1, after sorting all
primary patterns of S, the table of primary patterns can be built as shown in Table 1.

Table1. The table of primary patterns for s

Num ms loc
1 a 4
2 ab 9
3 abcb 5
4 ac 2
5 b 10
6 ba 8
7 bacaa 1
8 bc 6
9 caab 3
10 cbab 7

In the table, each entry is a vector (), ,

m
Num locs , where Num is the index of

the entry in the table,
ms is the primary pattern and loc denotes the start position of

ms in S.
All the primary patterns obtained by algorithm intercept(S) should be sorted so

as to be arranged in lexicographic order. By Lemma 1, we know that there are S

patterns. Suppose that S n= , it costs ()logn nΟ ⋅ time for sorting. Fortunately, for

biosequences, ∑ is a constant integer. For instance, for gene sequences, 4∑ =

whereas for protein sequences, 20∑ = . Hence we can use radix sorting method.
Obviously by lemma 3 we know that the average length of primary patterns is not
more than ∑ and their length is imbalance. Because of each pattern with different
lengths, the traditional radix sorting algorithm can’t be applied straightforwardly.
Therefore, we present the following sorting algorithm.

Algorithm2 Sort(
ms , ''

ms)

Input:
ms : the primary patterns of S;

Output: ''
ms : the ordered primary patterns table;

Begin
 Let the initial character of

mis be
ix and l = ∑ . If there is

1 2
...

lx x x< < < in ∑ ,

then according to the initial characters of all patterns in
ms , we can divide them into

some buckets as
1 2
, , ... ,

m m mls s s ;

'
ms = ∅

For i=1 to l do
After emitting the first character of

mis , we can get a new string set '
mis .

Delete all the empty strings from '
mis .

If '
mis = ∅ then ' ' '

m m mis s s= ∪ End if

End for
Sort(', '' m ms s);

For i=1 to l do
For each string y in ''

mis do &
i

y y x= ; end for
endfor
Group

1 2
'', '', ... , '' m m mls s s into ''

ms ;
End
By lemma 2, we know that the summation of the lengths of all primary patterns

is not more than ()C S S• . Since the algorithm Sort classifies all the characters of

every primary pattern exactly once, its complexity is (())C S SΟ • . Because

() | |C S ≤ Σ is a constant, its complexity is just ()SΟ .

Example 3 Let D={S1, S2, S3, S4} be a set of strings,
1

" "abcbacs = ,

2
" "acbcas = ,

3
" "bcbabcs = and

4
" "acbabcs = . Their primary pattern tables

are shown in Table 2.

Table2. The primary pattern table of four sequences

The primary pattern table of S1

Num ms loc
1 abcb 1
2 ac 5
3 bac 4
4 bc 2
5 c 6
6 cba 3

The primary pattern table of S2

Num ms loc
1 ab 5
2 acbc 1
3 b 6
4 bca 3
5 cab 4
6 cb 2

The primary pattern table of S3

Num ms loc
1 abc 4
2 ba 3

3 bc 1,5
4 c 6

5 cbab 2

The primary pattern table of S4

Num ms loc
1 abc 4
2 acb 1
3 ba 3
4 bc 5
5 c 6
6 cbab 2

2.3 Merging the Primary Pattern tables

After getting all primary pattern tables of multiple sequences, we can merge them in
order to obtain a merged primary pattern table as shown in Table 3.

Table3. The merged primary pattern table of multiple sequences

Num ms Seq
1 ab 2
2 abc 3,4
3 abcb 1
4 ac 1
5 acb 4
6 acbc 2
7 b 2
8 ba 3,4
9 bac 1
10 bc 1,3,4
11 bca 2
12 c 1,3,4
13 cab 2
14 cb 2
15 cba 1
16 cbab 3,4

In Table3, each entry is denoted as a vector (), ,

m
Num Seqs , where Num is its

index in the table,
ms is the primary pattern and Seq denotes the sequences where

ms appears.

