
A Neuro-Fuzzy System for Automatic Multi-Level Image Segmentation using
KFCM and Exponential Entropy

G. Raghotham Reddy1, E. Suresh2 , S.Uma Maheshwar3 and M. Sampath Reddy4

 1,2,3 Lecturer, Kakatiya Institute of Technology and Science, Warangal, A. P., India
 4 Lecturer, Ramappa Engineering College, Mahabubabad, A. P., India

 E-mail: grr_ece@ yahoo.com

Abstract

An auto adaptive neuro-fuzzy segmentation and edge detection architecture is presented. This system consists of a
multilayer perceptron (MLP)-like network that performs image segmentation by adaptive thresholding of the input
image using labels automatically pre-selected by kernel based fuzzy clustering technique. The proposed architecture
is feed forward, but unlike the conventional MLP the learning is unsupervised. The output status of the network is
described as a fuzzy set. Fuzzy entropy is used as a measure of the error of the segmentation system as well as a
criterion for determining potential edge pixels. Exponential entropy was employed to overcome the drawbacks of
using conventional logarithmic entropy. The proposed system is capable to perform automatic multilevel segmentation
of images, based solely on information contained by the image itself. No a priory assumptions whatsoever are made
about the image (type, features, contents, stochastic model, etc.). Such an “universal” algorithm is most useful for
applications that are supposed to work with different (and possibly initially unknown) types of images. The proposed
system can be readily employed, “as is,” or as a basic building block by a more sophisticated and/or application-
specific image segmentation algorithm. By monitoring the fuzzy entropy relaxation process, the system is able to
detect edge pixels

Keywords: Image Segmentation, Adaptive Tresholding, Error backpropagation Neural Network System and
Kernal Fuzzy C-means Clustering algorithm.

1.0 ADAPTIVE NEURO-FUZZY SYSTEM WITH
KFCM

The Adaptive Neuro-Fuzzy system consists of a multilayer
neural network that performs adaptive, multilevel
thresholding of the image using labels automatically pre
selected by a fuzzy clustering technique. The learning
technique employed is self-supervised allowing, therefore,
automatic adaptation of the NN. The output status of the
network is described as a fuzzy partition. Fuzzy entropy is
used as a measure of the error of the system as well as a
criterion for determining potential edge pixels. Given an
input image, the system is forced to evolve toward a
minimum fuzzy entropy state in order to obtain image
segmentation. Pixels most affected by the consecutive
training iterations (due to the amount of their contribution
to the fuzzy entropy of the system) are labeled as edge
pixels.

1.1 Description of Adaptive Neuro-Fuzzy System
Block diagram of the system is shown in fig. 1. Labels are
found by applying the KFCM algorithm to the image
histogram. Then, the information about the labels is
employed to build the network activation and error
functions. The input to a neuron in the input layer is
normalized between [0-1], proportionally to the gray value
of the correspondent pixel. The image information is first
propagated forward using (1) to get the output status of the
network. The output value of each neuron lies in the
interval [0-1]. Then, the output error is calculated and back
propagated to update the weights [(4)]. Training continues
either until a minimum error or until a maximum number of
iterations reached. The output of the system at this stage
constitutes the segmented image. Integrating (summing) the
thresholded (binared) differences between the outputs at
consecutive epochs yield the edge image.

Fig. 1: Block Diagram of Neuro Fuzzy System

.1.1 Error Function Definition Block
the objective error

NN) block, the fuzzy

architecture is shown in Fig. 3. It consists of an input layer,

 defined as

1
The purpose of this block is to provide
function to be used by the adaptive thresholding block.
First, the cluster validity block determines the number of
objects in the input image, then the fuzzification block
divides the input image into that number of fuzzy sets using
KFCM as shown in Fig. 2(b), and then the error function
definition block generates error function by determining the
contribution of each gray level to the fuzzy entropy of the
partition as shown in Fig. 2(c). The cluster validity block
automatically determines the number of objects in the input
image, for this it iterates the KFCM algorithm for a range
of hypothesized number of clusters and chooses best option
based on a cluster validity measure (e.g., the partition
coefficient and the partition entropy).

