
OPERATIONAL
SEMANTICS OF THE SEAL CALCULUS

Zhang Jing,1 Zhang Li-Cui2,∗ Guo De-Gui1

1 College of Computer Science and Technology,
Key Laboratory of Symbolic Computation and Knowledge Engineering
of Ministry of Education of P.R.China, Jilin University,Changchun,130012,P.R.China

zhangjing99@jlu.edu.cn,guodg@jlu.edu.cn

2College of Communication Engineering, Jilin University, Changchun, 130012, P.R.China

zlc6796@sohu.com

Abstract As a distributed process calculus with localities and mobility of computational
entities, Seal calculus is playing an important role in expressing key features
such as security and mobility of Internet programming directly. However, little
implementation technique proposed for the calculus, partly due to the complica-
tion of mobile computation, which fusions three important techniques: concur-
rency, distribution and mobility at the same time. The abstract machine PSN for
a distributed implementation of the Seal calculus is presented. In PSN the log-
ical structure of a seal system and its physical distribution are separated which
induces a more simple and clear implementation. Moreover, an operational se-
mantics description of the Seal calculus based on PSN is given.

Keywords: Mobile computation, Seal Calculus, abstract machine, operational semantics

1. Introduction

The Seal calculus[1,2] is a mobile process calculus aims to model program-
ming large scale distributed systems over open networks, with the goal of be-
ing able to express the essential properties of Internet programs. Seal can be
seen as a framework for exploring the design space of security and mobility
features[3,4]. However, at present the research on Seal calculus is still at the
stage of perfecting its theory, less work has been done on its application and
implementation, only one implementation is mentioned in [5]. Moreover, the
existed formal semantics of the Seal all base on the reduction semantics, which
is easy to understand but difficult to implement. The problems of implementa-

∗Corresponding author: zlc6796@sohu.com

2

tion have been a restraint to the development of programming languages based
on Seal and to experimentation of Seals on concrete examples. In our opinion,
implementation is one of the aspects of Seal that most need investigations.

One of the difficulties of a distributed implementation of a hierachical lan-
guage such as Mobile Ambient[6] and Seal is that each movement operation
involves ambients(or seals) on different hierachical levels. In [7,8] locks are
used to achieve a synchronization among all ambients(or seals) affected by a
movement. In a distributed setting, however, this lock-based policy can be
expensive. Many programming languages and abstract calculi use abstract ma-
chine to describe their semantics. Abstract machine as an intermediate stage
increases portability and maintainability of compilers[9,10]. [11] present a dis-
tributed abstract machine of SA(Safe Ambients Calculus), the main idea is to
mode each seal as a network node, communication between these nodes base
on asychcronous message transimission, which simulates the communication
and mobility of seals. The contribution in [11] motivates our work. However,
The Seal calculus differs from Ambients in two important ways. First, Ambi-
ents use subjective mobility(an agent moves itself) in Seal mobility is objec-
tive(an agent is moved by its context). Second, in Seal both communication
and mobility between seals base on channels, which are named computational
structures used to synchronize processes, in Ambients communication is local
and mobility bases on capabilities. So neither the definition nor the implemen-
tation of the abstract machine of Seal will be defferent from the Ambients’. In
[12], we give a simple distributed implementation of the Seal Calculus, which
is the basis of this paper.

The paper is organized as follows. Section 2 introduces the formal syntax
and relevant properties of the abstract machine PSN. Section 3 presents the
operational semantics of Seal based on the states transition, finally, a transition
example is proposed to verify the correctness of the semantics. The last section,
concludes the paper with a discussion of future work.

2. Abstract Machine

We call the abstract machine defined in this paper PSN(Pervasive Seal Net-
work), which separates between the logical and the physical distribution of the
seals. The logical distribution is given by the tree structure of the seal syn-
tax(a seal can contain other seals). The physical distribution is given by the
association of a location with each seal.

In PSN, a seal nameds is represented as a located seal(h : s[P], f, ss),
whereh is the location, or site, at which the seal runs,f is the location of the
parent of the seal, and P is the proceses local to the seal and ss is the location
set of the subseals. While the same name may be assigned to several seals, a
location univocally identifies a seal; it can be thought of as its physical address.

Operational Semantics 3

A tree of seals is rendered, in PSN, by the parallel composition of the seals
in the tree. In this sense, the physical and the logical topology are separated:
the space of the physical locations is flat, and each location hosts at most one
seal, each seal resides at a distinct physical location(this gives us the physical
distribution), but each seal knows the location at which its parent and its sons
reside(this gives us the logical topology). For instance, an Seal terms1[P1 ‖
P2 ‖ s2[Q1] ‖ s3[Q2]], whereP1 andP2 are the local processes ofs1, and
Qi(i = 1, 2) is a local process ofmi(i.e., mi has no subseals), becomes in
PSN:

h : s1[P1|P2], root, {k1, k2}) ‖ (k1 : s2[Q1], h, {}) ‖ (k2 : s3[Q2], h, {})
whereh, k1, k2 are different location names, root is a special name indicating
the outermost location, and‖ is the parallel composition of located seals. Since
seals may run at different physical sites, they communicate with each other by
means of asynchronous messages.