2.4. The primary frequent patterns mining

Definition 2(Distribution support[22]):Given a set of biosequences D and a
subsequence T, the distribution support of subsequence T in D is defined as

_ sup () |{ | , }|dis D T s s D T s= ∈ ⊂ , which is the number of strings in D
containing the subsequence T.

Definition 3: A primary pattern P is called a frequent primary pattern if
dis_supD(P)≥ mindis_sup, where positive integer mindis_sup is the minimum
support.

By the above definitions, we can build a frequency table for a string set D. For
instance the frequency table for primary patterns of string set D in Example 3 is as
shown in Table 4..

Table4. The frequency table for primary patterns on multiple sequences

Sm Freq
a 4
ab 4
abc 3
abcb 1
ac 3

acb 2
acbc 1

b 4
ba 3
bac 1
bc 4

bca 1
c 4

cab 1
cb 4

cba 3
cbab 2

In table4, each entry is denoted as () ,

m
Freqs , where

ms is a primary pattern and

Freq denotes the distribution support of
ms in the set of multiple sequences D.

Let dis_sup be 2, and then based on Table 4, we can easily mine all primary
frequent patterns:

a（frequency: 4）, ab（frequency: 4）, abc（frequency: 3）, ac（frequency:
3）, acb（frequency: 2）; b（frequency: 4）, ba（frequency: 3）, bc（frequency:
4）; c（frequency: 4）, cb（frequency: 4）,cba（frequency: 3）,cbab（frequency:
2）.

Based on above primary frequent patterns and table2, we can easily build the
following two-dimension table respect to primary frequent patterns on multiple
sequences.

Table5. The two-dimension table of primary frequent patterns on multiple
sequences

Sequence
Frequent patterns S1 S2 S3 S4

a {1,5} {1,5} {4} {1,4}
ab {1} {5} {4} {4}
abc {1} ∅ {4} {4}
ac {5} {1} ∅ {1}
acb ∅ {1} ∅ {1}
b {2,4} {3,6} {1,3,5} {3,5}

ba {4} ∅ {3} {3}
bc {2} {3} {5} {5}
c {3,6} {2,4} {2,6} {2,6}

cb {3} {2} {2} {2}
cba {3} ∅ {2} {2}
cbab ∅ ∅ {2} {2}

The element{ }1 2

 , ,...,
kl l l in the table denotes the set of starting positions of

primary pattern in S. For example, the element {1, 5} in the first row of table5

denotes the primary pattern “a” are respectively in the 1st and 5th positions of S1.
Furthermore, we can build the following table similar to Table1:

Table 6. The primary frequent pattern table of D

Num Sm Loc_set
1 a {1,5}, {1,5}, {4}, {1,4}
2 ab {1}, {5}, {4}, {4}
3 abc {1}, ∅ , {4}, {4}
4 ac {5}, {1}, ∅ , {1}
5 acb ∅ , {1}, ∅ , {1}
6 b {2,4}, {3,6}, {1,3,5}, {3,5}
7 ba {4}, ∅ , {3}, {3}
8 bc {2}, {3}, {5}, {5}
9 c {3,6}, {2,4}, {2,6}, {2,6}

10 cb {3}, {2}, {2}, {2}
11 cba {3}, ∅ , {2}, {2}
12 cbab ∅ , ∅ , {2}, {2}

In Table 6, each entry is denoted as a vector (), , _

m
Num loc sets , where Num is

the index of this entry in the table,
ms is a primary pattern and loc_set denotes the

set of start positions of
ms in each sequence.

3 The Prefix Tree of Primary Patterns

3.1 Aggregation Vector and Its Operations

To mine all the frequent patterns in a given biosquence set, a prefix tree is used. In
order to fully comprehend the construction process of the prefix tree, first we give the
following definitions.

Definition 4: Let ()1 2, , ... , nT T T T= be a vector, where iT is a set, we call T is
an aggregation vector.