1.1.2 Adaptive Thresholding Block
This contains the Neural Network (
entropy calculation block and NN tuning block. Its inputs
are the input image and the error function determined by
the block (A), and its output is the segmented image.
Neural Network: The neural network block performs
adaptive thresholding of the input image. The network

an output layer and at least one hidden layer. Each layer
consists of M x N neurons, every neuron corresponding to
an image pixel. Each neuron in the one layer is only
connected to the corresponding neuron in the previous layer
and the neurons in its d-th order neighborhood.

A neighborhood system over a M x N lattice L is

{ }LjiLnn dd ∈⊂=),(:

where , called the d-th order neighborhood of is

ijj

ere are no connections between neurons in the same
e NNs’ weights cannot be randomly initialized or

ij
d (i, j), ijn

such that
 ;,(dni ∉)

 d
ijnlk ∈),(

Th
layer. Th
they will alter the input image. In this work, all weights
were initialized to 1, but it is also possible to initialize the
weights using some kind of weighting window within the
neighborhood of each pixel.

Fig. 2: (a) Histogram of the Panda image (b) Partion found by
KFCM (c) Error function

Activation func ivation function
was used to allow more than two stable states of the neuron

utput. The multi-sigmoid function is defined as (Fig.4).

here
 u step function;

tion: A multi-sigmoid act

o

w

 kθ thresholds;

ach sigmoid, will constitute
 labels;

 ky target level of e
 the systems’
 0θ steepness parameter;

d size of the neighborh ood, as defined in the

he thre ues are obtained from the
rror function, as the gray levels with the maximal and with

the minimal levels of fuzziness respectively. Because the

 previous section

T sholds and the target val
e

range of the neuron input levels depend on the number of
neurons in the previous layer to which it is connected (the
size of the neighborhood), the threshold values are adapted
to reflect this dependency (by multiplying them by d2, the
number of input links).

Fig. 3: Neural Network

Fig. 4: Multi Sigmoid Activation function

Training: The back-propagation algorithm is employed for
training. As we the first
layer receives the input, and will apply it to the Linear

 apply input image the neurons in

Combiner and the Activation Function and produce the
output this output, will become the input for the neurons in
the next layer. So the next layer will feed forward the data,
to the next layer. And so on, until the last layer is reached
We compare the desired and actual output compute the
error as the difference between desired output and actual
output. Once we decided what adjustment we need to do to
the neurons in the output layer, we back propagate the
changes to the previous layers of the network. Indeed, as
soon as we have desired outputs for the output layer, we
make adjustment to reduce the error (the difference
between the output and the desired output). Adjustment will
change weights of the input nodes of the neurons in the
output layer. The weights are updated as follows:

[] ()*()*()(22
11/)(

1
0

dyxudyxuyyyxf kkkx
kk
k

−−−×)1
1 e

⎟
⎠
⎞

+k ⎝
⎜
⎛ +

−
= −−−−

−∑ θθ

 total input to the th neuron;

ight of link from neuron in one layer to

 ex

 o he

where

iI i

jiw we i

 neuron j in the n t layer;

io utput of the i th neuron in t previous layer;

E error in t e network’s output h (relative to the

 desired target image);
 η learning rate.

Note: For simplicity 1-D indexes in the above equations
fit the 2-D NN is straightforward.

for the output and the other layers respectively

Defuzzification: The output of the neural network is
itially obtained in terms of the gray levels, which are then

“fuzzyfied” in order to determine the error. In the idle case

his subsystem is based on the assumption that the edge
us values in the image, i.e.,
n to the fuzzy entropy of the

ve Neuro-Fuzzy system is implemented in
nment. The execution time of the Neural

Network training epochs depends on the image size and the

the segmented image enhancing

ound. As we can observe in the
gures followed. The effect of using KFCM, Selecting

are used, the extension to

For a multi-sigmoid as previously defined

and the equations for jiw∆ become

in

when the network converges with no error at all (E=0), the
outputs have only values who’s membership values are “1”
or “0,” defuzzification is not necessary. When the network
does not converge completely (whether stopped
intentionally or not), the fuzzification of the output image
does not result in merely crisp membership values. The
information about the membership values of the pixels
might be useful for further processing, depending on the

application at hand. If crisp labeling is required, a
defuzzification stage must be added. For display purposes,
the simplest defuzzification method is thresholding the
fuzzy partition, so that each pixel is uniquely assigned to
the class in which it has the highest membership value.

