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Abstract: Connecting rod bearing (CRB) is an important component which joins 
the reciprocating and rotating movements together in the internal combustion engine 
(ICE). It is very difficult to identify health status of CRB because of variable 
working process, complicated excitation and distribution sources, and lack of fault 
samples. Support vector machine (SVM), which has excellent capability in small 
data case, was introduced to identify the health status of CRB. In this paper, faults 
of the CRB were simulated in an ICE with the type of EQ6100. Vibration features 
were extracted from vibration signals acquired from the shell of ICE. And a SVM 
multi-classifier was designed to identify health status of CRB by using the radial 
basis kernel function. Experimental results indicated that the presented fault 
diagnosis method could effectively recognize different conditions of CRB. 
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1. Introduction 

Internal combustion engine (ICE), a complicated mechanical system, is composed of 
different parts, in which connecting rod bearing (CRB) is an important one joining the 
reciprocating and rotating movements together. It is difficult to identify the health status 
of CRB for several reasons, such as variable working process, complicated excitation and 
distribution sources, and lack of fault samples [1,2]. One crucial task in CRB fault 
diagnosis is the feature classification based on vibration signal. For this problem, methods 
based data learning have been investigated for fault diagnosis, such as neural network [3], 
Bayesian classification [4], etc. However, the vibration samples that represent the 
condition are difficult to collect in practice, which make the methods mentioned above are 
limited to being used. Therefore, it is critical to select an excellent classifier for reliable 
fault diagnosis.  



 

Support vector machine (SVM), a machine learning method based on the statistical 
learning theory, was presented by Vapnik et al. [5-7]. The SVM implements the structural 
risk minimization principle which leads to the preferable generalization capability. Kernel 
function is used to map a sample input space into a high-dimensional feature space 
through some nonlinear mapping. With SVMs, nonlinear dependence between factors and 
objects can be described. Because of the excellent capability in small data case and in 
limiting over learning, SVM has been used in many applications, such as pattern 
recognition [8], regressive analysis [7], etc. Especially, it shows advantages in fault 
diagnosis as described by the referred studies [9-12]. In this paper, we address extraction 
vibration signal features of connecting rod bearing, and health status identification of 
connecting rod bearing using the SVM. The organization of this paper is arranged as 
follows. The theoretical background of the proposed method is introduced in Section 2. 
The fearture extraction method and feature analysis are described in Section 3. The 
application example is presented in Section 4. Finally, conclusions are drawn in Section 5. 

2. Support Vector Machine 

SVM is a machine learning tool that is especially fit for classification in small-sample 
cases due to its good generalization capability. The basic idea of SVM for pattern 
recognition is to map data to a high-dimensional space by a nonlinear mapping, and find 
an optimum linear separating hyperplane with the maximal margin in this higher-
dimensional space [6,7]. However, the calculation complexity does not increase almost in 
the high-dimensional space as a kernel function is used. “one-against-one” and “one-
against-all” are the most commonly used methods of SVM classifier [8]. Multi-
classification can be obtained by combining several binary classifiers. Considering the 
need of recognizing multiple statuses in fault diagnosis of ICE, one-against-all multi-class 
classifier is constructed in this paper and described in detail as follows [5]. 

Given a training set  , , 1, 2, ,i ix y i l  , where l is the number of samples, n
ix R is 

input data and  1, 1iy     is output class data. Finding an optimum separating 

hyperplane is equivalent to solving the following quadratic programming problem: 
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where nw R  and b R  are the weighting factors, i  is the slack variable, and C is the 

penalty parameter. Input vector ),,,( 21 lxxx x  in original space can be mapped to 



 

high-dimensional feature space using the function    . In feature space, optimum 

separating hyperplane can be found by maximizing the margin 2/||w||. The decision 
function can be finally written as: 
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where the project function  ix  could be conveniently replaced by a kernel function 

     ,i j i jK x x x x   . Then the decision function can be rewritten as: 
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There are several commonly used kernel functions: linear function, polynomial 
function, and radial basis function (RBF). The radial basis function was described as 
follows: 

 2
( , ) exp - -i j i jK x x x x  (4) 

where 0  , and   is the kernel parameter. 

For classable k-class statuses of connecting rod bearing of internal combustion engine, 
a multi-class classifier can be constructed to identify health statuses of CRB using k 
classifiers, each of which is trained by binary-class data as above. To identify the health 
status of CRB, the feature vectors of a sample are firstly sent into the classifier 1. If the 
output of the decision function is 1, the sample will belong to class 1 and the process of 
classification is over. Otherwise, the feature vectors are secondly sent into the classifier 2. 
Then the following process does the same as above until the classification is finished. If 
the final output is -1, the sample will not be included in the k class statuses. 

