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Abstract. The dynamic description logic DDL provides a kind of ac-
tion theories based on description logics (DLs). Compared with another
important DL-based action formalism constructed by Baader et.al., a
shortcoming of DDL is the absence of occlusions and conditional post-
conditions in the description of atomic actions. In this paper, we extend
atomic action definitions of DDL to overcome this limitation. Firstly,
we introduce extended atomic action definitions in which the occlu-
sions and conditional post-conditions are incorporated. Secondly, for each
atomic action specified by an extended atomic action definition, a func-
tion named Expand is introduced to transform it into a choice action
which is composed of atomic actions defined by ordinary atomic action
definitions. Finally, based on the Expand function, the satisfiability-
checking algorithm of DDL is extended to support occlusions and con-
ditional post-conditions.

1 Introduction

Description logics (DLs) are well-known for representing and reasoning about
knowledge of static application domains. The main strength of description logics
is that they offer considerable expressive power going far beyond propositional
logic, while reasoning is still decidable.

The study of integrating description logics with action formalisms is driven
by two factors. One is the demand to represent and reason about semantic web
services [7]. Another factor is the fact that there is an expressive gap between
existing action formalisms: they are either based on first- or higher-order logics
and do not admit decidable reasoning, like the Situation Calculus [9] and the
Fluent Calculus [11], or are decidable but only propositional, like those based
on propositional dynamic logics [5] or propositional temporal logics [2].

One approach to integrate description logics with action formalisms was pro-
posed by Baader et.al.[1]. That approach is characterized by constructing action
formalisms over description logics of the ALCQIO family. In that formalism,



acyclic TBoxes and ABox assertions of description logics are used to specify the
domain constraints and the states of the world respectively. Each atomic action
is described as a triple (pre, occ, post), where the set pre is composed of ABox
assertions for specifying the pre-conditions under which the action is applicable;
the set post is composed of conditional post-conditions of the form ϕ/ψ with
ϕ an ABox assertion and ψ a primitive literal, each conditional postcondition
ϕ/ψ says that if ϕ is true before executing the action, then ψ should be true
after the executions; the set occ is composed of occlusions for indicating these
primitive literals that can change arbitrarily as while as the action is executed,
where each occlusion is of the form Ai(p) or r(p, q), with Ai a primitive concept
name and r a role name. The semantics of atomic actions is defined according
to the minimal-change semantics; each atomic action is defined as a transition
relation on DL-interpretations. Taking each finite sequence of atomic actions
as a composite action, Baader et.al. investigated the executability problem and
the projection problem of actions, and demonstrated that both of them can be
reduced to standard inference problems of description logics and therefore were
remained decidable.

A limitation of Baader et.al.’s formalism is that atomic actions can only
be organized as finite sequences. Many complex control structures required by
Web services [8], such as the “Choice”, “Any-Order”, “Iterate”, “If-Then-Else”,
“Repeat-While” and “Repeat-Until” structures specified in the OWL-based Web
service ontology OWL-S [6], are not supported by it.

Another typical approach to integrate description logics with action for-
malisms was proposed by Shi et.al.[10]. That approach is characterized by con-
structing a kind of dynamic description logics named DDL, which is in fact a
combination of description logics, propositional dynamic logics and action for-
malisms. In that approach, domain knowledge of each action theory is captured
by acyclic TBoxes of description logics; based on these knowledge, both the
states of the world and the pre- and post-conditions of each atomic action are
described by ABox assertions. Starting from atomic actions and ABox assertions,
complex actions are constructed with the help of regular program constructors
of propositional dynamic logics, so that not only the sequence structure, but
also the “Choice”, “Any-Order”, “Iterate”, “If-Then-Else”, “Repeat-While” and
“Repeat-Until” structures required by Web services are all supported by the for-
malism. Finally, both atomic actions and complex actions are used as modal
operators to construct formulas, so that properties on actions can be stated ex-
plicitly by formulas. Chang et.al. [4] provided a terminable, sound and complete
algorithm for checking the satisfiability of DDL-formulas; based on that algo-
rithm, reasoning tasks on the realizability of actions, the executability of actions
and the consequence of executing actions can all be effectively carried out [3].

