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Abstract. Hyperspectral reflectance of normal and lodged rice caused by rice 

brown planthopper and rice panicle blast was measured at the canopy level. 

Over one decade broad- and narrow-band vegetation indices (VIs) were 

calculated to simulate Landsat ETM+ with in situ hyperspectral reflectance. 

Principal component analysis (PCA) was utilized to obtain the front two 

principal components (PCs). Probabilistic neural network (PNN) was employed 

to classify the lodged and normal rice with VIs and PCs as the input vectors. 

PCs had 100% of overall accuracy and 1 of Kappa coefficient for the training 

dataset. While PCs had the greatest average overall accuracy (97.8%) and 

Kappa coefficient (0.955) for the two testing datasets than VIs consisting of 

broad- and narrow-bands. The results indicated that hyperspectral remote 

sensing with PCA and artificial neural networks could potentially be applied to 

discriminate lodged crops from normal ones at regional and large spatial scales.  
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1   Introduction 

Detecting plant health condition plays an important role in controlling disease and 

insect stress in precise pest management (PPM), which always results in yield loss 

and poor quality 
[1]

. Although plant pest stress is predominantly concentrated in 

patches around stress centers, it is still widespread to spray agrochemicals 

indiscriminately over the entire field in practice
 [2]

. It is necessary to accurately assess 

the pest stress distribution and damage caused by disease and insect pests
 [3]

 so that 

agrochemicals can be applied to reduce environmental pollution due to agrochemicals 

in the stressed patches. 



 

 

Lodging at the late growth stage is caused by insect and fungal disease in paddy 

rice field, which often leads to yield loss and quality decrease 
[4]

. Accurate 

distribution information of lodging rice is helpful to spray agrochemicals and harvest 

in agricultural field management. Remote sensing has been proved to be more 

effective than ground surveys for detecting plant health condition in numerous studies 
[5]

. Perhaps vegetation indices (VIs) is the most popular technique of remote sensing 

to predict agricultural crop biophysical variables such as leaf area index, chlorophyll 

content/concentration, above-ground biomass, and percent vegetation cover and so 

forth 
[6]

. In addition to VIs, principal component analysis (PCA) has been extensively 

studied as a data compression technique
 [7]

.  

Table 1 Broadband and narrowband spectral indices used in this study 

Abbreviatio

n 
Formula Reference 

DVI NIR-R 
Richardson and 

Everitt [11]  

RVI NIR/R Jordan[12] 

NDVI (NIR-R)/(NIR+R) Rouse et al. [13] 

SAVIL=0.5 1.5(NIR-R)/(NIR+R+0.5) Huete[14] 

OSAVI 1.16(NIR-R)/(NIR+R+0.16) Rondeaux et al. [15] 

MSAVI2 
22 1 (2 1) 8( )

2

NIR NIR NIR R      Qi et al. [16] 

TVI 60(NIR-G)-100(R-G) Broge et al. [17] 

IPVI NIR(NIR+R) Crippen [18] 

TDVI 
1.5( )

0.5

NIR R

NIR R



 

 Bannari et al. [19] 

RDVI 
NIR R

NIR R





 Roujean and 

Breon [20] 

EVI 2.5
6.5 7.5 1

NIR R

NIR R B



  
 Liu and Huete [21] 

GEMI 2 2

(1 0.25 ) ( 0.125) /(1 )

2( ) 1.5 0.5

0.5

R R

NIR R NIR R

NIR R

 



   

  


 

 Pinty  and 

Verstraete[22]  

BI 
0.2909B+0.2493G+0.4806R+0.5568NIR 

+0.4438SWIR1+0.1706SWIR2 
Crist et al. [23] 

GVI 

-0.2728B-0.2174G-

0.5508R+0.7721NIR+0.0733SWIR1 

-0.1648 SWIR2 

Crist et al. [23] 

WI 
0.1446B+0.1761G+0.3322R+0.3396NIR-

0.621SWIR1 -0.4186 SWIR2 
Crist et al. [23] 

NDWI (λ 860nm-λ 1240nm)/( λ 860nm+λ 1240nm) Gao [24] 

