
Evaluation of Ontologies and DL Reasoners

Muhammad Fahad, Muhammad Abdul Qadir and Syed Adnan Hussain
Shah

Mohammad Ali Jinnah University, Islamabad, Pakistan.

mhd.fahad@gmail.com, {aqadir,adnan}@jinnah.edu.pk

Abstract: Ontology driven architecture has revolutionized the inference system
by allowing interoperability and efficient reasoning between heterogeneous multi-
vendors systems. Sound reasoning support is highly important for sound semantic
web ontologies which can only be possible if state-of-the-art Description Logic
Reasoners were capable enough to identify inconsistency and classify taxonomy in
ontologies. We have discussed existing ontological errors and design anomalies,
and provided a case study incorporating these errors. We have evaluated consis-
tency, subsumption, and satisfiability of DL reasoners on the case study. Experi-
ment with DL reasoners opens up number of issues that were not incorporated
within their followed algorithms. Especially circulatory errors and various types of
semantic inconsistency errors that may cause serious side effects need to be de-
tected by DL reasoners for sound reasoning from ontologies. The evaluation of
DL reasoners on Automobile ontology helps in updating the subsumption, satisfi-
ability and consistency checking algorithms for OWL ontologies, especially the
new constructs of OWL 1.1.

1 Introduction

Ontology has revolutionized the inference system by allowing interoperability
between heterogeneous multi-vendors systems and semantic web applications
[17]. Well formed ontologies can only furnish the semantics for emerging seman-
tic web and provide reasoning capability that they require. Due to their expressive
power and reasoning capabilities, they are being used in wide range of applica-
tions and knowledge based systems [1]. Like any other dependable component of
a system, Ontology has to go through a repetitive process of refinement and
evaluation during its development lifecycle so that they can serve their purposes
and make their user safer in the application.

Several approaches for evaluation of taxonomic knowledge on ontologies are
contributed in the research literature. Ontologies can be evaluated by considering
design principles [6,7], maintenance issues [2] , use in an application [13] and
predictions from their results, peer review [16] , comparison with a golden stan-

18 Muhammad Fahad, Muhammad Abdul Qadir and Syed Adnan Hussain Shah

dard [10] or reference ontology library [13] or manipulation of data [3]. These
approaches evaluate the ontologies from different frame of references that enable
better reasoning support for fulfillment of sound semantic web vision.

Sound semantic web ontologies have to create balance between computational
complexity needed for reasoning mechanisms and expressive power of the con-
cepts defined [11]. Initial ontologies RDF and RDFS [1], provide very limited ex-
pressive power that is not very rich to represent semantics related with a domain.
OWL and its newly formed specie OWL 1.1 provide much expressive power and
sparked the inference engines by providing the suitable reasoning support. Though
the DL reasoners were long before the existence of OWL ontologies, but new dia-
lects of OWL ontologies need some more reasoning and inference services. These
languages especially OWL 1.1 opens up new challenges [21] for DL reasoners to
check subsumption, consistency and satisfiability from ontologies developed for
sound semantic web environment.

One of the benchmark for DL reasoners is presented by Pan with realistic on-
tologies to check the time taken by these reasoners [20]. The experiment was dealt
with 135 ontologies, and DL reasoners timeout and aborted operations were
counted and reported. The experiment helped out in optimizing the algorithms fol-
lowed by DL reasoners. The one conducted by us differs and is unique as it helps
out identifying deficiencies and incompleteness in their algorithms.

This paper is based on our line of research [4,5,12,14,15] on evaluation of on-
tologies. In [17, 18], we presented the ontology evaluation framework for OWL
ontologies and extended the ontology error taxonomy initially formed by Gomez.
In this paper, we provide a case study on design anomalies and taxonomic errors.
We have formed Automobile ontology and seeded all types of errors to promote
learning and understandability of ontological errors. This ontology also acts as a
test data for evaluation of Description Logic Reasoners, and helps in finding some
of the deficiencies in the algorithms followed by them.

Rest of the paper is organized as follows: section 2 presents the types of onto-
logical error and their classification. The same section builds the case study of
Automobile ontology with these errors. Section 3 discusses the evaluation of state-
of-the-art DL reasoners and our experiment details. Section 4 concludes the paper.