Definition 5: Given an aggregation vector T, its support function D(T) can be
defined as the number of nonempty sets in T, that is: () { };1i iD T T T i n= ≠ ∅ ≤ ≤ .

Definition 6: Assuming ()1 2, , ... , nT T T T= and ()1 2, , ... , nS S S S= are two
aggregation vectors , their intersection is defined as

()1 1 ,..., n nT S T S T S∩ = ∩ ∩ .

Definition 7: Given a set ()1 2, , ... , kt t t t= and a number l, the addition operation

of them is defined as { }1 2, ,..., kt l t l t l t l+ = + + + .

Definition 8: The addition operation on a given aggregation vector
()1 2, , ... , nT T T T= and a number l is defined as { }1 2, ,..., nT l T l T l T l+ = + + + .

3.2 The Prefix Tree Construction of Primary Frequent Patterns

By algorithm 2 can not only sort the primary patterns, but also can obtain the
number of each primary pattern. And during the recursive process, the number of
primary patterns with the prefix of substring y can also be obtained. By summing up
the numbers of the primary patterns with the prefix of a certain character or substring
y, the scope [],l u of those primary patterns in the sorted primary pattern table can
also be computed. Therefore, while implementing algorithm 2, we can also
expediently construct a prefix tree of primary patterns.

Definition 9 For a table of primary patterns, its corresponding prefix tree is a
rooted tree. The path from the root to each leaf denotes a primary pattern and each
edge in the path denotes a character. Children of the same node denote different
characters.

Once the prefix tree is construced, all the primary pattern can be obtained by listing
all characters in sequence of each path, one.

From the definition of the prefix tree, we can design an algorithm for building the
prefix tree of primary patterns. It is a recursive process. The algorithm repeatedly
builds the prefix subtree for the nodes from the root to the leaves level by level.
Therefore, we present an algorithm named node-extend (S, d) which constructs a
prefix tree rooted as d for the set S of primary patterns. The framework of the
algorithm node-extend is shown as follows.

Algorithm3:Algorithm node-extend(S, d);

Input: S: the set of primary patterns and their starting positions in the alphabetical
order table. Each primary pattern in S takes the form of（s, e）which denotes an
entry of the primary pattern table, where s is a primary pattern and e is the starting
position set of s.
d : the node to be extended.
mindis-sup: the minimal support threshold;

Output: the prefix tree rooted at d for the set S of primary patterns;
Begin

 Suppose there are r different first characters in the strings of S; then the strings
of S can be divided into r groups according to their first characters;

Let the group with the first character xi be Si;
 For i= 1 to r do
 Ti=Ф;

For all strings P of Si do
Emit the first character xi of P and obtain a string P’;
If P’≠ Ф then { '}i iT T P= ∪ End if
 If | | min dis-supiT ≥ then

Generate a child di for d;
Label the edge(d, di) using character xi ;

The starting position set E(d) on the node d defines assigned as the
starting position set of strings in Ti;

Node-extend(Ti, di);
End if

End for
End for

End
Let the primary patterns table of D be D(H), the prefix tree of primary patterns of D

can be built by calling the recursive process Node-extend(D(H), root).

Example 4 For the frequent primary patterns in Table 6, the prefix tree of primary

frequent patterns by the above recursive algorithm can be built as shown in Fig. 1.

Fig.1. Prefix tree of primary frequent patterns for D

In the prefix tree shown in fig.1, each character x in the edge denotes the character
or substring that the node represents, { }1 2

 , ,...,
kl l l denotes the set of starting

position sets of primary patterns with the prefix of x in D. Each inner node b stores a
starting node aggregation vector T)(b = () () ()

1 2{ , ,..., }b b b
kT T T , where)(b

iT is the starting
positions set of the substring corresponding to the ith string.