3. Signal Acquisition and Feature Analysis 

3.1. Signal Acquisition 

Experiments were conducted on an internal combustion engine with the EQ6100 type. 
Faults were set to simulate abnormal statuses of connecting rod bearing in advance. Four 
wear conditions including normal wear, slight wear, medium wear and severe wear were 
set on the fifth cylinder of the ICE which has total six cylinders. As listed in Table 1, the 
clearances between bearing and axle neck corresponding to four statuses were set using 



 

plug gauges except for normal condition. In the experiments, each time only one fault was 
set in order to make the simulated fault as real as possible and reduce disturbances as 
much as possible. Vibration signals were acquired by B&K4384 model accelerometer 
mounted on the shell of the fifth cylinder of the ICE. Then, the signals were amplified by 
B&K2635 model charge amplifier and saved in computer through the data acquisition 
card. The rotating speed of the engine was kept at 1000 rpm without loads, and the 
sampling frequency was set to be 10 kHz. 

Table 1. Faults setting. 

Status Clearance(mm) 

Normal Wear 0.04-0.098 

Slight Wear 0.15 

Medium Wear 0.30 

Severe Wear 0.50 

3.2 Feature Analysis of Vibration Signals 

Due to the complex and stochastic nature of internal combustion engine, there are many 
excitation sources and complex interferences in its working process, such as 
transformation between rotating and reciprocating movements, ignitions and explosions, 
some unbalance impacts, differences and interferences in different working cycles, etc. 
The connecting rod bearing is a critical component which joins the rotating and 
reciprocating movements. The vibration signals of CRB are modulated and attenuated by 
multiple parts before being transferred to the sensor. Therefore, the measured vibration 
signals include lots of disturbance noise. To make the signal analysis results equitable, the 
measured signal firstly needs to be preprocessed to minimize the noise caused by the 
sensor itself and machine working environment. This can be done based upon the mean-
variance standardization method as described below. 

Given the measured vibration signal is one-dimensional data 1 2{ , , , }nx x x , where n is 

the length of sample. The mean of the sample can be written as follows: 
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And the variance of the sample can be written as: 
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Then the sample is standardized as follows: 
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After mean-variance standardized, vibration signals will have zero mean and unit 
variance. In general, it is difficult to classify the vibration signals of CRB into different 
statuses using time-domain features only. The features in frequency-domain can also 
reflect different statuses of CRB to a certain extent. For example, the energy distribution 
in some typical frequency band could reflect CRB condition. Therefore, vibration features 
in both time-domain and frequency-domain were extracted to identify the health status of 
CRB comprehensively. These features include: 

Time-Domain Features: absolute mean, maximum peak, the root mean square, the 
variance, peak-peak, the kurtosis, the skewness, the square root, the crest factor, the shape 
factor, the kurtosis factor, the impulse factor, and the tolerance factor;  

Frequency-Domain Features: average frequency, stabilization factor of spectrum peak, 
as well as five spectral energy values on five equally divided frequency bands. 
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Fig. 1. Features of vibration signals of CRB. 

The total 20 features described above, which calculated according to the reference [13], 
were extracted from vibration signals of internal combustion engine. Thus, the health 
status of connecting rod bearing could be diagnosed comprehensively by a combination 
of these features. Features as illustrated in Fig.1 were extracted from vibration signals of 



 

connecting rod bearing with four conditions (normal wear, slight wear, medium wear and 
severe wear). As shown in Fig.1, the horizontal ordinate represents sample numbers, in 
which 50 samples for each type of signal are analyzed. It can be seen that these features 
are different from each other. The 20 features represent different physical signification 
respectively and the sensitivity and regularity of each feature is different. It is difficult to 
find which feature is more sensitive and stable intuitively than others in representing the 
status of CRB. In order to avoid the scale effect of the features and make all the features 
hold in a uniform scale, features were also preprocessed with the mean-variance 
standardization method. 

4. SVM for Fault Diagnosis of CRB 

After being preprocessed by the mean-variance standardization method, typical vibration 
signals of the CRB are shown in Fig. 2 with four wear conditions including normal wear 
(denoted as C1), slight wear (denoted as C2), medium wear (denoted as C3) and severe 
wear (denoted as C4). As seen from Fig. 2, it is difficult to find the difference among the 
four conditions. The corresponding frequency spectra are illustrated in Fig.3, from which 
we can see that the maximum spectral energy all locate around 1400Hz on four conditions. 
The energy is distributed widely on the spectrum except the severe wear condition, the 
energy of which is concentrated at 1400 Hz. From the frequency-domain, it is also 
difficult to see intuitively the difference among the four conditions. 

