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Abstract:     Document clustering methods can be used to structure large sets of text or hypertext documents. 
Suffix Tree Clustering has been proved to be a good approach for documents clustering. However, 
the cluster merging algorithm of Suffix Tree Clustering is based on the overlap of their document 
sets, which totally ignore the similarity between the non-overlap parts of different clusters. In this 
paper, we introduce a novel cluster merging approach which will combines the cosine similarity 
and overlap percentage. Using this method, we can get a better clustering result and a comparative 
small number of clusters.  
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1. INTRODUCTION 

Document clustering has been studied intensively recently because of its wide 
applicability in areas such as web mining, search engines, information retrieval, and 
topological analysis. Clustering documents into groups can organize large bodies of text for 
efficient browsing and searching. A lot of different text clustering algorithms have been 
proposed in the literature, including Agglomerative Hierarchical Clustering (AHC) [5], 
Scatter/Gather [2] and K-Means [4].  

Zamir and Etzioni presented a Suffix Tree Clustering(STC) algorithm on document 
clustering in[3]. STC is a linear time clustering algorithm that is based on a suffix tree which 
efficiently identifies sets of documents that share common phrases. STC treats a document as 
a string, making use of proximity information between words, at the same time, it is 
incremental and has an O(n) time complexity.  

In Zamir and Etzioni’s Suffix Tree Clustering algorithm, after the suffix tree construction, 
the overlap of the different clusters is calculated, and the clusters are merged if they have 
more than 50% overlap. This merging method is fast, however, it is too simple to yield the 
best merging result because it totally neglects the similarity between the non-overlap parts. 
Considering such situation:  two different clusters have much related and similar documents, 
but none of the documents are contained in both clusters, that is, no overlap between the two 
clusters.  According to Zamir and Etzioni’s merging algorithm, the two clusters have no 
chance be merged.  This obvious is not a good choice because we actually hope the two 
clusters can be merged due to their much related documents. Another problem is this simple 
merging algorithm can result in too many clusters, usually hundreds even thousands of 
clusters, with only a small amount of documents in each of it.  This really frustrates the 
browsers to locate the desired information.  

In this paper, we present a novel approach which introduces the well-known cosine 
similarity algorithm into the cluster merging process. In our algorithm, the similarity of the 
two clusters is not only decided by the overlap of their documents, but also by the similarity 
of the non-overlap parts. This is quite natural, because the related and similar documents 
should also contribute to the similarity between two clusters. The following experiments show 
that this algorithm has more accuracy that the original one. The new algorithm also has 
another advantage: with adjusting to some parameters, we can control the number of final 
clusters we get. This is very useful in some cases. 

The rest of this paper is organized as follows. Section 2 briefly introduces Suffix Tree 
Clustering and its cluster merging algorithm. In section 3, we introduce our novel cluster 
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merging algorithm which combines the overlap percentage and cosine similarity. An 
experimental evaluation was conducted, and section 4 reports its major results. A 
summarization of the paper is presented in section 5.  

2. RELATED WORKS   

As a data structure, suffix tree has been studied a lot in information retrieval field [3], 
[13],[15]. A suffix tree is a trie data structure built over all the suffixes of the text. Each node 
of the suffix tree represents a group of documents and a phrase that is common to all of them. 
The label of the node represents the common phrase.  In Zamir and Etzioni’s paper[3], they 
found that using suffix tree to cluster web search results yielded better results than other 
clustering methods. STC algorithm has several steps:  

(1) Document Preprocessing, including stemming, html tags and stopwords filtering out. 
(2) Suffix Tree Construction. Construct a suffix tree for the document collections. 
(3) Cluster Merging. Merge similar clusters according to their similarity measure.  
(4) Clusters Ranking. Rank the cluster according to their relevance to the query.  
In the cluster merging step, Zamir and Etzioni defined a similarity measure between 

clusters based on the overlap of their document sets. The two clusters are merged only when 
they have enough overlap. Despite its simplicity and fastness, this method is not accurate 
enough to merge all related clusters. In this paper, we propose a new similarity measure 
algorithm which takes more factors into account.  

3. A NEW DOCUMENT CLUSTERING ALGORITHM 

Before constructing the suffix tree and getting the documents clusters for merging, a 
preprocessing step must be done. First, any non-textual information such as HTML-tags and 
punctuation is removed from the documents. Stopwords such as “I”, “am”, “and” are also 
removed. Second, All capitals in the documents are converted to lowercase. Then, the 
remaining words are stemmed by removing prefixes/suffixes and reducing plural to singular. 
Through the above preprocessing, we get rid of all noise and produce a cleaned document for 
further processing. 