2 Taxonomic Errors and Design Anomalies

Gomez-Perez [6,7,8] identified three main classes of taxonomic errors that
might occur when modelling the conceptualization into taxonomies. These classes
of errors are Inconsistency, Incompleteness and Redundancy. We have extended
these classes by incorporating more errors in each class by evaluation of online
ontologies [17,18]. We seeded these errors in automobile ontology, as shown in
Fig.1, which acts as benchmark for DL reasoners later on. Table 1 and 2 provide

Evaluation of Ontologies and DL Reasoners 19

the important axioms for understanding the ontological errors. The top level de-
scription of errors in automobile ontology is provided by subsections.

Table 1. Important axioms of concepts in Automobile ontology.

Owner � � drives MotorVehicle
Passenger � � involves MotorVehicle � � hasreserved MotorVehicle
VehicleOwner � owns � 1 MotorVehicle
NoOwner � owns = 0 MotorVehicle
Owner2Vehicle � owns = 2 PassengerVehicle
Owner4Vehicle � owns = 4 PassengerVehicle
OwnerManyVehicle � owns � 3 PessangerVehicle � owns� 8 PassengerVehicle
Ownerlessthan3Vehicle � owns � 2 PassengerVehicle
OwnerSomeVehicle � � owns PassengerVehicle
OnwerAllVehicle � � owns PassengerVehicle
BikeOwner � � hasBike Bike
Bike � HondaMotorBike U YamahaMotorBike
Men � Peson � � hasGender Male
Women � Peson � � hasGender Female

Table 2. Disjointness and Property information in Automobile ontology.

Property(Domain, Range) Disjoint Axioms (Class1 ōClass2)
owns(VehicleOwner, MotorVehicle) Driver ōPassenger
owns(Owner, MotorVehcicle) MotorVehicle ō Plane
drives(Driver, MotorVehicle) PIA ō Truck
hasReserved(Driver, MotorVehicle) Male ō Female
involves(Pessenger, MotorVehicle) Coach ōVan
Functional hasBike(BikeOnwer, Bike) Pejjero ōJeep
hasRegisterationNo(MotorVehicle, RegisterationNo) YamahaMotorBike ō HondaMotorBike

2.1 Inconsistency Errors
There are mainly three types of errors that cause inconsistency and contradic-

tions during the reasoning from the ontology. These are Circulatory errors, Parti-
tion errors and Semantic inconsistency errors.

Circulatory errors occur when a class is defined as a subclass or superclass of
itself at any level of hierarchy in the ontology [7]. In automobile ontology, circula-
tory error on concept Class_2 occurs as it is specified as subclass of Class_5.
OWL ontologies provide constructs to form property hierarchies by specifying
MobilinkNo as subproperty of MobileNo and MobileNo as subproperty of Con-
tactNo. Circulatory error in property hierarchy [17] occurs by specifying Mo-
bilinkNo as subproperty of ContactNo.

20 Muhammad Fahad, Muhammad Abdul Qadir and Syed Adnan Hussain Shah

Partition errors occur while decomposition of concept into many subconcept. A
common class/property/instance in disjoint decomposition and partition error oc-
curs when ontologists create the class/instance (or property) that belongs to vari-
ous disjoint classes (or disjoint properties) [7]. In automobile ontology, MiniVan
as subclass of two disjoint classes Coach and Van creates inconsistency of this
type. Likewise common property in disjoint decomposition of properties creates
inconsistency in property hierarchy [17]. We seeded instance myMiniVan123
which serves as common instance between disjoint classes. Moreover when con-
cepts are disjoint then they should not use the properties of their disjoint concepts.
Concept Passenger (� � hasReserved MotorVehicle) being disjoint with Driver
constitutes this type of inconsistency by using property hasReserved.

External instance in exhaustive decomposition occurs when one or more in-
stances of base class do not belong to any of the subclasses [7]. In automobile on-
tology, we seeded SaudiAirWays as instance of Plane that does not belong to PIA
and BritishAirWays subclasses.

Semantic Inconsistency errors occur when ontologists make an incorrect class
hierarchy by classifying a concept as a subclass of a concept to which it does not
really belong [7]. For example the ontologist classifies the concept Airbus as a
subclass of the concept Train. Or the same might have happened when classifying
instances. We identify mainly three reasons due to which incorrect semantic clas-
sification originates [5] and categorized Semantic inconsistency errors into three
subclasses.

