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Abstract 
 
Clustering ensembles have emerged as a powerful 
method for  improving both the robustness and the 
stability of unsupervised classification solutions. 
However, finding a consensus clustering from 
multiple partitions is a difficult problem that can be 
approached from graph-based, combinatorial or 
statistical perspectives. We offer a probabilistic model 
of consensus using a finite mixture of multinomial 
distributions in a space of clustering. A combined 
partition is found as a solution to the corresponding 
maximum likelihood problem using the GA algorithm. 
The excellent scalability of this algorithm and 
comprehensible underlying model are particularly 
important for clustering of large datasets. This study 
includes two sections, at the first, calculate correlation 
matrix .this matrix show correlation between samples 
and we found the best samples that can be in the 
center of clusters. In the other section a genetic 
algorithm is employed to produce the most stable 
partitions from an evolving ensemble (population) of 
clustering algorithms along with a special objective 
function. The objective function evaluates multiple 
partitions according to changes caused by data 
perturbations and prefers those clustering that are least 
susceptible to those perturbations. 
 
 Introduction 
Clustering for unsupervised data exploration and 
analysis has been investigated for decades in the 
statistics, data mining, and machine learning 
communities. A recent advance of clustering 
techniques is the development of cluster ensemble or 
consensus clustering techniques (Strehl & Ghosh, 
٢٠٠٢; Fern & Brodley, ٢٠٠٣;Monti et al., ٢٠٠٣; 
Topchy et al., ٢٠٠٣), which seek to improve clustering 
performance by first generating multiple partitions of 
a given data set and then combining them to form a 
final  (presumably superior) clustering solution. Such 
techniques have been shown to provide a generic tool 
for improving the performance of basic clustering 
algorithms. At the most clustering techniques use 
similarity attributes between samples for separate 
samples that can be such as Euclidean distance or …. 
 There are too much manner for clustering information, 
for example they are Ants,Isodata, K_means ,Forgy,… 
A critical problem in this clustering manner is how to 
adjust initial parameters, for example in Forgy’s 
algorithm there are two parameters that should adjust:  
١- cluster’s number. 
٢- seed point samples . 
 

 
 
 
 
 
 
 
 
 
In this paper we approach this problem by create 
correlation’s matrix  [section ١ ]  and  GA’s algorithm  
[section ٢ ]. 
 
۱ .correlation matrix  
 Algorithm : 

۳this algorithm is execute in  steps : 
۱- repeat one of the clustering methods 

like (Ants , ISODATA, K_mean ,Forgy 
clustering ) and create correlation 
matrix  

۲-  divided correlation matrix into some 
cluster 

۳- apply changed  Forgy  loop 
 
 
 
 
 
 
 
 
۱-۱ repeat one of the clustering methods 
and create correlation matrix  

 
 In this step a clustering algorithm such as (Ants , 
ISODATA, K_mean , Forgy  clustering)  execute  for 
some  iterations  . Suppose we know cluster’s number,  
then we can  use Fforgy’s  algorithm . 
Forgy’s  algorithm : 
 
۱. Initialize the cluster centroids to the seed 
points. 
 
۲. For each sample, find the cluster centroid 
nearest it. Put the sample in the cluster identified 
with this nearest cluster centroid. 
 
۳. If no sample ۲s changed clusters in step , stop. 
 
۴. Compute the centroids of the resulting clusters 
and go to step ٢. 
 
There are ٢ way for iteration’s time: 
 

(۱) Iteration=samples/clusters 
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Correlation’s matrix is n*n   matrix . 
 n is sample’s number.  
The value of  C[I,j]  shows how many  time  sample I 
and sample J  are  at one  cluster. This matrix is 
symmetric and the manner of update this matrix shows 
flow: 
For I ۰=   to samples-۱ 
   For J ۰=   to  samples-۱ 
      If   samplecluster[I]=samplecluster[J]   then      
                   Correlation[I,J]=correlation[I,J ۱]+  
     End if 
  Next J 
Next I 
 
۱-۲  Dividing  correlation’s matrix into some  
clusters 
 
There is one correlation’s matrix that shows relevant 
between samples  . We should  divide these samples 
into k clusters .First of all we choose  k  samples as 
seed points . We could choose these k samples from 
the correlation’s matrix  that have minimum  relevant 
and correlation to each others. May be according to 
this we got some noisy seed points values . I suggest  
new solution for this problem :   choose a  sample  as 
seed point , that p samples in  all of points  have 
correlation with it at least ٧٠٪  of iterations . 
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There are (samples/clusters)   Sample    in each 
cluster. Algorithm for choose seed points is written 
follow: 
 