LSWI (λ 860nm-λ 1640nm)/( λ 860nm+λ 1640nm) Xiao et al. [25] 

NMDI 
860 1640 2130

860 1640 2130

( )

( )

nm nm nm

nm nm nm

  

  

 

 
 Wang et al. [26] 

*B,G,R,NIR,SWIR1 and SWIR2 represent surface spectral reflectance averaged over ranges of 

wavelengths in Landsat ETM+, viz.TM1 (450-515nm), TM2 (525-605nm), TM3 (630-690nm), 



 

 

TM4 (775-900nm), TM5 (1.55-1.75μm ) and TM7 (2.09-2.38μm ), respectively. λ i nm denotes 

surface spectral reflectance at i nanometer. 

Furthermore, the application of artificial intelligent methods including artificial 

neural networks (ANN) and support vector machines (SVM) in plant stress detection 

has also been reported recently
[8-9]

. For example, SVM technology was used to detect 

weed and nitrogen stress in corn by Karimi et al 
[8]

. Shi et al.
 [9]

 applied SVM model 

to discriminate the health status in rice and great classification was obtained. However, 

few studies have been conducted to resolve classification problems by VIs and PCA
 

[10]
.  

The main goal of this research is to evaluate and compare the performances of 

broad- and narrow-band VIs (Table 1) and PCA in differentiating the normal rice crop 

from the lodged ones stressed by rice brown planthopper or rice panicle blast. 

2 Methodology 

2.1 Study Sites and Materials 

There were two sampling sites in this research. One site was located in Friendship 

Farm (120°43′E, 46°39′N), Heilongjiang Province. The rice crop cultivar was Suijing 

4, which was naturally infected with rice panicle blast. The other site was in Jiuxian 

Village (119°37′E, 29°48′N), Tonglu County, Zhejiang Province. And the rice crop 

cultivar was Hybrid rice 718, which was stressed by rice brown planthopper.  

2.2 Hyperspectral Measurement 

Canopy hyperspectral reflectance were measured using an ASD FieldSpec Pro FRTM 

Spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA) throughout 

the whole spectral range from 350 nm to 2 500 nm. The spectral resolution of the 

instrument varied from 3 nm (<1 000 nm) to 10 nm (>1 000 nm), while the spectra 

were interpolated by the spectrometer software in 1nm interval. Therefore, each 

measurement generated a spectrum ranging between 350 nm and 2500 nm at 1nm 

increment. 

The fiber optic sensor with a 25° instantaneous field of view (IFOV) was pointed to 

the paddy rice canopy about 1 m height at the nadir position. Reference panel 

measurements were made at the beginning of each set of canopy measurements. The 

reference panel painted by BaSO4 is a Lambert surface with a reflectance of no less 

than 99%. These radiance units were in turn converted to reflectance using scans of 

the BaSO4 white reference panel. 

The hyperspectral measurement date was taken on 24th August and 28th September 

of 2007 in Heilongjiang and Zhejiang Province, respectively. The number of 

reflectance spectra of normal paddy rice were 12 and 35 in the two sites, respectively, 

and the number of reflectance spectra of lodged paddy rice were 10 and 35 in the two 

sites, respectively. 



 

 

2.3 Hyperspectral Data Preprocessing 

Hyperspectral reflectance was smoothed with a five-step moving average to suppress 

instrumental and environmental noise
 [27]

. The hyperspectral reflectance represented 

the domains of 400 ~ 2 350 nm, and the missing segments corresponding to strong 

instrument and environment noise were not considered for further analysis 
[10]

.  

The total datasets collected from the two paddy rice fields were divided into three 

different subsets, namely, one training dataset and two testing subsets. The training 

dataset (n=52) was used to calibrate the artificial neural network (ANN) classification 

models with three quarters of the canopy hyperspectral reflectance data collecting on 

28
th

 September of 2007, and one quarter was applied to validate the ANN 

classification models as the first testing dataset (n=18). While the hyperspectral 

reflectance data collecting on 24
th

 August of 2007 was applied as the second testing 

dataset (n=22). 