Each leaf node b stores a node-depth bD . Moreover, there are a start-node
aggregation vector T)(b = () () ()

1 2{ , ,..., }b b b
kT T T and a terminative node aggregation

vector Ｅ)(b = () () ()
1 2{ , ,..., }b b b

kE E E , where Ｅ)(b = T)(b + bD .)(b
iE is the terminative

positions set of the substring corresponding to the ith string. Listing all characters on
the edges of each path from the root to each leaf, one primary frequent pattern can be
obtained.

4 Mining Algorithm

4.1 The Generic Frequent Patterns Mining

The limitation of primary frequent pattern is that there is no same character as the first
character in the pattern. The primary frequent pattern table on multiple sequences

mentioned above can only mine primary frequent patterns, but can not mine all the
frequent patterns. We can use the prefix tree of frequent primary patterns to mine
larger frequent patterns by aggregation vector operations on the vectors at each node.
For example, in Fig.1 the frequent pattern”cbabc” can be obtained by expanding the
primary frequent pattern ”cbab”. After getting the prefix tree as fig.1, we can easily
find the path of pattern ”cbab” and then its terminative node vector (∅ , ∅ , {6}, {6})
also can be obtained at the leaf. Next we return to the root of the tree and perform
intersection operations respectively on the starting node vectors of the root’s sons and
the terminative node vectors of the primary pattern. For instance in fig.1, after the
intersection operation on the child c , ({3,6}, {2,4}, {2,6}, {2,6})∩(∅ , ∅ , {6},
{6})=(∅ , ∅ , {6}, {6}), its support is 2. This means the pattern is frequent.
Therefore we can expand frequent pattern”cbab” by the
operation{ } { } { }cbab c cbabc∪ = and a longer frequent pattern”cbabc” is obtained.

From the analysis mentioned above, based on the prefix tree of primary frequent
patterns we propose an algorithm named Span(s, E(s), a) for mining all frequent
patterns. It is a recursive process. The algorithm starts from the root and extends
patterns for each node level by level. The framework of the algorithm Span(s, E(s), a)
is as follows:

 Algorithm 4:Algorithm Span(s, E(s), a)

Input: a: the node where a is; s: the string that be extended;
 E(s)＝ () () ()

1 2{ , ,..., }s s s
kE E E : the terminative vector set of s;

Freq-set: the set of frequent substrings;
mindis-sup : the minimal support threshold;

Output: the Freq-set after update
Begin
 For each child b of a do

 Assuming that the starting vector of b is T)(b = () () ()
1 2{ , ,..., }b b b

kT T T and the
character on edge (a, b) is x.

 If b is not an leaf node then
 num=0;

For i= 1 to k do
() ()b s

i i iF T E= ∩ ;
 If iF ≠ Φ then num=num+1; endif

End for
 Assuming that the set is 1 2{ , ,..., }kF F F F=

If dis min supnum ≥ − then
 If x ≠ ∅ then
 Freq-set=Freq-set { }s x∪ ∗ ;
 Span (, ,)s x F b∗ ;
 Else

Span (, ,)s F b ;
 End if

 End if
 Else

E（b） = () () ()
1 2{ , ,..., }b b b

kE E E */
 E（s） =E(b);

Span (s, E(s), root);
 End for
End

Based on algorithm 4, we present an algorithm Freq-Mining for mining frequent

patterns on the string set S.

 Algorithm 5: Algorithm Freq-Mining（S,root）

 Input: S: the strings for mining;
root: the root of prefix tree of primary sub-patterns for S;

Output: Freq-set: the set of frequent pattern of S;
Begin
 Freq-set=Ф;

E={T1, T2, …, Tk}; where Ti={1,2,…,|Si|};
Span (Ф, E, root) ;

End.

4.2. MSPM Algorithm

In this section, we present algorithm MSPM（Multiple Sequential Pattern Mining for
Biological Data）for mining the frequent patterns in a biosequence set S. Algorithm
MSPM first mine all frequent primary patterns. Then these frequent primary patterns
can be extended to get all the frequent patterns. Framework of algorithm MSPM is as
follows.