The construction of a suffix tree can be viewed as the creation of an inverted index of 
phrases for the document collections. This process can be done in linear time with the size of 
the document set, and can be done incrementally as the documents are being read. At each 
node, after construction, we get a list of documents that correspond exactly to that particular 
node, as well as an index that allows us to locate phrases in the document.  

After construction of the suffix tree, we should merge the related clusters based on its 
similarity. In [3], Zamir and Etzioni defined a similarity measure between clusters based on 
the document overlap.  Given the two base clusters Bm and Bn, with sizes |Bm| and |Bn| 
respectively, and |Bm∩Bn| representing the number of documents common to both clusters. 
The two clusters are merged only when: 
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There are two disadvantage of Equation 1:  
First, it is not suitable for two clusters when | Bm |/| Bn | is too big or too small. Here is an 

example: Bm contains 100 documents and Bn contains 10 documents, all of which are totally 
overlapped by the documents in Bm. That is, Bn is a subset of Bm. Obviously we should merge 
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Bn into Bm. But if we follow Equation 2, | Bm∩Bn|/| Bm | =0.1 <0.5, we cannot merge them 
together.  

Here, we employ a better equation to calculate the overlap of two different clusters.  
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Second, it neglects the similarity between the non-overlapped parts. Consider the flowing 
situation: There are several different but very similar and related documents located in two 
clusters, and no overlap between the two clusters. 

Due to all the documents in the two clusters are similar and related, we should merge them 
together. However, using the equation 1, they will never be merged because there is no 
overlap between them. That is, in Zamir and Etzioni’s merging algorithm, only the same 
documents located in different clusters can contribute to the similarity measure. Similar but 
different documents cannot contribute anything to the merging decision. This is obvious 
inappropriate.  

To solve this problem, we introduce the well-known cosine similarity to the merging 
algorithm and employ the cosine similarity to evaluate the similarity between different 
clusters. Given Bm’ = Bm- | Bm∩Bn| ,  Bn’ = Bn -| Bm∩Bn | ,  the similarity between Bm’ and 
Bn’ is:  
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Where Bj= (w1,j, w2,j......wt,j) is the term frequency vector representation of cluster Bj and t 
is the total number of index term in the system. wij is the weight of term ki in cluster j. We 
calculate wij using the TFIDF algorithm. 
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Where N is the total number of clusters and ni is the number of clusters in which the index 
term ki appears.  freqi,j is the number of times the term ki appears in the text of the cluster Bj. 
Max freqj is maximum frequency of all terms which are mentioned in the text of the cluster Bj. 

Using this representation, we can calculate the similarity between the non-overlap parts of 
the two clusters based on the similarity of their term vectors.  

After we get the overlap of the two clusters from Equation 2 and the similarity of the 
non-overlap parts from Equation 3, we can calculate the overall normalized similarity of the 
two clusters:  

Sm,n= α*Overlap(Bm, Bn)+ (1-α)* Sim(Bm’, Bn’)                              (5) 

And merge them only if:  

Sm,n >k                                                               (6)  
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Bm’ and Bn’ is the non-overlap parts of the Cluster Bm and Cluster Bn,  that is, Bm’ = Bm- 
|Bm∩Bn| ,  Bn’ = Bn -| Bm∩Bn |. In our experiments, we assigned α=0.6.  Changing the value 
of k in Equaion 6 can adjust the number of merged clusters we get. A smaller k means the 
merging condition is easy to satisfy and can result in less merged clusters. While a bigger k 
set a more restrictive condition and can result in more merged clusters. So, we can adjust the 
parameter k to make the merging algorithm suitable to different fields.  

The whole merging process is not a single step, but an iterative process described as 
follow: 

1. We compute the pairwise similarity among all clusters according to Equation 5.  
2. We select the maximum Sm,n (Sm,n >k) and merge the cluster Bm and cluster Bn. 
3. Step 1 and step 2 is iteratively executed until maximum Sm,n≤ k. 

The initial time complexity of the cluster merging process is O(n2). To keep the cost of 
this process constant, we don't calculate the similarity of all base clusters, but only calculate 
the n top ranking base clusters. We found that n=500 was sufficient to ensure good 
performance.  The ranking score of clusters is determined by the number of documents and 
their ranking position. 
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Here p is the number of the documents contained in the cluster, and e is a positive 
parameter to adjust the ranking position in relation to the score. A bigger e can weaken the 
effect of the ranking position, while a smaller e can strengthen the ranking position’s effect. 
We considered e=2 to be a good choice.  