Weaker domain specified by subclass error [5] occurs when classes that repre-
sent the larger domain are kept subclasses of concept that possess smaller domain.
In automobile ontology, the semantic inconsistency of this type occurs as more
generalized concept OnwerSomeVehicle � � owns PassengerVehicle is created as
a subclass of the concept Onwer4vehicle � owns = 4 PassengerVehicle.

Domain breach specified by subclass error [5] occurs when a subclass adds
more features but the additional features are violating the existing features of their
superclasses. In automobile ontology, OwnerManyVehicle � owns � 3 Pes-
sangerVehicle � � 8 PassengerVehicle concept as a subclass of Onwer4Vehicle
concept breaches the domain.

Disjoint domain specified by subclass error [5] occur when ontologists specify
concept as subclass of a concept having disjoint domain. In automobile ontology,
NoOwner concept as a subclass of OnwerVehicle concept, Onwer2Vechicle and
Onwerlessthan3Vehicle as subclasses of Onwer4Vehicle shows the disjoint do-
main specified by subclass error. Moreover, Women � Person � � hasGen-
der.Female as a subclass of Men � Person � � hasGender.Male, as Male is dis-
joint with Female constitutes the error of this category. Similarly, these semantic
inconsistency errors can be applied same to the instances of superclasses and sub-
classes to check whether they have conformance with each other.

2.2 Incompleteness Errors

Evaluation of Ontologies and DL Reasoners 21

Sometimes ontologists classify concepts but overlook some of the important in-
formation about them. Such incompleteness often creates ambiguity and lacks rea-
soning mechanisms. The following subsections give the overview of incomplete-
ness errors.

Incomplete Concept Classification error [7] occurs when ontologists overlook
some of the concepts present in the domain while classification of particular con-
cept. In automobile ontology, Plane concept is incompletely classified by ignoring
SaudiAirways, ShaheenExpress, etc, types of planes.

Partition Errors occur when ontologist omits important axioms or information
about the classification of concept. Disjoint Knowledge Omission error [7] occurs
when ontologists classify the concept into many subclasses, but omits disjoint
knowledge axiom between them. In automobile ontology, disjoint axiom between
PassengerVehicle and LoaderVehicle is ignored. We experienced catastrophic re-
sults by disjoint knowledge omission between user and Administrator in Ac-
cess_Policy ontology [14]. Similarly disjoint axiom between properties create in-
completeness error in property partitioning [17].

Exhaustive knowledge Omission occurs when ontologists do not follow the
completeness constraint while decomposition of concept into subclasses [7]. In
automobile ontology, ontologist models the Coach, and Van classes as disjoint
subclasses of PassengerVehicle concept, but does not specify that whether this
classification forms an exhaustive decomposition.

For powerful reasoning and enhanced inference, OWL ontology provides some
tags that can be associated with properties of classes [1]. OWL functional and in-
verse-functional tags associated with properties indicate how many times a do-
main concept can be associated with range concept via a property. Sometimes on-
tologists do not give significance to these property tags and do not declare
datatype or object properties as functional or inverse-functional. As a result ma-
chine can not reason about a property effectively leading to serious complications
[15]. In automobile ontology, hasRegisterationNo as an object property between
MotorVehicle and RegisterationNo is an example of functional object property due
to the fact that every subject Vehicle has only one registeration number. Ignoring
Functional tag with RegisterationNo allows property to have more than one values
leading to inconsistency. One of the main reason for such inconsistency is that on-
tologist has ignored that OWL ontology by default supports multi-values for
datatype property and object property. In this example, hasRegisterationNo prop-
erty also needs to be specified as inverse-functional property as it uniquely identi-
fies the subject.

Sufficient knowledge Omission Error (SKO) [12] occurs when concept has
only Necessary description, i.e., defined only by the basic criteria of subclass-of,
and does not have sufficient description that elaborates the characteristics of con-
cept and defines the context in terms of other concepts. In automobile ontology,
PIA and BritishAirWays concepts need sufficient knowledge to interpret and dis-
tinguish them while reasoning.

2.3 Redundancy Errors

22 Muhammad Fahad, Muhammad Abdul Qadir and Syed Adnan Hussain Shah

Redundancy occurs when particular information is inferred more than once
from the relations, classes and instances found in ontology. The following are the
types of redundancies that might be made when developing taxonomies.
Redundancies of SubclassOf error [7] occur when ontologists specify classes that
have more than one SubclassOf relation directly or indirectly. In automobile on-
tology specifying Jeep as a subclass of PassengerVehicle and MotorVehicle, cre-
ates redundancy as PassengerVehicle is already a subclassOf MotorVechicle. Here
indirect SubclassOf relation exists between Jeep and MotorVehicle creating re-
dundancy of this type. Similarly, redundancy of SubpropertyOf can exist while
building property hierarchies [17]. Redundancies of InstanceOf relation [7] occur
when ontologists specify instance myJeep as an InstanceOf MotorVehicle and
PassengerVehicle concepts.

