
Requirement Driven Service Composition: An 
Ontology-Based Approach 

Guangjun Cai1,2 

 
1 The Key Laboratory of Intelligent Information Processing, Institute of Computing 

Technology, Chinese Academy of Sciences, Beijing 100190, China 
2Graduate University of Chinese Academy of Sciences, Beijing 100049, China 

caiguangj@mails.gucas.ac.cn 

Abstract. Service-oriented computing is a new computing paradigm that 
utilizes services as fundamental elements for developing applications. Service 
composition plays a very important role in it. This paper focuses on service 
composition triggered by service requirement. Here, the processes modeling the 
requirement should be treated in parallel with describing service and a same 
ontology should be adopted for allowing the understanding between the 
requirement and services. An effect-based approach has been proposed based 
on our previous work on service description. This approach could be promising 
for tackling the challenge of services composition.  

Keywords: Service-oriented computing, environment ontology, service 
composition, service discovery 

1   Introduction 

Service-oriented computing (SOC) is a new computing paradigm that utilizes 
services as fundamental elements for developing applications [1]. Web service 
composition, which aims at solving complex problems by combining available basic 
services and ordering them to best suit the requirement and can be used to accelerate 
rapid application development, service reuse, and complex service consummation [2], 
is key to the success of SOC. 

 Many works, including standards, languages and methods, have been done to 
promote web service composition. But facing the challenge of high complexity 
composition problem with massive dynamic changeable services and on-demand 
request, most of them fail to provide an effective solution. Most approaches, such as 
[3] and [4], have only considered the requirement described by IO or IOPE. Second, 
few composite approaches use requirement as part of the composite service building 
process. Though the approach introduced by [4], [5]) consider the request in the 
composition process, the former fail to address the behavior and the latter leave all the 
task of requirement description to user. Consequently, they cannot cope with the 
challenge which the rapid change of user demands.  

Different from them, we think that the composition process indeed relates to the 
requirement and user, the requirement should play a greater role in a service-oriented 
computing paradigm. Thus, it is necessary to consider the problem what the 
requirement is in detail. This paper proposes a requirement-driven services 
composition method. We use environment ontology as the unified description of web 
service and requirement. From this starting point, a process modeling the requirement 
is processed and the environment ontology is adopted for allowing the understanding 



between them. Based on these effect-based structured descriptions, we design the 
algorithm for decomposing the requirement in order to identify suitable component 
services and take it as the basic step for composing service. It not only helps reduce 
the complexity of the problem and to improve concurrency, but also provides 
flexibility among various part of the requirement. And then we present the discovery 
algorithm for the precise matching by utilizing the unified explicit formal semantic 
description. Finally, we end with a method generating the composition service. 

For the space limitation, this paper concentrates on the behavior aspect of service 
or requirement in a single domain. The rest of this paper is structured as follows. In 
section 2, we introduce environment ontology and a usage scenario. Section 3 
proposes the base work of composing a web service, the descriptions of a web service 
or a requirement. Section 4 presents the algorithms decomposing the requirement, 
discovering suitable service and generating composition service. After discussing 
some related work in section 5, we conclude in section 6. 

2   Environment ontology 

Environment ontology, which is proposed according to the thinking of requirement 
engineering based on the environment modeling, is extended further in [6]. In this 
approach, the environment of a Web service is viewed to be composed of those 
environment entities that the Web service can interact with. The concepts and 
associations of environment ontology are shown in figure 1. These associations form 
a general conceptualization of the particular entity. Entity type a web service imposed 
on is suggestive of some property of the service. 
 

  
Fig. 1. Associations of environment ontology 

In this paper, we embed a usage scenario for a travel system as an example. Part of 
the environment ontology about this domain is shown in figure 2, where the left figure 
show the environment entities and the relation among them, the right one is the part 
description about a causal entity ticket. 

 



 
Fig. 2. Environment ontology of travel domain 

3   Services description and requirement description 

Service description and requirement description is the prerequisite of service 
composition. Moreover, full automatic service composition needs a complete, formal 
specification. According to [3], it is difficult to provide a behavior-based requirement 
description for user. 
 

 
Fig. 3. Descriptions of service and requirement 

Instead of focusing on the services of their own, environment ontology-based 
service description give attention on the effects imposed on their environment entities. 
The capabilities of services are expressed by the traces of the changes of the 
environment entities caused by the interactions of the services with these entities. We 
have presented the method for describing services[6]. Here some description results 
about ticket are presented in figure 3(a, b). They are part of environment ontology of 
the ticket and illustrate the changing process a service supports.  

