Intelligent Information Processing 11 369

DIAGNOSING JAVA PROGRAMS WITH STATIC
ABSTRACTIONS OF DATA STRUCTURES

Rong Chen 2 Daniel Koeb ' and Franz Wotawa ' *

! Technische Universitaet Graz, Institute for Software Technology, 8010 Graz, Inffeldgasse
16b/2, Austria; * Institute of Software Research, Zhongshan University, Xingangxilu 135,
570215 Guangzhou, China

Abstract: Model-based software debugging helps users to find program errors and thus
to reduce the overall costs for software development. In this paper, we extend
our previous work to diagnose common data structure errors. The proposed
logical program model derives from a collection of indexed object relations,
which capture the underlying data structures at the abstraction level of objects.
A case study suggests that the counterexample with the diagnoses can help the
user to understand the nature of program errors and thus speed up error
correction.

Key words: ~ Automatic reasoning, model-based diagnosis, fault localization

1. INTRODUCTION

Model-based software debugging (MBSD) helps users to find program
errors and thus to reduce the overall costs for software development [,
MBSD starts from a description of a working piece of software. This
description can be automatically extracted from the software and captures its
structure and behavior. Using this model, one can make predictions in terms
of values of variables under certain circumstances. If any of these values
contradict the test case (i.e., the software does not behave as expected), the
diagnostic system will isolate which statement or expression accounts for
this contradiction.

* Authors are listed in alphabetical order. The work presented in this paper was funded by the
Austrian Science Fund (FWF) P15265-N04, and partially supported by the National
Natural Science Foundation of China (NSFC) Project 60203015 and the Guangdong
Natural Science Foundation Project 011162.}

370 Intelligent Information Processing 11

To diagnose common data structure errors, we, in this paper, propose a
‘logical program model, derived from a collection of indexed object relations,
which capture the underlying data structures at the abstraction level of
objects. A case study suggests that the counterexample with the diagnoses
can help the user to understand the nature of program errors and thus speed
up error correction.

2. ABOUT OBJECT STORE

The Object Store is defined by locations (to represent run-time objects),
indexed location relations (defined over locations) and variable assignments
(associated with indexed location relations). We briefly introduce the Object
Store by using the List program shown in the leftmost column of Table 1,
where L is abbreviated for List.

Table 1. The Object Store of the remove method in Fig. 1

Program/statements Object Store

class List { Points-to Indexed location relations

List next;

int value;
. remove(int v) {
1. List ¢ = this; (c1,0)
2. List p = this; (1, 0) L.next; = { } 0.0}

3. while ((c.next != null)&&(v > c.value)){ 3.1 p=c; 3.2 c=c.next; }
/* case (a): loop body not executed */

[Lnext; = {3 ooy

/* case (b): unfold loop once */

3lp=g (P2, 0)

3.2 c=c.next; (c2 1) L.next, = {(0, 1)} (1. pio+y (from L.next))

/* case (c): unfold loop two times */

31 p=g¢ @3 1)

3.2 ¢ =c.next; (C}, 2) L.next; = {(0, 1), (1, 2)} i p/1*} (from L.next)

/* merge location relations for various cases*/

L.nexty= §(L.next,, L.next,)
L.nexts = §(L.next,, L.next;)

4.if (v=p.value) {4.]1 p.next=c; }

4.1 p.next=c; L.nexts ={(0, 0)} (0, pro+y (from L.next;)
L.next; ={(0, 1)} {c/1, pl0} (from L.next,)
L.nexts= {(0, 1), (1, 2)} (e, p1y (from L.next;)

/* merge location relations of the if-statement */

L.nexty= §(L.next,, L.nextq)
L.next)y= @(L.next,, L.nexty)
L.next;; = (L.next;, L.nextg)

3}

L -- List

Intelligent Information Processing I1 371

Locations, denoted by positive integers, are abstract representations of
run-time objects. A points-to relation is a binary relation that relates an
object variable and its locations. Since variables/relations might be
defined/updated at different program points, we distinguish them by
assigning a unique index. In our example, statement List ¢ = this is
converted into a pair (¢;, 0) in a points-to relation in Table 1, which means
variable ¢ points to the object at location 0 (i.e. this).

A location relation is used to relate multiple locations.

Definition 1 A location relation, denoted by 7., is a set of n-tuples in the
form (i;,...,i,) where iy(1<k<n) are integers (not »il) representing locations, 7'
is a class name, and f; of reference type, is a field of class 7.