We usem,n, . . . to range over names,h, k, . . . to range over locations,
p, q, . . . to range over both names and locations. The syntax of PSN is shown
as follows: A term of PSN, a net, is the parallel composition of agents and

Net A ::= 0 | A1 |‖ A2(νp)A | Agent | h(MsgBody)
Agent Agent ::= (h : n[P], k, SS)
Process P ::= 0 | P1 | P2 | (νn)P | M.p | M [P] ‖ wait.P | {MsgBody}
Action M ::= x | n | x̄η(~y) | xη(λ~y) | x̄η 〈~y〉 | xη 〈~y〉
Message MsgBody ::= write(c, x) | Okwrite | send(c, η, n) |

moveAck | move(h) | Okmove(h)

messages, with some names possibly restricted. An agent is a located seal.
Located seal is the basic unit of PSN, and represent seals of Seal with their
local processes. Messages include two kinds. One kind is the messages that
the requestor sends to the receiver, to ask for services; Another kind is the
acknowledagement messages that the services provider sends back to the re-
questor to notify the completion of services and to execute the next operation.
The syntax of the processes inside located seals is similar to that of processes
in Seal. The only additions are: the prefix wait.P, which appears in a seal when
this has sent a request but has not received an answer yet; and the requests,
which represent messages received from the requestors and not yet served. We
use A to range over nets.

For example, for the following Seal program:
s1[cs3(y).ys2(x).0 ‖ s3[c̄↑(c1).0] ‖ s2[c̄1

↑(z).0]]
the PSN is:
{〈r.rn[0], rp, {`1}〉 ,
〈`1 : s1[rcomm(c, y, son(s3)).rcomm(y, x, son(s2)).0], r, {`2, `3}〉 ,
〈`2 : s2[scomm(c1, z, fath).0], `1, {}〉 ,
〈`3 : s3[scomm(c, c1, fath).0], `1, {}〉}

4

3. Operational Semantics

Operational Semantics Based On Transitions

Our operational semantics is based on a transition system. In this kind of
formalism the semantics of a program is given in terms of the transitions which
can make from one configuration to another. The execution of a program is
then modeled by a sequence of configurations with transitions, starting from a
suitable initial configuration. The transitions are given by a transition relation
7→⊂ Conf × Conf (whereConf is the set of configurations).

In transition systems, a configuration usually consists of something like the
statement that is to be executed, plus some extra state information. The con-
figuration that we shall use will have a rather complex structure. Formally we
define the set ofConf by:

Conf{〈li : si[cli], fi, SSi〉}, i ∈ 1 . . . n
Whereli denotes the location of the seal,si denotes the name of the seal,cli

denotes the actionlist of sealsi, fi denotes the location of the parent seal and
SSi denotes the location set of the subseals.

According to the above definition of configurationčňthe initial configuration
is the final transformation result of Seal source program P to PSN, i.e,
conf0 = PSN(P) = {〈l1 : s1[cl1], f1, SS1〉 , . . . , 〈ln : sn[cln], fn, SSn〉}
the terminal configuration is the state that all the parallel process’ action queues
become empty, i.e.,

conf] = {〈l1 : s1[0], f1, SS1〉 , . . . , 〈ln : sn[0], fn, SSn〉}
Now, having an intuitive understanding of the meaning of the programming

constructs, it is rather easy to give the corresponding transition rules.
Throughout this section, whenever we write〈α〉.ρ, we require that〈α〉 /∈ ρ.

(1) local communication
(T1) (h : n[scomm(c, y, loc).cl′1 . rcomm(c, x, loc).cl′2 . cl], f, SS) . ρ′
7→ (h : n[cl′1 . cl′2{y/x} . cl], f, SS) . ρ′

(2) local son to parent communication
(T2) (l1 : n1[scomm(c, x, fath).cl′1 . cl1, f1, SS1) . ρ′
7→ (l1 : n1(wait.cl′1 . cl1 . fath{write(c, x)}], f1, SS1) . ρ′

(if fath = f1)
(T3) (l2 : n2[rcomm(c, y, son(n1)).cl′2 . {write(c, x), l1}], f2, SS2) . ρ
7→ (l2 : n2[cl′2{x/y} . cl2 . l1{Okwrite}], f2, SS2) . ρ′

(if l1 ∈ SS2)
(T4) (l1 : n1[wait.cl′1 . cl1 . {Okwrite, fath}], f1, SS1) . ρ′
7→ (l1 : n1[cl′1 . cl1], f1, SS1) . ρ′ (if fath = f1)

(3) parent to son communication
(T5) (l1 : n1[scomm(c, x, son(n2)).cl′1 . cl1], f1, SS1) . ρ′
7→ (l1 : n1[wait.cl′1 . cl1 . l2{write(c, x)}], f1, SS1) . ρ′

(if l2 = Loc(n2) andn2 ∈ SS1)

Operational Semantics 5

(T6) (l2 : n2[rcomm(c, y, fath).cl′2 . cl2 . {write(c, y), l1}], f2, SS2) . ρ′
7→ (l2 : n2[cl′2{x/y} . cl2 . l1{Okwrite}], f2, SS2) . ρ′ (if f2 = l1)
For space limitation, we omit the transition rules of process movement,

which include local movement, parent to son movement and son to parent
movement. These rules are similar to the above communication transition
rules.