Compared with Baader et.al.’s formalism, a merits of DDL is the capability
of representing complex actions. However, a shortcoming of DDL is that oc-
clusions and conditional post-conditions are not supported in the description of
atomic actions. In this paper, we extend atomic action definitions of DDL to
include occlusions and conditional post-conditions.



The rest of this paper is organized as follows. A brief introduction of DDL
is presented in Section 2. The atomic action definitions of DDL is extended
to include occlusions and conditional post-conditions in Section 3. Section 4
provides a satisfiability-checking algorithm for DDL-formulas in the case that
occlusions and conditional post-conditions are embraced in the description of
atomic actions. Section 5 concludes the paper.

2 The Dynamic Description Logic DDL

As a kind of dynamic description logics, DDL is constructed by embracing an ac-
tion theory into description logics. Be corresponding to the family of description
logics, DDL is embodied as different logic systems. In this section, we take the
description logic ALCQIO as an example and introduce the dynamic description
logic constructed over it.

Primitive symbols of the logic DDL(ALCQIO) are a set NI of individual
names, a set NR of role names, a set NC of concept names, and a set NA
of action names. Basic citizens of DDL(ALCQIO) are roles, concepts, actions
and formulas; all of them are defined inductively by constructors starting from
primitive symbols.

Roles of DDL(ALCQIO) are formed according to the following syntax rule:

R ::= Ri | R−

where Ri ∈ NR.
Concepts of DDL(ALCQIO) are constructed according to the following syn-

tax rule:

C,C ′ ::= Ai | ¬C | C t C ′ | C u C ′

| ∀R.C | ∃R.C | ≤ nR.C | ≥ nR.C | {p}

where Ai ∈ NC , p ∈ NI , and R is role.
A concept definition is of the form A ≡ C, where A is a concept name and

C is a concept. A TBox of DDL(ALCQIO) is a finite set of concept definitions
with unique left-hand sides. A TBox is said to be acyclic if there are no cyclic
dependencies between the definitions.

With respect to an acyclic TBox T , a concept name Ai ∈ NC is called defined
if and only if it occurs on the left-hand side of some concept definition contained
in T , and is called primitive otherwise.

Formulas of DDL(ALCQIO) are formed according to the following syntax
rule:

ϕ,ϕ′ ::= C(p) | R(p, q) | < π > ϕ | [π]ϕ | ¬ϕ | ϕ ∨ ϕ′ | ϕ ∧ ϕ′

where p, q ∈ NI , R is a role, C is a concept and π is an action.
An ABox assertion is of the form C(p), R(p, q) or ¬R(p, q), where p, q ∈ NI ,

C is a concept, and R is a role. A finite set of ABox assertions is called an ABox
of DDL(ALCQIO).



With respect to an acyclic TBox T , an ABox assertion ψ is called a primitive
literal if and only if it is of the form Ai(p), (¬Ai)(p), R(p, q) or ¬R(p, q), with
Ai a primitive concept name, R a role and p, q ∈ NI .

Actions of DDL(ALCQIO) are formed according to the following syntax
rule:

π, π′ ::= α | ϕ? | π ∪ π′ | π;π′ | π∗

where α ∈ NA, and ϕ is an ABox assertion.
With respect to an acyclic TBox T , an atomic action definition ofDDL(ALCQIO)

is of the form α ≡ (P,E), where

– α ∈ NA,
– P is a finite set of ABox assertions for describing the pre-conditions, and
– E is a finite set of primitive literals for describing the post-conditions.

An ActBox of DDL(ALCQIO) is a finite set of atomic action definitions
with unique left-hand sides.