2.4 Analytical Techniques 

Principal component analysis (PCA) has been used as a data compression technique 

for preserving total variance in transformation and minimizing mean square 

approximate errors 
[7]

. This technique is very suitable for hyperspectra data for high 

dependence and autocorrelation in adjacent wavebands 
[10]

. In this study, the front two 

principal component spectra (PCs) were derived from the canopy hyperspectral 

reflectance, which could explain over 98% of information variation. 

 

Fig1. Neural architecture for probabilistic neural networks (PNN) 

Probabilistic neural networks (PNN) are a novel and composite neural network 

with radial basis function and competitive neural network. The neural architecture of 

PNN (Fig.1) consists of a radial basis layer and competitive layer with the exception 

of input layer 
[28]

. In this study, PNN has been used to identify the lodged rice crop 

from normal ones at the canopy level. The neural nodes in the input layer were the 

broad- and narrow-band VIs and PCs. The competitive layer is also called as the 

output layer in practice. The neural nodes in the output layer were the classification of 
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rice crops, viz. lodged and normal. The objective of the training process is examined 

to find the probabilistic mode between neural node of input layer and different 

classification of output layer. Additional detailed information on PNN can be found in 

the literature by Sivandm et al. 
[28]

. 

The performance of VIs and PCA for classifying the lodged and normal paddy rice 

was evaluated with two statistical parameters, namely overall accuracy and Kappa 

coefficient 
[29]

.  

PNN and PCA were conducted with Matlab functions in Matlab 7.0 (R14). 

Hyperspectral reflectance data preprocessing was made in ViewSpec Pro (V5.6.10) 

and VIs were derived from canopy hyperspectral reflectance in Microsoft Office 

Excel 2003. 

3 Results and Discussions 

3.1 Canopy Hyperspectral Reflectance 

The spectral response properties of rice crop to disease and insect stresses were very 

significant for identifying lodged rice from normal ones in PPM using hyperspectral 

remote sensing technique. Fig.2 showed the canopy hyperspectral reflectance curves 

of normal rice and lodged rice caused by rice brown planthopper. Six wavelength 

intervals indicated the spectral differences (Table 2) because the photon transferring 

process was different between normal and lodged rice crop. Maybe it’s because after 

the rice plant was damaged and lodged due to disease and insect stresses, which 

resulted in evident changes in the arrangement structure of rice panicles, leaves and 

stems. 

 

 

Fig.2 Canopy hyperspectral reflectance of normal rice crop and lodged rice crop stressed by 

rice brown planthopper 

As shown in Fig.2, the spectral curve shape of lodged rice crop was similar to that 

of the normal ones through the entire range (400~2350 nm), but the spectra amplitude 

0

10

20

30

40

50

400 800 1200 1600 2000

Wavelength(nm)

H
y

p
er

sp
ec

tr
al

 R
ef

le
ct

an
ce

(%
)

Normal Rice Crop

Lodged Rice Crop



 

 

was different. The hyperspectral reflectance of lodged rice crops increased about 

75.7%, 70.9%, 79.2%, 62.3%, 64.7% and 76% in the blue-green (450~515 nm), green 

(525~605 nm), red (630~690 nm), near-infrared (775~900 nm), shortwave infrared 

(1550~1750 nm and 2090~2350 nm), respectively (Table 2). 

Table 2. Average canopy hyperspectral reflectance of rice crops at six wavelength intervals 

representing the Enhanced Thematic Mapper Plus (ETM+) of Landsat-7 (Unit: %) 

Spectrum range 

 (nm) 

Site 1 (rice brown planthopper) Site 2 (rice panicle blast) 

Healthy 

(n=35) 

Lodged 

(n=35) 

Healthy(n=1

2) 

Lodged 

(n=35) 

Blue-Green 

(450~515) 5.9c 10.4a 3.3d 7.6b 

Green (525~605) 9.6d 16.4b 10.9c 17.2a 

Red (630~690) 11.4b 20.5a 8.2c 18.1a 

NIR (775~900) 23.3c 37.7b 45.7a 46.7a 

SWIR1(1550~175

0) 22.0b 36.2a 20.5c 41.6a 

SWIR2 

(2090~2350) 14.2c 25.0b 13.4c 35.3a 

*: Reflectance values within a row followed by the same letter are not significantly different 

from each other by Duncan test at α = 0.05. 