1.1.3 Edge Detection Block

)2(

⎪
⎪

⎩

⎪
⎨

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−

∂⎠⎝ ∂
=

∑ sotherlayero
I
o

w
I
o

o
E

Io
w

i
j

j
k kj

k

k

k

jj
ji

η

T
pixels have the most ambiguo
they give the largest contributio
output image at each iteration. Thus, these pixels are those
that undergo the changes during the training/tuning of the
system. Here, monitoring the changes that take place in the
pixels’ values between two consecutive iterations and
integrating these changes over the whole training period
obtain the edge image.

2.0 RESULTS

The Adapti
MATLAB enviro

neighborhood size. Theoretically, the number of required
epochs depends on the error and activation functions
(which intern depend on the nature of the data), on the
learning rate and on the required precision. Practically, the
training may usually be stopped after about ten epochs. In
terms of runtime memory requirements, these systems
require four floating-point matrices of size NMd **2
(neighborhood size multiplied by the size of the image) are
needed for the two layers of weights and their
corresponding updates, and three floating-poin f
size NM * (the image size) are needed to store the three
layers of the network (input, hidden, and output).

2.1 Segmentaion Results

t matrices o

The output of the system is
the object over the backgr
fi
thresholds by second derivative of the image histogram and
considering exponential form of fuzzy entropy as error
function can be seen very clearly. They give smoother
image which is more robust to noise. Moreover by
employing KFCM instead of FCM makes it applicable to
wider range of images, i.e., for those having spherical and
non spherical edges. Use of Kfcm made the Adaptive
Neuro-Fuzzy system robust to some real life ‘complication’
like the addition of noise, and changing illumination
conditions. Kfcm is also capable of handling uneven sized
clusters.

⎪
⎧ ∂

⎟
⎟
⎞

⎜
⎜
⎛ ∂
− routputlayeo

oE
i

jη

∆

)3(
j

o∂
)(1 jnnj

j oyyo
I

−−=
∂ −

()

()
)4(

1⎪
⎪
⎨

⎧

−−⎟
⎟
⎠

⎞
⎜
⎜
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−

−
⎠

⎞

⎝

⎛ ∂

=

−∑ ijnnjkj
k

k

k

in
j

ji

ooyyow
I
o

o
E

oyE

w

η

1
⎪
⎪ −⎟

⎟
⎜
⎜

∂
− − jnj oyo

o
η

⎩ ⎝ k

∆

Fig. 5: (a) Original Image (b) Segmented image

.2 Convergence Analysis

he convergence of the adaptive threshold system of
daptive Neuro-Fuzzy system is visualized in Fig.6. This

 the output image after 2 and

he edge detection subsystem of Neuro-fuzzy system was
found to perform poorly compared to some of the better

isting today, sometimes even

2

T
A
figure shows the histogram of
50 and 100 training epochs (when applied to the Panda
image), clearly indicating the convergence of the pixel
values to the chosen labels.

2.3 Edge Detection Results

T

edge detected algorithms ex
worse than the classical, gradient type edge detector
(Prewitt, Sobel, etc.). Fig.7 below shows the results of the
edge detection subsystem of Neuro-Fuzzy system applied to
the cameraman image, compared to the results of the Sebel
operator.

Fig. 7: (a) Edge image of Neur y System (b) Edge image
using Sobe rators

o-fuzz
l ope

Fig. 6: Convergence Analysis

3.0 CONCLUSION

he proposed adaptive neuro fuzzy system has been proven
to be efficient than many other existing methods of

not require any priori assumptions of
Adaptive Neuro-Fuzzy System for automatic Image

 and Edge Detection”, IEEE Trans. On
Fuzzy Systems, Volume_10(No. 2), pp. 247-252.

[2]
earson

Education, New Delhi .

T

segmentation. It does
the input. Employing KFCM made the system applicable
wider range of images. As you can observe in the results it
worked for spherical edges in panda and non spherical
edges in cameraman image. Use of exponential entropy
yielded smoother images at less number of iterations as
compared to logarithmic form .It is also robust to noise.
Increase of neighbourhood results in more loss of details.
This system can also be extended for edge detection but this
isn’t as efficient as general canny or sobel operators

REFERENCE

[1] Victor Boskovitz and Hugo Guterman (2002), “An

Segmentation

 Rafael C. Gonzalez and Richard E. Woods,
(2002), “Digital Image Processing”, P