An Execution Sample of PSN

For the sample presented in section 3, we apply the transition rules in sub-
section 4.1, we get the following transition steps:
S1: Supposeρ = ρ1 . ρ2 . ρ3, there

ρ1 = {〈l1 : s1[rcomm(c, y, son(s3)).rcomm(y, x, son(s2)).0], r,
{l2, l3}〉},

ρ2 = {〈l2 : s2[scomm(c1, z, fath).0], l1, {}〉},
ρ3 = {〈l3 : s3[scomm(c, c1, fath).0], l1, {}〉}, then

S2: After transition T2,ρ becomes
ρ1 . {〈l2 : s2[wait.0 . l1{write(c, z)}], l1, {}〉} . {〈l3 : s3[wait.0
.l1{write(c, c1)}], l1, {} 〉}

S3: Using T3 transition, becomes
{〈l1 : s1[rcomm(c1, x, son(s2)).0 . l3{Okwrite} . {write(c1, z), l2}],
r, {l2, l3} 〉} . {〈l2 : s2[wait.0}], l1, {}〉} . {〈l3 : s3[wait.0}], l1, {}〉}

S4: Using T4 transition, becomes
{〈l1 : s1[rcomm(c1, x, son(s2)).0 . {write(c1, z), l2}], r, {l2, l3}〉}
.{〈l2 : s2[wait.0}], l1, {}〉} . {〈l3 : s3[0}], l1, {}〉}

S5: Using T3, T4 transition continously, we get
{〈l1 : s1[0], r, {l2, l3}〉}. {〈l2 : s2[0], l1, {}〉}. {〈l3 : s3[0], l1, {}〉}

4. Conclusion and future work

We have presented an abstract machine for the Seal calculus, and discussed
briefly its operational semantics based on transition system. The main orig-
inality of our abstract machine lies in the fact that an operational semantics
based on transition system is given not a reduction one, this work facilitates
the implementation and constitutes the first step in a potential series of more
and more refined abstract machies, getting us closer to a provably correct im-
plementation of the Seal calculus.

Finally let us point out some directions in which further work could be done.
First, it would certainly be worthwhile to see whether for this kind of language
also a denotational semantics can be developed, and possibly proved equivalent
to the current operational semantics. Maybe the representation used here for
parallel processes could be adapted to denotational semantics in such a way
that a clear description is possible. Also this kind of operational semantics

6

could be a good basis to explore the possibility of automatic implementation
of mobile computation languages by means of a interpreter.

References
[1] J.Vitek and G.Castagna. Seal: A Framework for secure Mobile Computations.In Internet

Programming Languages, number 1686 in Lectures Notes in Computer Science, pages 47-
77. Springer-Verlag, 1999.

[2] G.Castagna and F.Zappa. The Seal Calculus Revisited.In Proceedings 22th FST-TCS, num-
ber 2556 in LNCS. Springer, 2002.

[3] M.Bugliesi and G.Castagna. Secure safe ambients.In Proc. of POPL’01, pages 222-235.
ACM Press, 2001.

[4] F.Nielson, H.Riis Nielson, R.R.Hansen, and J.G.Jensen. Validating firewall in mobile am-
bients.In Proc.CONCUR’99, number 1664 in Lecture Notes in Computer Science, pages
463-477. Springer-Verlag, 1999.

[5] J.Vitek and G.Castagna. Towords a calculus of secure mobile computations.Proceedings
Workshop on Internet Programming Languages. Chicago, Illinois, USA, Lectures Notes in
Computer Science 1686, Springer, 1998.

[6] L.Cardelli and A.D.Gordon. Mobile Ambients.In M.Nivat, editor,Foundations of Software
Science and Computational Structures, number 1378 in LNCE, Springer-Verlag, 1998, 140-
155.

[7] L.Cardelli, Ambit.http://www.luca.demon.co.uk/Ambit.html.1997.
[8] L.Cardelli. Mobile ambient synchronization,Technical Report1997-013, Digital SRC, 1997.
[9] Stephan Diehl. A generative methodology for the design of abstract machines.Science of

Computer Programming. 2000. 38. 125-142.
[10] G.Berry and G.Boudol. The chemical abstract machine.Theoretical Computer Science,

vol.96,1992.
[11] D.Sangiorgi and A.Valente. A Distributed Abstract Machine for Safe Ambients.In Pro-

ceedings of the 28th ICALP, volume 2076 of LNCS. Springer-Verlag, 2001.
[12] Zhang Jing, Zhang Li-Cui and Jin Cheng-Zhi. A Distributed Implementation for the Seal

Calculus.To Appear in Proceedings of the First International Symposium on Pervasive Com-
putations and Applications(SPCA06). Urumchi, Xin Jiang, P.R.China.