3.2 Results of probabilistic neural network (PNN) classifier 

The overall accuracy and Kappa coefficient of broad-band and narrow-band spectral 

Table 3 Comparison of the two accuracy measures for VIs and PCA based on PNN (Unit: %) 

Dataset types Training dataset Testing dataset 1 Testing dataset 2 
Input vectors OA KC OA KC OA KC 

DVI 96.2% 0.923 88.9% 0.778 90.9% 0.814 

RVI 100% 1 61.1% 0.222 63.6% 0.214 

NDVI 88.5% 0.769 72.2% 0.444 63.6% 0.214 

SAVIL=0.5 94.2% 0.885 55.6% 0.111 68.2% 0.319 

OSAVI 94.2% 0.885 66.7% 0.333 72.7% 0.421 

MSAVI2 96.2% 0.923 61.1% 0.222 63.6% 0.214 

TVI 90.4% 0.808 66.7% 0.333 63.6% 0.214 

IPVI 94.2% 0.885 66.7% 0.333 63.6% 0.214 

TDVI 100% 1 77.8% 0.556 63.6% 0.214 

RDVI 94.2% 0.885 66.7% 0.333 59.1% 0.108 

EVI 94.2% 0.885 66.7% 0.333 72.7% 0.421 

GEMI 94.2% 0.885 44.4%  -0.111 72.7% 0.421 

BI 100% 1 100% 1 77.3% 0.56 

GVI 86.5% 0.731 88.9% 0.778 81.8% 0.621 

WI 94.2% 0.885 88.9% 0.778 81.8% 0.621 

NDWI 92.3% 0.846 44.4% -0.111 63.6% 0.214 

LSWI 94.2% 0.885 33.3% -0.333 68.2% 0.319 

NMDI 84.6% 0.692 72.2% 0.444 27.3%  -0.467 

2 PCs 100% 1 100% 1 95.5% 0.909 

* OA and KC denoted the overall accuracy and Kappa coefficient, respectively. 



 

 

indices and PCA for discriminating lodged rice from normal ones based on PNN were 

shown in Table 3. PCA had the highest average overall accuracy (97.8%) and Kappa 

coefficient (95.5%) than the broad-band and narrow-band spectral indices for the two 

testing datasets, DVI and BI followed. Among the spectral indices, DVI had relative 

higher average overall accuracy (90.9%) and Kappa coefficient (0.796). Maybe it was 

because that DVI was more sensitive to changes of photosynthesis pigment (i.e. 

chlorophyll and carotenoid) of rice organs due to lodging caused by rice brown 

planthopper or rice panicle blast at the late growth stage. 

4. Conclusions 

The results of our study showed that the spectral indices based on distance from 

isoline to soil line such as DVI, BI, GVI and WI had higher overall accuracy and 

Kappa coefficient than those spectral indices based on ratios of spectral bands such as 

RVI, NDVI, SAVI series, and so on. Ratio-based spectral indices suppressed the 

spectral difference between different spectral bands, which made it more difficult to 

discriminate lodged rice from normal ones than distance-based spectral indices that 

amplified the spectral difference between different spectral bands 
[30]

. The front 

several principal components (PCs) always accounted for most proportion of the 

variance of the original hyperspectral reflectance dataset 
[10]

, and retained more 

information than the broad-band and narrow-band spectral indices, and then PCs had 

the higher overall accuracy and Kappa coefficient than spectral indices. 

The results indicated that hyperspectral remote sensing with PCA and ANNs has 

considerable potential in discriminating the lodging rice from normal ones as a 

supplementary and even alternative technique against spectral indices at the regional 

and even large spatial scales. However, there was only two kinds of stress status (i.e., 

healthy and lodging) in our research. Different lodging angles bring about different 

damage severity in practice. Future study is needed to include more stress status and 

extrapolate from ground to airborne and spaceborne platforms.s. 
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