Ri is the position of the document in the documents list returned and ranked by the search 
engine. In Equation 7, the highly ranked documents in the ranking list always contribute more 
to the score than the lower ranked ones. We take the document ranking into account because 
we think the number of the documents contained in the cluster cannot reflect the importance 
of the cluster very well only by itself. For example, one cluster might contain the top 15 
documents returned by the search engine, while another cluster contains the 1001th to 1020th 
documents in the ranking list. If we only consider the number of the documents, we can easily 
conclude that the second cluster is more important than the first one, which, in this example, 
is obviously wrong.  

The cost of "cleaning" the documents is obviously linear with the collection size. The cost 
of organizing documents into the suffix tree is also linear with the collection size. And due to 
only a fix number of clusters is merged, the overall time complexity of this whole process is 
linear with regard to the collection size. 

4. EXPERIMENTS  

We conduct several experiments to validate the effectiveness of the new algorithm. 

4.1 The number of merged clusters with different α and k 

In this experiment, we submitted 10 different queries to Google[11] search engine and get 
10 different searching results, each of which has 2000 document snippets in it. Then, for each 
result, we preprocessed it and constructed the suffix trees.  After that, we merged the suffix 
tree clusters using the algorithm described in this paper. First, we chose 0.5 as the value of k 
in Equation 6 and   merged the base clusters with different value of α. When the 10 cluster 
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merging processes were finished, we calculated the average number of final merged clusters. 
The results are shown in Figure 1.   
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Figure 1.  The average number of final merged clusters for different α  

From Figure 1, we can see that we get the least number of merged clusters when the value 
of α is 0.6.  In our experiments, 0.6 is a good value for α due to its effectiveness on merging 
similar clusters together. 

We also calculated the average number of merged clusters for different k in Equation 6. 
The results are shown in Figure 2. 
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Figure 2. The average number of final merged clusters for different k 
 
From Figure 2, we can see that the value of k can dramatically affect the number of the 

merged clusters. A smaller k can result in a small number of the merged clusters, but the 
similarity between the documents in the merged cluster is not strong. With a bigger k we can 
get very similar documents in the same merged cluster, however, the number of the merged 
clusters is usually large. Here, we think k=0.5 is a good choice. 

4.2 Precision Evaluation  

There are many approaches to precision evaluation. To compare with the traditional STC 
algorithm, we adopted the same evaluation process described in [3]. 

The process was as follows: “We first defined 10 queries by specifying their topics(e.g., 
“black bear attacks”) and their descriptions(e.g. “we are interested in accounts of black bear 
attacks on  humans or information about how to prevent such attacks” ). The words 
appearing in each query’s topic field were used as keywords for a web search using Google 
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search engine. We generated 10 collections of 200 documents from the results of these 
queries. We manually assigned a relevance judgment (relevant or not) to each document in 
these collections based on the query’s descriptions. 

In our experiment we applied the various clustering algorithm to the document collection 
and compared their effectiveness for information retrieval.”[3] 

We used the results of the clustering algorithms to reorder the list of documents returned 
by the search engine. We ordered the clusters according to which labels seemed most relevant 
to the information needed. In this step we looked only at the cluster labels, ignoring the 
contents of each cluster. We then defined the ordering of the results as the ordering of the 
documents in the highest rank cluster, followed by the documents in the next ranked cluster, 
and so on through the lowest ranked cluster. Documents appearing in multiple clusters were 
removed from all but the highest ranked cluster in which they appeared, so as to avoid 
duplicates. 

After reordering the documents with clusters, we considered only the top 20 documents in 
the reordered list and used them to calculate the percentage of relevant documents.  

As seen in Figure 3, the STC algorithm with the cluster merging method described in this 
paper is more precise than all the others. The top 20 documents cover more than 40% relevant 
documents. The reason for this is mostly because we used a more accurate merging algorithm 
in this paper.   
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Figure 3. The average precision of the clustering algorithms and of the original ranked 
list returned by Google.  

 

5. CONCLUSION  

We reformed the Suffix Tree Cluster merging algorithm by combining the overlap 
percentage of two clusters and the similarity between the non-overlap parts of two clusters. 
First, we revise the overlap percentage calculation method to better reflect the overlap 
between two clusters. Then, we employ the cosine similarity to calculate the similarity 
between the non-overlap parts.  Our preliminary results are encouraging and show a better 
result in helping the user to locate the desired documents more easily. 
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