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Abstract 

An auto adaptive neuro-fuzzy segmentation and edge detection architecture is presented. This system consists of a 
multilayer perceptron (MLP)-like network that performs image segmentation by adaptive thresholding of the input 
image using labels automatically pre-selected by kernel based fuzzy clustering technique. The proposed architecture 
is feed forward, but unlike the conventional MLP the learning is unsupervised. The output status of the network is 
described as a fuzzy set. Fuzzy entropy is used as a measure of the error of the segmentation system as well as a 
criterion for determining potential edge pixels. Exponential entropy was employed to overcome the drawbacks of 
using conventional logarithmic entropy. The proposed system is capable to perform automatic multilevel segmentation 
of images, based solely on information contained by the image itself. No a priory assumptions whatsoever are made 
about the image (type, features, contents, stochastic model, etc.). Such an “universal” algorithm is most useful for 
applications that are supposed to work with different (and possibly initially unknown) types of images. The proposed 
system can be readily employed, “as is,” or as a basic building block by a more sophisticated and/or application-
specific image segmentation algorithm. By monitoring the fuzzy entropy relaxation process, the system is able to 
detect edge pixels 

Keywords: Image Segmentation, Adaptive Tresholding, Error backpropagation Neural Network System and 
Kernal Fuzzy C-means Clustering algorithm. 

 

 

1.0  ADAPTIVE NEURO-FUZZY SYSTEM WITH 
KFCM 

The Adaptive Neuro-Fuzzy system consists of a multilayer 
neural network that performs adaptive, multilevel 
thresholding of the image using labels automatically pre 
selected by a fuzzy clustering technique. The learning 
technique employed is self-supervised allowing, therefore, 
automatic adaptation of the NN. The output status of the 
network is described as a fuzzy partition. Fuzzy entropy is 
used as a measure of the error of the system as well as a 
criterion for determining potential edge pixels. Given an 
input image, the system is forced to evolve toward a 
minimum fuzzy entropy state in order to obtain image 
segmentation. Pixels most affected by the consecutive 
training iterations (due to the amount of their contribution 
to the fuzzy entropy of the system) are labeled as edge 
pixels.   

1.1  Description of Adaptive Neuro-Fuzzy System 
Block diagram of the system is shown in fig. 1. Labels are 
found by applying the KFCM algorithm to the image 
histogram. Then, the information about the labels is 
employed to build the network activation and error 
functions. The input to a neuron in the input layer is 
normalized between [0-1], proportionally to the gray value 
of the correspondent pixel. The image information is first 
propagated forward using (1) to get the output status of the 
network. The output value of each neuron lies in the 
interval [0-1]. Then, the output error is calculated and back 
propagated to update the weights [(4)]. Training continues 
either until a minimum error or until a maximum number of 
iterations reached. The output of the system at this stage 
constitutes the segmented image. Integrating (summing) the 
thresholded (binared) differences between the outputs at 
consecutive epochs yield the edge image. 



 

  
Fig. 1: Block Diagram of Neuro Fuzzy System 

 

.1.1  Error Function Definition Block 
the objective error 

NN) block, the fuzzy 

architecture is shown in Fig. 3. It consists of an input layer, 

 defined as  
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The purpose of this block is to provide 
function to be used by the adaptive thresholding block. 
First, the cluster validity block determines the number of 
objects in the input image, then the fuzzification block 
divides the input image into that number of fuzzy sets using 
KFCM as shown in Fig. 2(b), and then the error function 
definition block generates error function by determining the 
contribution of each gray level to the fuzzy entropy of the 
partition as shown in Fig. 2(c). The cluster validity block 
automatically determines the number of objects in the input 
image, for this it iterates the KFCM algorithm for a range 
of hypothesized number of clusters and chooses best option 
based on a cluster validity measure (e.g., the partition 
coefficient and the partition entropy). 

1.1.2  Adaptive Thresholding Block 
This contains the Neural Network (
entropy calculation block and NN tuning block. Its inputs 
are the input image and the error function determined by 
the block (A), and its output is the segmented image. 
Neural Network: The neural network block performs 
adaptive thresholding of the input image. The network 

an output layer and at least one hidden layer. Each layer 
consists of M x N neurons, every neuron corresponding to 
an image pixel. Each neuron in the one layer is only 
connected to the corresponding neuron in the previous layer 
and the neurons in its d-th order neighborhood.  
 
A neighborhood system over a M x N lattice L is
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they will alter the input image. In this work, all weights 
were initialized to 1, but it is also possible to initialize the 
weights using some kind of weighting window within the 
neighborhood of each pixel. 

 



 

 

 

 

Fig. 2: (a) Histogram of the Panda image (b) Partion found by 
KFCM (c) Error function 

Activation func ivation function 
was used to allow more than two stable states of the neuron 

utput. The multi-sigmoid function is defined as (Fig.4). 
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T sholds and the target val
e

range of the neuron input levels depend on the number of 
neurons in the previous layer to which it is connected (the 
size of the neighborhood), the threshold values are adapted 
to reflect this dependency (by multiplying them by d2, the 
number of input links). 