Algorithm MSPM（S, minloc_sup）

Input: S ; an biosequence set;
 mindis_sup: the minimal support threshold;

Output: Freq-set : the set of all frequent patterns;
Begin

For each biosequence Si in S do
 Intercept (Si);

Sort(
mis , ''

mis);
 End for
Merging all primary pattern tables of multiple sequences and sorting all patterns

by calling algorithm 2;
Building the frequency table of primary patterns and getting set H of all primary

frequent patterns;
Building the two-dimension table respect to frequent primary patterns and then

the frequent primary pattern table of S can be obtained;

Constructing the prefix tree T of frequent primary patterns by calling the
recursive algorithm Node-extend(S(H), root);

Freq-Mining（S,root）;
End.

5 Experimental Results and Analysis

To test the efficiency of our algorithm MSPM, we made an experiment on two groups
of data for comparisons. In the experiment of first group, the traditional Apriori
algorithm, BioPM algorithm, MbioPM algorithm and our algorithm MSPM are tested
to compare their performance. The experimental results show that the change of
minimal support threshold makes a slight impact on our algorithm MSPM. The test on
the second group compares the computation times of algorithm BioPM, MbioPM

algorithm and MSPM to validate that our algorithm is more effective and faster than
other ones under the same minimal support threshold.

5.1 Test Data and Computational Environment

All testing data in the experiments are from pfam protein database
（ http://pfam.sanger.ac.uk/） , and the average length of our selected protein
sequences is 1000[24] which ensures the experimental validity. All experiments were
conducted on a 3.00GHZ Pentium 4 with 2.00GB memory. All codes were complied
using Microsoft Visual C++6.0.

5.2 Comparison of the Performance

The purpose of the first group experiment is to prove that the change of minimal
support threshold makes a slight impact on our algorithm MSPM. We took protein
sequence samples from three protein families (G-alpha, Calici Coat,
Glyco_hydro_19）of pfam database as testing data. During the process of experiment,
we chose 50 protein sequences with the similar length respectively from three protein
families as a testing data set so as to ensure the diversity of the test data. With each
specified support, we tested 50 sequences using three algorithms. Fig.2 shows the
running time of algorithms Aprior[6], BioPM[22], MbioPM[23] and MSPM for the same
biological data set with different minimal supports.

http://pfam.sanger.ac.uk/

Comparison of the computation time of four

algorithms

0

500

1000

1500

0.05 0.15 0.25

The minimal support

threshold

T
h
e

a
v
e
r
a
ge

r
u
n
n
i
n
g

t
i
m
e
(S

)

Apriori

BioPM

MBioPM

MSPM

Fig.2 Comparison of the computational times by the four algorithms under different
minimum supports

From fig.2 we can see that four algorithms becomes faster when the minimal
support increases. But MSPM algorithm is rather stable and always faster than the
other three ones especially with the lower minimal supports. That is because with
lower minimal supports, Apriori algorithm would produce more short candidate
patterns which necessarily result in the growth of computation time and inefficiency.
Similar to Apriori, the inefficiency of BioPM algorithm is caused by the fact that it
must spend more time in frequently building projective databases. MBioPM algorithm
mines from the patterns with a certain length but it takes large amount of time for
comparing the existing patterns with the patterns in buffer zone. While MSPM uses
primary patterns with longer length for mining, which avoids producing lots of short
patterns and more candidates. Through the merging operation and pattern growth
method based on the prefix tree of primary frequent patterns, the algorithm can
accelerate mining procedure. The above analysis shows that our algorithm MSPM is
more efficient, stable and faster.