 
۱ - ۱Limit =       
۲-find < samples I,J > where Correlation 

[I][J] < Limit 
 

۳ -for all samples if number of samples that 
۷۰٪Correlation[I][samples] >(  Iteration ) 

is greater  than p      
seedpoints  I       

  If (seed<clusters)     then  
    For all samples if number of samples 

۷۰٪that Correlation[J][samples] >  
Iteration 

 is greater than p  
   seedpoints  J  

     If (seed<clusters)     then  

  Limit++ and ۲ go to step  
   Else 
     End the Algorithm 
 

After we found seed points, we choose )(
clusters
samples

 

points for each cluster that have most Correlation with 
them. 
 
 
۲. Clustering by genetic algorithm 
 
In this section we present a scheme driven by 
evolutionary computation to overcome the problem of 
comparing clustering results. The clustering results are 
achieved by qualitatively different clustering 
algorithms, which produce different partitioning. Our 
scheme helps us to overcome these problems of 
algorithms by generating clustering ones and selecting 
the best evaluated to evolve in another generation until 
the whole procedure reaches a robust result. 
The proposed scheme generates clustering-bitstrings  
by clustering the l modifications with all clustering 
algorithm in use. Then these clustering-bitstrings are 
evaluated, compared through a fitness function. The 
best ones continue their evolution to the next 
generation. 
The final clustering bitstrings have evolved towards 
the stable schemata, which provide us a robust 
partition of the data points in the set. 
 
 
١-٢ Search of Schemata 
Evolutionary algorithms are a family of 
computer models based on the mechanics of 
natural selection and natural genetics. Among 
them are genetic algorithms (GA) [٢٣] and 
genetic programming (GP) [٢۴]. Genetic algorithms 
were introduced and investigated by John Holland 
[٢٣]. Later, they became popular by the book of  
David Goldberg [٢۵]. 
 
 
 
 
 
 
 
 
Figure ١: Intertwined spirals clustered by the 
average linkage  algorithm. 
 
Also, consider the GA tutorial of David Whitley [٢۶] 
as a very good introduction to the field.  GAs and GPs 
are typically used for optimization problems. An 
optimization problem is given by a mapping F : X  Y. 



The task is to find an element xœ X for which y = f (x); 
yœY is optimal in some sense. Genetic algorithms 
encodes a potential solution on a simple chromosome-
like data structure, and apply genetic operators such as 
crossover or mutation to these structures. Then, the 
potential solution is decoded to the value x in the 
search space X, and y = f (x) is computed. 
The obtained value y is considered as a quality 
measure, i.e. the fitness for this data structure. Some 
genetic operators, such as the mating selection, are 
under control of these fitness values, some other, like 
the mutation, are not related to fitness at all. An 
implementation of a GA begins with a population 
of ”chromosomes” (generation ١). For standard GA, 
each chromosome (also referred to as individual) is 
represented as a  bitstring of a fixed length (e.g. 
0101101 as a bitstring of length ٧). Then, the 
genetic operators are applied onto all bitstrings 
iteratively in a fixed order, going from one generation 
to the next until a given goal (e.g. fitness value 
exceeds a given threshold or a predefined number of 
generations was completed) is met. Finally, the 
individual (or chromosome) with the best fitness value 
in the final generation is taken as the evolved solution 
of the optimization problem .At first, ٢m bitstrings are 
selected out of the k individuals of generation n for 
mating. Usually, this is done by fitness-proportionate 
selection , i.e., the relative probability for an 
individual to be selected is proportional to its fitness 
value. The better the fitness, the better is the chance to 
spread out its “genetic material” (i.e., some of its bits) 
over the next generation .Once the ٢m individuals are 
chosen, they are paired. In the two bitstrings of each 
pair, a common splitting point is randomly selected, 
and a new bitstring is constructed  by combining a half 
of the first bitstring with the other half of the other 
bitstring. Then, the new individuals are mutated, i.e. 
some of its bits are reversed  with a given (usually 
small) probability. This gives the so-called m children 
of parent generation n. Now, the fitness values of the 
children are evaluated by decoding them into x values 
and computing the f (x). 
Some of the children might have a better fitness than 
its parents. From the k individuals of generation n and 
the m children, the best k individuals constitute the 
next generation (n+١). While randomized, GAs are no 
simple random walks. For the standard GA, John 
Holland has derived the well-known Schemata 
Theorem, which models a GA by means of the so-
called schematas (or similarity templates). A schema 
is an incomplete bitstring in the sense that it contains 
unspecified bits. An example for a schema is 10*110, 
which leaves position ٣ unspecified. 101110 is a 
realization of this schema. Generation n contains each 
possible schema to some extent. It can be said, that 
such a schema is tested by the GA, or that trials are 
allocated to it by the GA. Now, one measure for a 
schema is the average fitness of all of its realizations. 
A second measure is the ratio of this average to 
the ”average average” of all schemata present in the 
generation n, i.e. its above-averageness . The 
Schemata Theorem relates the rate of a schema within 