Identical formal definition of classes, properties or instances may occur when
ontologist defines different (or same) names of two classes, properties or instances
respectively, but provides the same formal definition. In automobile ontology,
Driver � � drives MotorVehicle and Owner � � drives MotorVehicle specifies
identical formal definition of classes.

Redundancy of Disjoint Relation (RDR) [12] occurs when the concept is ex-
plicitly defined as disjoint with other concepts more than once. In automobile on-
tology, disjoint axiom between PIA and Truck creates RDR error as MotorVehicle
and Plane concepts were already disjoint with each other. Fig. 1 shows the class
hierarchy of Automobile ontology.

Fig. 1. Class hierarchy of Automobile ontology.

Evaluation of Ontologies and DL Reasoners 23

2.4 Design Anomalies in Ontologies
Besides taxonomic errors, Baumeister and Seipel [2] identified some design

anomalies that prohibit simplicity and maintainability of taxonomic structures
within ontology. These do not cause inaccurate reasoning about concepts, but
point to problematic and badly designed areas in ontology. Identification and re-
moval of these anomalies should be necessary for improving the usability, and
providing better maintainability of ontology.

Property Clumps: The repeated group of datatype properties (name, model,
color, price, etc.) in class MotorVehicle and Bike create property clump.

Chain of Inheritance: In automobile ontology, Class_1 to Class_5 creates
chain of inheritance as these concepts have no appropriate descriptions in the on-
tology except inherited child.

Lazy Concepts: A leaf concept that is not instantiated and never used in the
application is called the lazy concept. In automobile ontology we have created
many lazy concepts, Truck concept is one of the example of this kind.

Lonely Disjoints: We moved the concept Pejjero from the PassengerVehicle
hierarchy somewhere in the other hierarchy, creating lonely disjoint with Jeep
concept.

3 Description Logic Reasoners and Ontology Errors

In this section, we are evaluating the state-of-the-art Description Logic (DL)
reasoners by providing them the ontology seeded with the errors described in
above section 2. The evaluation of DL reasoners helps us to build more powerful
algorithms so that reasoning from ontologies can be enhanced to fulfill the goals
of semantic web. The experiment was performed on three state-of-the-art DL rea-
soners Pellet, FaCT++, and Racer. The salient features of these reasoners and ex-
periment details are explained below.

Racer: Racer was implemented in Lisp to demonstrate the tableaux calculus
for SHIQ, and follows the multiple optimization strategies for better reasoning
support including dependency-directed backtracking, transformation of axioms,
model caching and merging, etc, [19].

Pellet: Pellet employs reasoning on SHIN (D) and SHON (D) and implemented
in Java with the strategies of TBox partitioning, nominal support, absorption, se-
mantic branching, lazy unfolding, dependency directed backjumping [21].
Datatype reasoning, individual reasoning, and optimization in Abox query answer-
ing makes it more attractive for sound semantic web applications.

FaCT++: FaCT++ [22] an improved version of FaCT [23] employs tableaux
algorithms for SHOIQ description logic and implemented in C++ but has very
limited user interface and services as compared to other reasoners. The strategies
followed are absorption, model merging, told cycle elimination, synonym re-
placement, ordering heuristics and taxonomic classification.

24 Muhammad Fahad, Muhammad Abdul Qadir and Syed Adnan Hussain Shah

Experiment Discussion: The automobile ontology that was seeded with vari-
ous types of errors is taken as the test data. These errors and anomalies were
seeded very intelligently so that performance of consistency, subsumption, satisfi-
ability, and tableaux algorithm efficiency can be measured. Due to space limita-
tions, the only necessary errors were discussed above and here also we discuss our
high level findings from experiment. The experiment was conducted on
FaCT++1.1.11 (uploaded date: March 28, 08), Pellet 1.5.1 (uploaded date: Oct 26,
07) and Racer 1.9.0 versions.