The process (figure 4) to describe the requirement is similar with that depicts web 
services, besides needing to facilitate the user to input and modify user information by 
using ontology. At the same time, the description result can be seen as the effect 
description of the composing web service if succeeded. The description result is also 
illustrated in figure 3, where part (c) shows the environment entities and the relations 
among them, and part (d) presents the requirement about the environment entity ticket. 

(b)  (d) (c)  

(a)  



 
Fig. 4. Pseudocode of the requirement decomposition among environment entities 

4   Services composition 

The task of web service composition is to search appropriate service and to arrange 
them in suitable order. Based on the environment ontology, we present a method 
through decomposing the requirement to search the available service and using the 
precise matching rules to judge. Thus, we divide the task into three parts: 
decomposing the requirement, discovering the suitable component services, 
generating the composition service. 

4.1. Decomposing the requirement 

In our method, service requirement is described in a formal detailed way. It means 
that the same functional services have the same unique description. So we can acquire 
a composite service through a way which firstly decomposes the requirement into 
various parts to discover and compose the respecting services. The decomposing 
algorithms are introduced below.  
 
Decomposition based relations among environment entities.  The essence of the 
task in this section is to classify the set of environment entities, which need not 
consider the internal changing process in the environment entity under the effects of 
services. The behavior of decomposition among environment entities is summarized 
by the algorithm listed in figure 5, where req and reqSet denote the input and output 
of each algorithm, respectively. The requirement is firstly divided by DivByEntDep() 
according to the dependability among entities. The reason is that there is no 
dependence among different sub requirements. Secondly, we decompose a 
requirement by DivByEntIntTyp() according to the type num of dependences or entity 
type. The reason is that there is little constrain than other situation. Finally, the 
decomposition is done by DivByEnt() based on environment entity. That is because 
there is only message dependence among different entities. 
 

ReqSpecification(userInfo, Onto, req) //requirement description based on environment ontology 
Input: userInfo, Onto 
Output: req 
1  UserPro:=Generate(userInfo,Onto);  //generate user profile in interaction manner,  

      //which including environment entities selection, output and target states selection, 
     // input and initial state selection  

2  req:=generate(Onto, UserPro);// similar with  the algorithm generating service description 
3  if(ismulti(req)){   
4      reqTem:=trim(req,userInfo);//determine the req according to user information 
5      req:=ReqSpecification(UserInfo, reqTem, req); 
6  } 
7  if(req=∅){ 
8     userPro:=Modify(UserPro, Onto); 
9     req:=ReqSpecification(UserInfo, Onto, req); 
10  } 
11  return req; 



 
Fig. 5. Pseudocode of the requirement decomposition among environment entities 

 
Decomposition in the environment entity.  The requirement decompositions in the 
environment entity vary by type of entity. The decompositions in autonomous entity 
and symbolic entity, similar with transition-based decomposition in causal entity, can 
be directly done based on their basic behavior event or data by the algorithm 
DivByBeha()in figuire6. But for causal entity, we need to consider its hierarchical 
structure in detail.  
 

 

 
DivInHsm(req, reqSet) //req contains exactly one hsm 

1.     rootfsm:=GetRootfsm(Req);//rootfsm, a finite machine having no super state 
2.     for(each subhsm of rootfsm){//subhsm.rootfsm.superstate∈rootfsm 
3.        ReqSet:=ReqSet∪create(subhsm, Req);// create(subhsm, Req) generate 

   // the requirement responding to subhsm 
4.      }  
5.     ReqSet:=ReqSet∪create(rootfsm, Req); // create(rootfsm, Req) generate 

// the requirement responding to rootfsm 

 
DivByEntDep(req, reqSet) //req contains unrelated environment entities 

1.   while(EnvEntNum(req) ≠ 0) {//req contains two or more environment entities 
2.     e:=getEnvEnt(req);//gets environment entity from req 
3.     if(Relate(e)≠EnvEnt(req)){// Relate(e) is a set of environment entities which directly or   

   //indirectly depend on the environment entity e 
4.          eReq:=create(Relate(e), req);//create() generate the requirement responding to relate(e) 
5.          reqSet:= reqSet∪{eReq}; 
6.          req:= Remove(Relate(e), req);//removes the requirement corresponding to relate(e) 
7.       }//end if  
8.    }//end while 