An atomic action α is said to be defined in an ActBox AC if and only if α
occurs on the left-hand side of some atomic action definition contained in AC . A
formula ϕ is said to be defined w.r.t. an ActBox AC if and only if all the atomic
actions occurring in ϕ are defined in AC .

A knowledge base of DDL(ALCQIO) is of the form K = (T ,AC ,A), where
T , AC and A are respectively a TBox, an ActBox and an ABox.

The semantic model of DDL(ALCQIO) is of the form M = (W,T,∆, I),
where,

– W is a non-empty set of states;
– T : NA → 2W×W is a function which maps action names into binary relations

on W ;
– ∆ is a non-empty set of individuals; and
– I is a function which associates with each state w ∈W a DL-interpretation
I(w) =< ∆, ·I(w) >, where the function ·I(w)

• maps each concept name Ai ∈ NC to a set A
I(w)
i ⊆ ∆,

• maps each role name Ri ∈ NR to a binary relation R
I(w)
i ⊆ ∆×∆, and

• maps each individual name p ∈ NI to an element pI(w) ∈ ∆, with the
constraints that pI(w) = pI(w

′) for any state w′ ∈ W , and pI(w) 6= qI(w)

for any individual name q which is different from p. Since interpreta-
tions of p are the same in every state, the interpretation pI(w) is also
represented as pI .

Given a model M = (W,T,∆, I), the semantics of concepts, formulas and
actions of DDL(ALCQIO) are defined inductively as follows.

Firstly, with respect to any state w ∈ W , each role R will be interpreted as
a binary relation RI(w) ⊆ ∆ ×∆, and each concept C will be interpreted as a
set CI(w) ⊆ ∆; the definition is as follows:

1. (R−)I(w) = {(y, x) | (x, y) ∈ RI(w)};



2. (¬C)I(w) = ∆\CI(w);
3. (C tD)I(w) = CI(w) ∪DI(w);
4. (C uD)I(w) = CI(w) ∩DI(w);
5. (∀R.C)I(w) = { x ∈ ∆ | for all y ∈ ∆: if (x, y) ∈ RI(w), then y ∈ CI(w)};
6. (∃R.C)I(w) = { x ∈ ∆ | there is a y ∈ ∆ with (x, y) ∈ RI(w) and y ∈ CI(w)};
7. (≤ nS.C)I(w) = {x ∈ ∆ | ]{y ∈ ∆ | (x, y) ∈ SI(w) and y ∈ CI(w)} ≤ n };
8. (≥ nS.C)I(w) = {x ∈ ∆ | ]{y ∈ ∆ | (x, y) ∈ SI(w) and y ∈ CI(w)} ≥ n };

Secondly, for any formula ϕ and any state w ∈W , the truth-relation (M,w) |=
ϕ is defined inductively as follows:

9. (M,w) |= C(p) iff pI ∈ CI(w);
10. (M,w) |= R(p, q) iff (pI , qI) ∈ RI(w);
11. (M,w) |=< π > ϕ iff there is a state w′ ∈ W with (w,w′) ∈ T (π) and

(M,w′) |= ϕ;
12. (M,w) |= [π]ϕ iff for every w′ ∈W : if (w,w′) ∈ T (π) then (M,w′) |= ϕ;
13. (M,w) |= ¬ϕ iff it is not the case that (M,w) |= ϕ;
14. (M,w) |= ϕ ∨ ψ iff (M,w) |= ϕ or (M,w) |= ψ;
15. (M,w) |= ϕ ∧ ψ iff (M,w) |= ϕ and (M,w) |= ψ;

Finally, each action π is interpreted as a binary relation T (π) ⊆ W × W
according to the following definitions:

16. T (ϕ?) = { (w,w) | w ∈W and (M,w) |= ϕ };
17. T (π ∪ π′) = T (π) ∪ T (π′);
18. T (π;π′) = { (w,w′) | there is a state u ∈ W with (w, u) ∈ T (π) and

(u,w′) ∈ T (π′) };
19. T (π∗) = reflexive and transitive closure of T (π).