Furthermore, let an n-tuple (i;,...,i,)e T.f, we say location i; can reach i
(or i is reachable) when 1<j<k<n.

We distinguish location relations by assigning a unique index (thus called
indexed location relations) and a variable assignment, which is a set of
variable-location associations that describe the points-to pairs at a certain
program point. In table 1, L.next; = {(0, 1)} 0.1 is an indexed location
relation, where a location pair (0, 1) is placed because locations 0 and 1 are
of type List, and the object at location 1 is reachable from the object at
location 0. Moreover, the variable assignment {p/0, ¢/1} means variables p
and ¢ point to locations 0 and 1 respectively.

Note that locations are introduced for modeling a reference variable, a
field access and a parameter of method call. A used location is a location
which is explicitly used in class creation statements, or when its content is
explicitly used. In our example, location 0 becomes a used location because
its content next is explicitly used when modeling the field access expression
c.next on statement 3.2 (In Table 1 a star is used for marking used locations).

With the notations that we have already introduced, we can formally
define the Object Store as follows:

Definition 2 Object Store is a collection of points-to relations and indexed
location relations.

The Object Store in Table 1 is extracted from the input program List
automatically by accessing the structure of the data and converting the
statements into points-to relation and indexed location relations. Since there
are various control flows that may update location relations, we adopt the
static single assignment form (SSA, see [2]); that is, we insert extra pseudo-
assignments (known as ¢g-functions) at control flow merge points. In our
example, L.next; arises from the then-branch of if-statement 4, and L.nexts
from the else-branch. Then we insert a pseudo-assignment L.nexty =
& L.next;, L.nexts) right after the if-statement 4. If the path of execution
comes from the then-branch, the ¢-function takes the value of L.next;
otherwise, it takes the value of L.next;.

372 Intelligent Information Processing 11

3. DIAGNOSING WITH LOGICAL RULES FROM
THE OBJECT STORE

Since our diagnostic system uses a theorem prover to find conflict sets
and thus to compute diagnoses "), we map each certain indexed location
relation into a logical rule. In our example, the Object Store is mapped into
the following logical rules:

—AB(1)A ~AB(2)—> ok(L.next)) €))

—ABQ3)A ok(L.next;) — ok(L.next;) 2)

—AB@3)A ok(L.next;) A ok(L.next;) A— ok(L.nexts) — L ?3)
—AB3)A ok(L.next;) — ok(L.nexts))

—ABQ3)A ok(L.next;) A ok(L.nexts) A— ok(L.nexts) — L)
—AB(4)A ok(L.next;) — ok(L.nexts) (6)

—AB(4)A ok(L.next;) A ok(L.nexts) n— ok(L.nextg) — L @)
—AB(4)A ok(L.next;) —> ok(L.next;) ®)

—AB(4)A ok(L.next;) A ok(L.next;) A— ok(L.next;g) - L 9)
—AB(4)A ok(L.next;) — ok(L.nexts) (10)

—AB(4)A ok(L.nexts) A ok(L.nextg) n— ok(L.next;;) — L (11)

Where predicate 4B(i) means statement i is abnormal. Moreover, we expect
the following properties:

Property 1 If the list is not empty before, then one cell with the target value
is removed afterward.

Property 2 If the list is acyclic before, then it is acyclic afterwards.

The Object Store provides an appropriate computing environment for
checking user-expected properties. In our example, L.next, violates Property
2 because location 0 can reach itself. Since L.nexto =g(L.next;, L.nexts), one
observation is — ok(L.nexty). By calling the diagnosis engine with rules
(1)~(11), we get one conflict set {—AB(1), ~4B(2), ~4AB(4)}, which tells us
that one of statements 1, 2 and 4 is faulty (i.e., diagnoses, see [3]).

Furthermore, L.next; and L.nexts are counterexamples of Property 1
because they are the same as their parent locations L.next, and L.next;.
Therefore, the diagnoses and the counterexamples L.nexts, L.next, and
L.nexts give the user some hints, help him to understand the nature of
program misbehavior, and then correct the program error quickly.

REFERENCES

1. C. Mateis, M. Stumptner, and F. Wotawa. Modeling Java Programs for Diagnosis, ECAI
2001, Berlin Germany.

2. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph, ACM
TOPLAS, 13(4): 451-490, 1991.

3. R. Reiter. A theory of diagnosis from first principles, Al, 32(1):57-59, 1987.