 
DivByEntIntTyp(req, reqSet) //req contains many related entities  

11. if(∃e((e∈Req)∧(inDep(e)=0∨outDep(e)=0∨type(e)=A∨type(e)=S))){  
//inDep(e), outDep(e)repsents  the number of dependents of environment entity e 
 //type(e)  represents the type of e 

9.         newreq:= create(e, Req); 
10.         ReqSet:= {newreq}∪DivByEntDep (req-newreq, reqSet); 
11.     } 

 
DivByEnt(req, reqSet) //each req in reqSet contains only one environment entity 

12.     for(each e in Req){// e represents environment entity 
13.          ReqSet := ReqSet∪create(e, Req); //create() generate the requirement responding to e 
14.     }//end for 



 
Fig. 6. Pseudocode of the requirement decomposition in environment entity 

For a requirement in one causal entity, we firstly divide it using the algorithm 
DivInHsm(), based on the reason the requirement of the finite state machines at the 
same sub-tree has greater relevance than at different sub-trees. The decomposition 
process could be repeated until finding available service or reaching that each 
requirement only contains one finite state machine. Then, we decompose the 
requirement according to the key states, which can be divided into two classes. The 
first class includes that the initial, middle or target states in it, the second contains the 
states which is the super state of some finite state machine. The reason for this is that 
for user should have capabilities to choose what to do next step on the key state, the 
functionality on both side of the state could be separable. If there were still no 
available services for the result requirement, the algorithm DivByBeha() is used. 

Table 1. Decomposition result of each step by the decomposition algorithm  

 
Taking the requirement in figure 3(d) as an example to present how to use these 

algorithms. For illustrating how to use them, we assume that each match fails below. 
The decomposition results are listed in table 1, where the set of entities, fsms and 
states denote corresponding requirement in different level requirement, respectively.  

4.2. Selecting the suitable component services 

Service discovery, which enables a service requester to locate counterpart, plays a 
critical role in web service composition. With the increasing number of web services 
with similar functionality, measuring the match degree will become more and more 
important. However, there is a gap in most current approaches between service 

Algorithm Decomposition result 
DivByEntDep {infobase, customer},{hotel, creditcard, ticket, buyer} 
DivByEntEntTyp {infobase},{customer},{buyer},{hotel},{creditcard, ticket} 
DivByEnt {infobase},{customer},{buyer},{hotel},{creditcard}, {ticket} 
DivInHsm {salecond}, {discountcond},{deliverycond} 
DivInFsm {available, ordered, sold},{sold, used} 
DivByBeha {available, ordered}, {ordered, sold}, {available, sold},{ sold, used} 

 
DivInFsm(req, kstate, reqSet) //req contains exact one fsm 

7.    if((req.State-(From(kstate)∪To(kstate)))=∅){ //req.State represents all the state of req 
8.      From(kstate):=From(kstate)-{kstate}; //From(kstate) represents all the states kstate can reach 
9.      To(kstate):= To(kstate)-{kstate};//To(state) represents all the states which can reach kstate 
10.    }//end if 
11.    req1=create(req.State-(From(kstate)∪To(kstate)), req); //the req in different branch 
12.    req2:=create(From(kstate)-To(kstate), req);//the req before the kstate or the loop containing it 
13.    req3:=create(To(kstate)-From(kstate), req);//the req after the kstate or the loop containing it 
14.    req4:=create(From(kstate)�To(kstate),req);//the req in the same loop with kstate 
15.    reqSet:= {req1}∪{req2}∪{req3}∪{req4}; 

 
DivByBeha(req, reqSet) //each req in reqSet only contains one basic behaviour 

16.      for(each b in req){//b can represent a transition, data or envent 
17.          reqSet := reqSet∪ {create({b}, req)}; 
18.      }//end for 



advertisement and service requirement. Environment ontology facilitates this, not 
only providing a unified semantic description, with additional knowledge about 
context, but also prompting to mark descriptions with the weight on modularity 
process ontology. Based on this description, we propose a precise match degree, as a 
sound criterion, to measure and select service. The functionalities can be measured by 
various aspects, such as the number of transitions, events, or data. The formulas 
calculating the matching degrees are shown as follows:  

ComDeg=(UseSerFun/ReqFun)×100%. (1) 

NecDeg=|UseSerFun|/(|UseSerFun|+NumUseFun)×100% (2) 

ValDeg= (UseSerFun/SerFun)×100%      (3) 

GloDeg=Wc×ComDeg+Wn×NecDeg+Wv×ValDeg (4) 

In the formulas above, SerFun, UseSerFun and ReqFun denotes all the 
functionalities, the useful functionalities for the requirement a service can provide and 
all the functionalities the requirement needs. Moreover, NumUseFun represents the 
number of the functionalities in UseSerFun which other services can provide; Wc, Wn 
and Wv represent the weights of ComDeg, NecDeg and ValDeg respectively and the 
sum of them equals 1. 