A set of data which is comprised of fifty vibration signals were acquired from each 
condition and twenty vibration features are extracted from each signal. Therefore, we can 
construct a 50×20 vibration feature matrix for each condition. Fig. 1 illustrates the 20 
vibration features on four conditions respectively. From Fig.1, it is difficult to find which 
feature is more sensitive and more stable than others in representing the status of 
connecting rod bearing. We selected the fore-half of the feature matrix of each condition, 
i.e., a 25×20 sub-matrix, to train the SVM classifier and used the left half of the matrix for 
testing.  

It is well known that the classification performance of the SVM depends on what 
kernel function is used to a certain degree. In the training, we compared linear kernel 
function, polynomial kernel function and radial basis kernel function. The training results 
using the three kernel functions are illustrated in Table 2, where the training time is 
denoted by TT, and the correct recognition rate is denoted by CRR. The parameters of the 
kernel functions are taken as: power index d=3 for the polynomial kernel function and 

2.17   for the radial basis function. It can be seen from Table 2 that recognition 

accuracy rates are almost the same when using all three kernel functions. But the training 
time of SVM classifier based on radial basis function is much less than that based on the 
other two functions. Meanwhile, the radial basis kernel function has a less parameter 
advantage over the polynomial one. The complexity of SVM would be affected directly 



 

by the numbers of parameter. Therefore, in this paper, we constructed the SVM classifier 
using radial basis kernel function to identify the status of connecting rod bearing. 
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Fig. 2. Vibration signals of CRB on different conditions. 
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Fig. 3. Spectra of CRB on different conditions. 



 

The essential problem of machine condition monitoring and fault diagnosis is pattern 
recognition [9]. The correct feature recognition is the basis of identifying the status of 
machine. The performance of the classifier will directly affect the fault diagnosis of 
machine. Therefore, the three-layer back propagation neural network (BPNN) and k-
nearest neighbor classification (KNN) were used to compare with one-against-all SVM 
multi-classifier. In the training process of the BPNN, the transfer functions were chosen 
as log-sigmoid function and tan-sigmoid function respectively. Training times was set to 
200, and network performance object was set to 0.001. Euclidean distance and one 
nearest neighbor were used in the KNN classification. When training the SVM classifier, 
the least square SVM algorithm was used. Radial basis function was selected as the kernel 
function with the kernel parameter γ being equal to 2.17. Table 3 shows the training time 
and correct recognition rate of the four statuses by using 3-layer BPNN, KNN and SVM 
classifier respectively. As seen from table 3, the correct recognition rates are almost the 
same on normal wear condition using BP neural network and SVM classifier. However, 
on other three conditions, the correct recognition rate of SVM classifier is higher than the 
rate of BPNN in evidence. Moreover, the training time of BPNN is far greater than SVM 
classifier used. Although the computer time of KNN is similar to SVM, its correct 
recognition rate is much lower than that of the other two methods. The results illustrates 
that the SVM is effective to identify the health status of connecting rod bearing of ICE. 

Table 2. Diagnosis results by SVM with different kernel functions. 

Status of  
CRB 

Linear 
Function 

Polynomial 
Function 

Radial Basis 
Function 

TT CRR TT CRR TT CRR

C1 0.849s 100% 0.822s 99.4% 0.632s 99.3%

C2 0.799s 98.3% 0.843s 98.3% 0.527s 97.8%

C3 0.833s 99.5% 0.830s 99.1% 0.590s 98.5%

C4 1.486s 98.2% 0.849s 97.5% 0.591s 96.7%

Table 3. Comparision of BPNN, KNN and SVM results. 

Status of 
CRB  

KNN BPNN SVM 

TT CRR TT CRR TT CRR 

C1 0.921s 71.1% 7.023s 98.5% 0.632s 99.3% 

C2 0.824s 73.3% 7.316s 90.7% 0.527s 97.8% 

C3 0.989s 77.3% 6.088s 90.8% 0.590s 98.5% 

C4 0.709s 79.5% 8.487s 90.4% 0.591s 96.7% 



 

5. Conclusions 

This paper addresses on identification of the CRB health status of the ICE by using 
limited samples. By comparing, the SVM multi-classifier based on radial basis kernel 
function is chosen for identifying the health status of CRB. Furthermore, considering the 
training time and correct recognition rate in comparison with the BP neural networks, the 
SVM classifier based on statistical learning theory is especially fit for fault diagnosis in 
small-sample cases. 

The results in this study validate the effectiveness of applying SVM multi-classifier to 
identifying the health status of connecting rod bearing. This illustrated that the SVM has 
great practical value and provide an efficient method for intelligent diagnosis of ICE. 
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