5.3 Comparison of the computational Time

We test the algorithms on the second data group to compare their computational time
with the same minimal support threshold. The experimental results show our
algorithm MSPM is more effective. We took protein sequence samples with the
similar length respectively from ten protein families（ Globin, short chain
dehydrogenase, SBP_bac_9, Acety-ltransferase, GNAT family, ATPase family,
Glyco_hydro_19, G-alpha, Calici coat, Birna VP2）of pfam database. We fixed the
minimal support as 15%, and compared the computational times by the algorithms
BioPM, MBioPM and MSPM on data sets consisting of different number of
sequences from 100 to 600. Fig.3 shows the comparison of their computation times.

Comparison of the computation time of

three algorithms(mindis_sup=15%)

0
2000
4000
6000
8000

100 600

The number of sequences

T
h
e

t
o
t
a
l

r
u
n
n
i
n
g

t
i
m
e
(
S
)

BioPM

MBioPM

MSPM

Fig.3. Comparison of the computational times by the three algorithms on data sets
consisting of different number of sequences

It can be observed from fig.3 that the running speeds of three algorithms become
slower when the number of sequences increases. But the MSPM algorithm is rather
stable and always faster than other two algorithms. The reason is BioPM algorithm
produces lots of short patterns during the process of iterations at first and then
frequently builds projective databases. All of these operations will necessarily
increase the time cost of the algorithm. MBioPM algorithm mines from the patterns
with a certain length but it takes large amount of time to align the existing patterns
with the patterns in buffer zone when mining the k-length frequent patterns. It also
repeatedly creates or eliminates buffer zone during the process of pattern growth. All
of these cause the algorithm be less efficient. MSPM mines frequent patterns from
primary patterns with longer length, which avoids producing lots of short candidate
patterns and reduces the computation time. The merged operation and pattern growth
based on the prefix tree of primary frequent patterns also avoid producing the
redundant patterns and greatly improve mining efficiency of our algorithm.

6 Conclusion

Based on the mining requirements and characteristics of biosequential patterns, we
present an efficient and fast algorithm MSPM for multiple biosequence mining. The
algorithm first builds multiple primary pattern tables according to all primary patterns
of multiple sequences. Then through merging operation, the corresponding merged
primary pattern table can be obtained. Based on this merged primary pattern table, all
primary frequent patterns can be easily mined. Furthermore, we also present an
algorithm for general frequent patterns mining on multiple sequences. The algorithm
constructs a prefix tree of primary frequent patterns based on primary frequent
patterns table and thereby mines all frequent patterns rapidly by the use of
aggregation vector operations on the prefix tree. During the process of pattern growth,
the algorithm neither produces any candidates nor constructs a mass of projective
databases. This makes our mining results reflect more biological meanings and also
improves mining efficiency. Our empirical studies on the tested data from pfam

protein database show that MSPM algorithm can obtain higher performance and
efficiency than the traditional mining algorithms.

Acknowledgement: This research was supported in part by the Chinese National
Natural Science Foundation under grant No. 60673060, Natural Science Foundation
of Jiangsu Province under contract BK2008206.

References

1. Brejova B,DiMarco C,Vinar T,et al. Finding Patterns in Biological Sequences[R].
Technical report, University of Waterloo, 2000.

2. Bajesy P,Han J w,Liu L et.al. Survey of biodata analysis from a data mining
Perspective[C]. In:Wang J T L,Zaki M J,Toivonen H T T,et al,eds. Data Mining
in Bioinformaties. England: Springer-Verlag London LTD,2005:9-39.

3. Mannila H, Toivonen H. Discovering generalized episodes using minimal
occurrences[C]. In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining (KDD ’96). Portland, AAAIPress, 1996:
146-151.

4. Mannila H, Toivonen H, Verkamo A I. Discovery of frequent episodes in event
sequences[J]. Data Mining and Knowledge Discovery, 1997,1:259-289.

5. Agrawal R,Srikant R. Mining sequential patterns.In:Yu PS,Chen ALP, eds. Proc.
Of the 11th Int'l Conf. on Data Engineering [J]. Taipei:IEEE Computer
Society,1995:3-14.