Based on the definition of the matching degree, we describe a service discovery 
method in figure 7. The service is firstly selected according to their globe matching 
degree in line 4. Then based on the matching type of a service, we process them in 
corresponding method. Taking the available services a, b in figure 3, the requirement  
d in figure 3 as an example, ComDeg, NecDeg and ValDeg of a is 2/6*100%, 
2/(1+2)*100% and 2/2*100%, respectively. After getting the above values, we can 
easily calculate GloDeg of it to choose service.  

 

 

 

 
11           if(isdivide(matSer, req)){ return divide(matSer, req);} 
12           else {continue;}  
13        }//end subsume matching 
14       if(matSer.comDeg<100%){ //interaction or plug-in matching  
15          add matSer in subSerSet prepare for future choosing; 
16       }//endif 
17   } //end while 

Discovery(req, serSet, t, service, subSerSet) 
Input: req, serSet, t; //t represent the threshold between the req and the service  
Output: service, subSerSet;//subSerSet is be used when service is nil 
1    if(serSet=∅){return nil;} 
2    for(service in serSet){ 
3        campares services with req and calculates their matching degree; 
4        if(gloDeg>t){matchSerSet:= matchSerSet ∪ {service}; } 
5    } 
6    while(matchSerSet≠∅){ 
7        chooses matSer with necDeg=100% or with maximal gloDeg; 
8        if(matSer.comDeg=100%∧ matSer.valDeg=100%)//exact matching 
9           return service; 
10       if(matSer.comDeg=100%∧service.valDeg<100%){//subsume matching 



Fig. 7. Pseudocode of the component services discovery 

4.3. Generating the composition service  

The task of this step is to determine the relation among selected component service 
according to the relations between functionalities in a requirement and the relations 
between each component service with the responding sub requirements. The 
Pseudocode is listed in figure 8, where Req, Onto, serSet and t denote input, 
ComSerModel denotes the output.  

 

 
Fig. 8. Pseudocode of the composition service generation 

We have simulated our method in a Java platform, where the worst-case time 
complexity is shown in table 2. In it, |ent|, |beh|, |tran|, |event|, |data| and |ser| denote 
the number of the behaviours, environment entities, transitions, events, data and 
services. Moreover, m denotes the repetitions, and n shows the times for discovering 
all the requirements, and Lev(hsm) denotes the average level number of all the hsms. 
Hence, the overall complexity of our method is at the polynomial level. 

Table 2. The complexity degree of each algorithm 

Algorithm Des Div1 Div2 Div3 Div4 Div5 Div6 Div7 Dis Com 
Worst-case 
complexity 

m× 
|beh|3 

|ent|2 |ent|2 |ent|2 |ent| Lev 
(hsm) 

|tran|3 Max(|data|, 
|tran|,|event|) 

|ser|× 
|beh| 

n× 
T(dis) 

 
GenComModel(Req, Onto, serSet, t, ComSerModel) 
Input: Req, Onto, serSet, t 
Output:ComSerModel 
1    ReqSet.add (Req); //inserts the copy of req into ReqSet  
2    while(ReqSet≠∅){ 
3      for(each req in ReqSet){ 
4        using discovery(req, serSet, t, subSerSet) discovery service and generate subSerSet; 
5        ReqSet:=ReqSet-{req}; 
6        if(service≠nil){// discovery success  
7           LabeledReq:=LabeledReq∪label(req, service.name); //labels Req using service.name 
8           break; //end for 
9        } 
10      if(subSerSet=∅)//req cannot be satisfied by service in serSet 
11         return nil; // composition failure 
12      newreqSet:=divide(req, choosealg(ruleset));//divides req according the selected algorithm 
13      ReqSet:=ReqSet∪newreqSet -{req}; 
14     }//end for 
15   }//end while 
16   ComSerModel:=Generate(LabeledReq, req); 



5   Related Work 

Web service composition is a research topic attracting attention daily. The 
differences between our method with others are illustrated in table 3, where I, O, P, E, 
B and “-” denote input, output, precondition, effect, behaviour and unspecified 
explicitly, respectively.  