a population with this measure. It says, that the rate of 
a schema within a population grows exponentially 
with its above averageness. The most important point 
here is that all  schematas are tested in parallel. 
Strongly related to the application of a GA is the 
encoding problem. In general, GAs are applied to 
highly non-linear, complex problems, where it is hard 
to find a model which provides an approach to the 
solution. In these applications, they are the most 
simple approach. However, a GA is not guaranteed to 
find the global optimum of a  problem. It only ensures, 
by the Schemata Theorem, to find better solutions than 
the random initialized ones. GAs find evolved 
solutions.  
 
٢-٢ Fitness Function 
The fitness function y = f (x); xœ X in search, has to 
keep track of the difference of the tested indiviual 
compared to all other (original) individuals. Because 
all individuals are given as bitstrings, the Hamming 
distance, which keeps track of inverted bitstrings will 
be the right measure. 
 
 So we define the fitness function y(b) as follows: 

 
where: 
n== length of the Bitstring 
m= number of orginals (clusterstrings) 
xg œ٢ X 
so that: 
xg;v is the vth bit of gth original clustering-string 
The alternating measure of the fitness function 
reflects the issue that different clustering 
approaches may decide differently for assigning 
class ١ or ٢. Hence, the more suitable schema 
should be more similar to either the cluster string 
or its inverted form. 
٣.  Experimental Results 
We started our experiment so that ٢٨ original 
clustering strings with a length of ١٠٠ bit were 
computed. As parameterization of the Genetic 
Algorithm we decided to chose : 
  as the stop criteria ٣٠٠ generations 
  ٣٠ parents in each generation 
 ٧٠ children in each generation 
  uniform crossover  with p٠٫=٠۵ 
  mutation: 
          -  probability = ٠.٧۵ 

-  mutation methods: swap mutation  
selection metode : Tournament  selection  with          

       Tournament size=٢ 
The highest fitness ١/y(b) we achieved was 
١/y(bbest) = ٠:٠٢١۵۵۶. This bit string bbest was not equal 
to any original clustering-string, but had a very low 
distance (Hamming distance) to the first of the 
originals. 
That’s why we decided to name the clustering bit 
string with The minimal Hamming distance compared 



with the individual reaching the highest fitness (bbest) 
where y(bbest) = min(y(b))٨b ٢ X) the result of the 
procedure. The first original clustering-string, which 
represents, according to our results, the most 
appropriate clustering, is the one shown in figure ١, 
which shows obviously the correct partitioning of the 
intertwined spirals problem. After some more trials we 
got even more results leading again to the first original 
clustering bit string with even higher fitnesses , i.e. 
١/y(bbest) =٠.٠۴٠٩۶ with only four different bits inside 
the compared strings. 

۴.  Conclusions 
In this paper we have presented a scheme driven 
by evolutionary computation to overcome the 
problem of comparing results achieved by 
qualitatively different clustering algorithms. We 
have produced a couple of noisy copies of a 
given two-class clustering problem. Because 
it was a two-class problems, which means that 
we were clustering all data into two clusters, the 
clustering results could be represented as binary 
bit strings , so they were compatible to the format 
genetic algorithms work on. Taking the whole lot of 
clustering results as input to the genetic algorithm we 
assumed to let it find the scheme of the right clustering 
for the presented problem. 
At the end we achieved reproducible result, for 
many runs of the genetic algorithm were leading to the 
same original clustering-bit string which of course 
points to the most appropriate clustering algorithm. It 
is, according to our results, possible to find the 
appropriate clustering for a given problem, but it is 
also possible to identify the most suitable clustering 
algorithm for an unknown dataset. Last but not least it 
seems to be feasible, to classify clustering problems in 
comparison to their appropriate clustering algorithm.  
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