6. Srikant R, Agrawal R. Mining sequential patterns: Generalization and
performance improvements [C]. In: Apers PMG, Bouzeghoub M, Gardarin G,
eds. Advances in Database Technology, Proc. of the 15th Int'l Conf. on
Extending Database Technology. London: Springer-Verlag, 1996:3-17.

7. Pei J, Han JW, Mortazavi-Asl B, Pinto H. Prefixspan: Mining sequential patterns
efficiently by prefix-projected growth[C]. In: Proc. of the 17th Int'l Conf. on Data
Engineering. Washington: IEEE Computer Society, 2001. 215-224.

8. Han J W, Cheng H, Xin D, Yan X. Frequent Pattern Mining: Current Status and
Future Directions[J]. Data Mining and Knowledge Discovery. 2007,15(1):55-86.

9. Apostolico A, Prefarata F. Optimal off-line detection of repetitions in a string[J].
Theoretical Computer Science, 1983,22(3): 297-315.

10. Kolpakov R, Kucherov G. Finding maximal repetitions in a word in linear
time[C]. In: Proc. of the 1999 Symp. on Foundations of Computer Science.
Washington: IEEE Computer Society, 1999. 596-604.

11. Delgrange O, Rivals E. STAR: An algorithm to search for tandem approximate
repeats[J]. Bioinformatics, 2004,20(16):2812-2820.

12. Kolpakov R, Kucherov G. Finding repeats with fixed gap[C]. In: Proc. of the 7th
Int'l Symp. on String Processing and Information Retrieval (SPIRE). Washington:
IEEE Computer Society, 2000. 162-168.

13. Kolpakov R, Kucherov G. Finding approximate repetitions under hamming
distance[J]. Theoretical Computer Science, 2003,303(1): 135-156.

14. Krishnan A, Tang F. Exhaustive whole-genome tandem repeats search[J].
Bioinformatics, 2004,20 (16): 2702-2710.

15. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R.
REPuter: The mani fold applications of repeat analysis on a genomic scale[J].
Nucleic Acids Reseach, 2001, 29(22):4633-4642.

16. Landau GM, Schmidt JP, Sokol D. An algorithm for approximate tandem
repeats[J]. Journal of Computational Biology, 2001,8(1): 1-18.

17. Hertz GZ, Stormo GD. Identifying DNA and protein patterns with statistically
significant alignments of multiple sequences[J]. Bioinformatics, 1999,15(7): 563-
577.

18. Pevzner PA, Sze SH. Combinatorial approaches to finding subtle signals in DNA
sequences[C]. In: Proc. of the 8th Int'l Conf. Intelligent System for Molecular
Biology. San Diego: AAAI Press, 2000. 269-278.

19. Benson G..Tandem repeats finder: A program to analyze DNA sequences[J].
Nucleic Acids Research, 1999,27(2):573-580.

20. Wang D, Wang G, Wu QQ, Chen BC. Finding LPRs in DNA sequence based on
a new index SUA[C]. In: Proc. of the IEEE 5th Symp. on Bioinformatics and
Bioenginerering (BIBE 2005). Washington: IEEE Computer Science, 2005. 281-
284.

21. Wang D, Zhao Y, Chen BC, Wang GR. SUA-Based algorithm for finding SATRs
in DNA sequence[J]. Journal of Northeastern University (Natural Science),
2007,28(2):209-212 (in Chinese with English abstract).

22. Xiong Yun, Zhu Yangyong. BioPM: An Efficient Algorithm for Protein Motif
Mining[C]. In: Proc. of ICBBE’07. [S. l.]: IEEE Press,2007. 394-397.

23. Guo Shun, Jiang Qingshan, Wang Beizhan, Shi Liang. A new pattern mining
algorithm for protein sequences[J]. Computer Engineering, 2009.4,35(8), pp:208-
210.

24. Bateman A, Birney E, Cerruti L, et al. The Pfam Protein Families Database[J].
Nucleic Acids Res., 2002, 30(1): 276-288.