Table 3. Comparison of various approaches to service composition 

Approach Service Request Content Composition method 
McIlraith [4] IOPE IOPE - agent 
Hamadi [9] IO - - - 
Bultan [10] B B conversation behavior equivalence 
Fensel [11] IOPEB IOPEB service, goal mediator 
Maamar [12] IOB IOB context agent  technology 
Berardi [5] B  B - behavior equivalence  
Sirin [7] IOPE IOPE service complex service-based 

decomposition 
Brogi [3] IOB IO - Graph-constructing and 

coloring 
This paper IOPEB IOPEB environment Requirement-driven  

6   Conclusions 

This paper proposes that the essence of the composition of web services is the 
combination of effects of these services on their environment, and illustrates the 
requirement can play more important role in it. Compared with the existing efforts in 
this field, this work advances the state of art in the following aspects: 
–The sharable environment ontology serves as a common knowledge background 

of both the services and the requirement. That enables the capability matching at 
semantic and behavior level. 
– The ontology-based requirement description method reduces difficulty of 

requirements description as well as provides a more understandable and more 
expressive specification.  
–The structured effect-based requirement specification prompts hierarchical 

effective decomposition and composition-oriented service discovery.  
This paper describes an on-going work for tackling the issue of automatic service 

composition. In the next step, we will extend the ontology for supporting the service 
composition with different granularity and also in various domains. And then we will 
enhance the service composition procedure for considering the non-functional 
concerns. Moreover we will also focus on the verification of the capability profiles for 
the correctness of the composite services. 
 
Acknowledgments. This work is partially supported by the National Natural Science 
Fund for Distinguished Young Scholars of China under Grant No.60625204, the Key 
Project of National Natural Science Foundation of China under Grant No. 60736015 
and 90818026, the National 973 Fundamental Research and Development Program of 
China under Grant No. 2009CB320701. 



References 

1. Papazoglou MP., Georgakopoulos D.: Service-Oriented Computing. Communications of the 
ACM. vol.46, No.10, pp.25--29 (2003) 

2. Nikola M., Miroslaw M.: Current Solutions for Web Service Composition. IEEE Internet 
Computing. vol.8, No.6, pp.51--59 (2004) 

3. Brogi A., Corfini S., Popescu R.: Semantics-Based Composition-Oriented Discovery of 
Web Services. ACM Transactions on Internet Technology. vol.8, No.4, pp.19:1--39 (2008) 

4. McIlraith S., Son T.C.: Adapting Golog for Composition of Semantic Web Services. In： 
8th International Conference on Knowledge Representation and Reasoning, pp. 482--496. 
Toulouse, France (2002) 

5. Berardi D., Calvanese D., Giuseppe D.G., et al: Automatic Composition of Transition-based 
Semantic Web Services with Messaging. In 31st International Conference on Very Large 
Databases, pp.613--624. VLDB Endowment, Norway (2005) 

6. Puwei W., Zhi J., Lin L., Guangjun C.: Building towards Capability Specifications of Web 
Services Based on an Environment Ontology. IEEE Transactions on Knowledge and Data 
Engineering. vol.20, No.4, pp.547--561 (2008) 

7. Sirin E., Parsia B., Wu D., Hendler J., Nau D.: HTN Planning for Web Service Composition 
using SHOP2. Journal of Web Semantics. vol.1, No.4, pp.377--396 (2004) 

8. Martin D., Burstein M., Hobbs J., et al.: OWL-S: Semantic Markup for Web Services. The 
OWL Services Coalition. http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/, 
2004. 

9. Hamadi, R., Benatallah B.: a Petri Net-based Model for Web Service Composition. In: 14th 
Australasian Database Conference, pp.191--200. Australian Computer Society, Australia 
(2003) 

10. Bultan, T., Fu, X., Hull, R., Jianwen S.: Conversation Specification: A New Approach to 
Design and Analysis of E-Service Composition. In: 12th International World Wide Web 
Conference, pp.403--410. Hungary (2003) 

11. Fensel, D., et al: Ontology-based Choreography of WSMO Services. WSMO Final Draft, 
http://www.wsmo.org/TR/d14/v0.4/ (2007) 

12. Maamar, Z., Mostefaoui, S.K., Yahyaoui, H: Toward an Agent-Based and Context-Oriented 
Approach for Web Services Composition. IEEE Transactions on Knowledge and Data 
Engineering. vol.17, No.5, pp.686--697 (2005) 