Fig. 2. Results produced by FaCT++ Reasoner

By consistency checking on automobile ontology, only some of the errors were
detected. The inconsistent concepts (Passenger, MiniVehicle, Owner2Vehicle,
NoOwner, Onwerlessthan3Vehicle) were detected by all the three DL reasoners.
These inconsistent concepts are described along the errors above. Inconsistency of
type common property in disjoint decomposition of properties is detected by only
FaCT++. Redundancy of subclassOf error on concept Jeep was detected and in
classified taxonomy superclass MotorVehicle was removed, as shown in classify
taxonomy results ‘Removed Motorvehicle’ in left down side of Figure 2. But some
very important situations were not detected highlighting their deficiencies. One of
the important aspects during reasoning from ontologies is that it should detect cir-
cles from taxonomies and get himself out from traversing circles again and again.
According to Gomez [7], circle in hierarchy is error and should be detected and
removed. This experiment highlights deficiency in their algorithms that they are
not capable of handling circulatory errors in class hierarchies and property hierar-
chies. Circulatory error at Class_2 was detected and all the subsumptions were
reasoned as shown in the inferred class hierarchy by FaCT++ DL reasoners in

Evaluation of Ontologies and DL Reasoners 25

Figure 3, and added superclasses for all the classes in the circle as shown in Figure
2 (down left side). We again performed this experiment by making a circulatory
error of distance 10. This time the inferred class hierarchy looks like a network of
subsumption relations, making infeasible reasoning. Again performing the same
experiment with a circulatory error with long chain of inheritance made the three
DL reasoners crash. Imagine the consequences of circulatory error in ontology de-
veloped for critical application where strong reasoning with shorter answer time is
required.

Fig. 3. Inferred class hierarchy

Besides circulatory, these reasoners have not identified various types of seman-

tic inconsistency errors. Especially concept Women as a subclass of Men, with ex-
plicit description about disjointness between Male and Female can be detected as
they also specify disjoint domains, but was not detected. Domain breach by speci-
fying OnwerManyVehicle as subclass of Onwer4Vehicle, and OnwerSomeVehicle
as weaker domain specified by subclass errors were also not detected.

Incompleteness as informal errors were not detected, as we know that incom-
pleteness can only be manually detected by tester’s domain knowledge and analy-
sis of spot spots of ontologies by previous knowledge or populated data. Func-
tional Property omission with hasRegisterationNo allowed creating several
inconsistent registration numbers for a single vehicle. Disjoint knowledge omis-
sion, sufficient knowledge omission and exhaustive knowledge omission errors
were also not detected.

26 Muhammad Fahad, Muhammad Abdul Qadir and Syed Adnan Hussain Shah

Although the redundancy of subclass-of is detected and the arc from concept
Jeep to concept MotorVehicle was deleted in the inferred hierarchy, but this was
not always desirable. Sometimes that arc (between concept c and its ancestor)
would be the actual one and the other arc (between concept c and its parent) would
be the erroneous, but DL reasoners always does the same. Other types of redun-
dancy like redundancy of disjoint relations, identical formal definitions were also
not detected. On basis of common property owns, concept VehicleOwner is in-
ferred as subclass of Owner concept and the hierarchy of VehicleOwner is moved
to it. The overall experiment concludes that current state-of-the-art DL reasoners
should be upgraded with respect of these errors and anomalies. Sound reasoning
support is highly important for sound semantic web environment which can only
be possible if these reasoners were capable enough identifying inconsistencies in
ontologies.

5 Conclusion

Ontology driven architecture has revolutionized the inference system by allow-
ing interoperability between heterogeneous multi-vendors systems. We have iden-
tified that accurate ontologies free from errors enable more intelligent interopera-
bility, provide better reasoning mechanisms, improve the accuracy of ontology
mapping and merging and combined use of them can be made possible. We have
discussed existing ontological errors and design anomalies, and provided a case
study that promotes understanding about these. Experiment with DL reasoners
opens up number of issues that were not incorporated within their followed algo-
rithms. Especially circulatory errors and various types of semantic inconsistency
errors may cause serious side effects, and need to be detected by DL reasoners for
sound reasoning from ontologies. The evaluation of DL reasoners on Automobile
ontology helps in updating the subsumption, satisfiability and consistency check-
ing algorithms for OWL ontologies, especially the new constructs of OWL 1.1.

References

1. G. Antoniou, and F.V. Harmelen, A Semantic Web Primer. MIT Press Cambridge, ISBN 0-
262-01210-3, 2004.

2. J. Baumeister, and D.S. Seipel, Owls–Design Anomalies in Ontologies, 18th Intl. Floida Arti-
ficial Intelligence Research Society Conference (FLAIRS), pp 251-220, 2005.