 

Fig. 3: Neural Network 

 

Fig. 4: Multi Sigmoid Activation function 

Training: The back-propagation algorithm is employed for 
training. As we  the first 
layer receives the input, and will apply it to the Linear 

 apply input image the neurons in

Combiner and the Activation Function and produce the 
output this output, will become the input for the neurons in 
the next layer. So the next layer will feed forward the data, 
to the next layer. And so on, until the last layer is reached 
We compare the desired and actual output compute the 
error as the difference between desired output and actual 
output. Once we decided what adjustment we need to do to 
the neurons in the output layer, we back propagate the 
changes to the previous layers of the network. Indeed, as 
soon as we have desired outputs for the output layer, we 
make adjustment to reduce the error (the difference 
between the output and the desired output). Adjustment will 
change weights of the input nodes of the neurons in the 
output layer. The weights are updated as follows: 
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 neuron j in the n t layer; 

io utput of the i th neuron in t  previous layer;

E   error in t e network’s output h (relative to the  
    
    

    desired target image); 
       η     learning rate. 

Note: For simplicity 1-D indexes in the above equations 
fit the 2-D NN is straightforward. 

 

for the output and the other layers respectively 

 

Defuzzification: The output of the neural network is 
itially obtained in terms of the gray levels, which are then 

“fuzzyfied” in order to determine the error. In the idle case 

his subsystem is based on the assumption that the edge 
us values in the image, i.e., 
n to the fuzzy entropy of the 

ve Neuro-Fuzzy system is implemented in 
nment. The execution time of the Neural 

Network training epochs depends on the image size and the 

 
the segmented image enhancing 

ound. As we can observe in the 
gures followed. The effect of using KFCM, Selecting 

are used, the extension to 

For a multi-sigmoid as previously defined  

 

 

and the equations for jiw∆ become 
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when the network converges with no error at all (E=0), the 
outputs have only values who’s membership values are “1” 
or “0,” defuzzification is not necessary. When the network 
does not converge completely (whether stopped 
intentionally or not), the fuzzification of the output image 
does not result in merely crisp membership values. The 
information about the membership values of the pixels 
might be useful for further processing, depending on the 

application at hand. If crisp labeling is required, a 
defuzzification stage must be added. For display purposes, 
the simplest defuzzification method is thresholding the 
fuzzy partition, so that each pixel is uniquely assigned to 
the class in which it has the highest membership value. 

 
1.1.3  Edge Detection Block 
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pixels have the most ambiguo
they give the largest contributio
output image at each iteration. Thus, these pixels are those 
that undergo the changes during the training/tuning of the 
system. Here, monitoring the changes that take place in the 
pixels’ values between two consecutive iterations and 
integrating these changes over the whole training period 
obtain the edge image. 
 

2.0  RESULTS  

The Adapti
MATLAB enviro

neighborhood size. Theoretically, the number of required 
epochs depends on the error and activation functions 
(which intern depend on the nature of the data), on the 
learning rate and on the required precision. Practically, the 
training may usually be stopped after about ten epochs. In 
terms of runtime memory requirements, these systems 
require four floating-point matrices of size NMd **2  
(neighborhood size multiplied by the size of the image) are 
needed for the two layers of weights and their 
corresponding updates, and three floating-poin f 
size NM * (the image size) are needed to store the three 
layers of the network (input, hidden, and output).  
 
 
2.1  Segmentaion Results 

t matrices o

The output of the system is 
the object over the backgr
fi
thresholds by second derivative of the image histogram and 
considering exponential form of fuzzy entropy as error 
function can be seen   very clearly. They give smoother 
image which is more robust to noise. Moreover by 
employing KFCM instead of FCM makes it applicable to 
wider range of images, i.e., for those having spherical and 
non spherical edges. Use of Kfcm made the Adaptive 
Neuro-Fuzzy system robust to some real life ‘complication’ 
like the addition of noise, and changing illumination 
conditions. Kfcm is also capable of handling uneven sized 
clusters. 
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Fig. 5: (a) Original Image (b) Segmented image 

 
 

.2  Convergence Analysis 

he convergence of the adaptive threshold system of 
daptive Neuro-Fuzzy system is visualized in Fig.6. This 

 the output image after 2 and 

he edge detection subsystem of Neuro-fuzzy system was 
found to perform poorly compared to some of the better 

isting today, sometimes even 

2

T
A
figure shows the histogram of
50 and 100 training epochs (when applied to the Panda 
image), clearly indicating the convergence of the pixel 
values to the chosen labels.  

 

2.3 Edge Detection Results 

T

edge detected algorithms ex
worse than the classical, gradient type edge detector 
(Prewitt, Sobel, etc.). Fig.7 below shows the results of the 
edge detection subsystem of Neuro-Fuzzy system applied to 
the cameraman image, compared to the results of the Sebel 
operator. 

 

 

 

 

Fig. 7: (a) Edge image of Neur y System (b) Edge image 
using Sobe rators 
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Fig. 6: Convergence Analysis 
 

 
 



 

3.0  CONCLUSION 

he proposed adaptive neuro fuzzy system has been proven 
to be efficient than many other existing methods of 

not require any priori assumptions of 
Adaptive Neuro-Fuzzy System for automatic Image 

 and Edge Detection”, IEEE Trans. On 
Fuzzy Systems, Volume_10(No. 2), pp. 247-252. 

[2]
earson  

Education, New Delhi                     .

T

segmentation. It does 
the input. Employing KFCM   made the system applicable 
wider range of images. As you can observe in the results it 
worked for spherical edges in panda and non spherical 
edges in cameraman image. Use of exponential entropy 
yielded smoother images at less number of iterations as 
compared to logarithmic form .It is also robust to noise. 
Increase of neighbourhood results in more loss of details. 
This system can also be extended for edge detection but this 
isn’t as efficient as general canny or sobel operators 
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