3. C. Brewster et al, Data driven ontology evaluation. Proceedings of Intl. Conf. on Language
Resources and Evaluation, Lisbon, 2004.

4. M. Fahad, M.A. Qadir, M.W. Noshairwan, N. Iftikhar,. DKP-OM: A Semantic Based Ontol-
ogy Merger. In Proc. 3rd International conference on Semantic Technologies, I-Semantics 5-
7 September 2007, Journal of Universal Computer Science (J.UCS). 2007a

Evaluation of Ontologies and DL Reasoners 27

5. M. Fahad, M.A. Qadir, W. Noshairwan, Semantic Inconsistency Errors in Ontologies. Proc.
of GRC 07, Silicon Valley USA. IEEE CS. pp 283-286, 2007b.

6. A. Gomez-Perez, Some ideas and examples to evaluate ontologies. KSL, Stanford Univer-
sity., 1994.

7. A. Gomez-Perez, M.F. Lopez, and O.C. Garcia, Ontological Engineering: With Examples
from the Areas of Knowledge Management, E-Commerce and the Semantic Web. Springer
ISBN:1-85253-55j-3, 2001.

8. A. Gomez-Perez et al., Evaluation of Taxonomic Knowledge on Ontologies and Knowledge-
Based Systems. Intl. Workshop on Knowledge Acquisition, Modeling and Management.,
1999.

9. C. Jelmini, and S. M-Maillet, OWL-based reasoning with retractable inference”, In RIAO
Conference Proceedings 2004.

10. A. Maedche and S. Staab, Measuring similarity betwe- en ontologies. Proc. CIKM 2002.
LNAI vol. 2473, 2002.

11. D. Nardi, et al. 2000. The Description Logic Handbook: Theory, Implementation, and Appli-
cations.

12. W. Noshairwan, M.A. Qadir, M.A., M. Fahad, Sufficient Knowledge Omission error and Re-
dundant Disjoint Relation in Ontology. InProc. 5th Atlantic Web Intelligence Conference
June 25-27, France, 2007a.

13. R. Porzel, R. Malaka, A task-based approach for ontology evaluation. ECAI Workshop Ont.
Learning and Population, 2004.

14. M.A. Qadir, W. Noshairwan, Warnings for Disjoint Knowledge Omission in Ontologies.
Second International Conference on internet and Web Applications and Services (ICIW07).
IEEE, p. 45, 2007a.

15. M.A. Qadir, M. Fahad, S.A.H. Shah, Incompleteness Errors in Ontologies. Proc. of Intl GRC
07, USA. IEEE Computer Society. pp 279-282, 2007b.

16. K. Supekar, A peer-review approach for ontology evaluation. Proc. 8th Intl. Protégé Confer-
ence, Madrid, Spain, July 18–21, 2005.

17. M. Fahad, and M.A. Qadir, A Framework for ontology evaluation. 16th Intl. Proceeding of
Conceptual Structures. July 2008, France. Vol-354, pages 149-158, 2008a.

18. M. Fahad, M.A. Qadir, M.W. Noshairwan, Ontological Errors: Inconsistency, Incomplete-
ness and Redundancy. (to appear) In proc. 10th International Conference on Enterprise In-
formation Systems (ICEIS’08). June 2008. Barcelona, Spain, 2008b.

19. V. Haarslev, R. M¨oller, Racer system description. In Gor´e, R., Leitsch, A., Nipkow, T.,
eds.: International Joint Conference on Automated Reasoning, IJCAR’ 2001, June 18-23,
Siena, Italy, Springer-Verlag (2001) 701–705

20. Z. Pan, Benchmarking DL Reasoners Using Realistic Ontologies. Bell Labs Research and
Lehigh University, 2007

21. B. Parsia, E. Sirin, Pellet: An owl dl reasoner. In: Proc. International Semantic Web Confer-
ence. (2005)

22. I. Horrocks, U. Sattler, A tableaux decision procedure for SHOIQ. In: Proceedings of Nine-
teenth International Joint Conference on Artificial Intelligence. (2005)

23. I. Horrocks, The FaCT System. International conference. on Analytic Tableaux and Related
Methods (TABLEAUX'98), pp 307-312,vol 1397, Springer-Verlag, 1998