Let K = (T ,AC ,A) be a knowledge base and let M = (W,T,∆, I) be a
semantic model, then:

– a state w of the model M satisfies the ABox A, denoted by (M,w) |= A, if
and only if (M,w) |= ϕi for every ABox assertion ϕi ∈ A;

– M is a model of the TBox T , denoted by M |= T , if and only if AI(w) =
CI(w) for every state w ∈ W and every concept definition A ≡ C ∈ T ; and

– M is a model of the ActBox AC , denoted by M |= AC , if and only if the
following equation holds for every atomic action definition α ≡ (P,E) ∈ AC :

T (α) = { (w,w′) | w ∈W,w′ ∈W, (M,w) |= P,

CI(w
′) = (CI(w) ∪ {pI |C(p) ∈ E}) \ {pI |(¬A)(p) ∈ E} for

each concept name A which is primitive w.r.t. T , and
RI(w

′) = (RI(w) ∪ {(pI , qI)|R(p, q) ∈ E}) \ {(pI , qI)|¬R(p, q) ∈ E}
for each role name R.}.

A primary inference problem for DDL(ALCQIO) is to decide the satisfiabil-
ity of formulas. A formula ϕ is called satisfiable w.r.t. a TBox T and an ActBox
AC if and only if there exists a model M = (W,T,∆, I) and a state w ∈ W such
that M |= T , M |= AC and (M,w) |= ϕ.

In the literature, a terminable, sound and complete algorithm for deciding
the satisfiability of DDL(ALCQIO)-formulas is presented [4].



3 Extended atomic action definitions

In this section, we extend atomic action definitions of DDL to include occlusions
and conditional post-conditions. To be distinguished from original atomic action
definitions discussed in DDL, we refer to these extended definitions as extended
atomic action definitions.

With respect to an acyclic TBox T , an extended atomic action definition is
of the form α ≡ (P,O,E), where

– α ∈ NA;
– P is a finite set of ABox assertions for describing the pre-conditions;
– O is a finite set of occlusions of the form A(p) or r(p, q), with A primitive

concept name, r role name, and p, q ∈ NI ; and
– E is a finite set of conditional post-conditions of the form ϕ/ψ, where ϕ is

an ABox assertion and ψ is a primitive literal.

Intuition of the above definition is as follows. The pre-conditions specify
under which conditions the action is applicable. Each conditional postcondition
ϕ/ψ says that, if ϕ is true before executing the action, then ψ should be true after
the execution. The occlusions indicate those primitive literals that can change
arbitrarily as while as the action is executed.

The semantics of extended atomic action definitions is defined as follows: a
semantic model M = (W,T,∆, I) satisfies an extended atomic action definition
α ≡ (P,O,E), in symbols M |= α ≡ (P,O,E), if and only if

T (α) = { (w,w′) ∈W ×W | (M,w) |= P, both A+
w ∩A−w = ∅ and AI(w

′) ∩ IwA
= ((AI(w) ∪A+

w) \ A−w) ∩ IwA for each concept

name A which is primitive w.r.t. T , and both
R+
w ∩R−w = ∅ and RI(w

′) ∩ IwR = ((RI(w) ∪R+
w)

\ R−w) ∩ IwR for each role name R. },

where A+
w , A−w , IwA , R+

w , R−w and IwR denote some sets constructed as follows:

– A+
w := { pI | ϕ/A(p) ∈ E and (M,w) |= ϕ },

– A−w := { pI | ϕ/(¬A)(p) ∈ E and (M,w) |= ϕ },
– IwA := ( ∆ \ { pI | A(p) ∈ O } ) ∪ A+

w ∪ A−w ,
– R+

w := { (pI , qI) | there is some role S with S v∗R R, ϕ/S(p, q) ∈ E and
(M,w) |= ϕ },

– R−w := { (pI , qI) | there is some role S with R v∗R S, ϕ/¬S(p, q) ∈ E and
(M,w) |= ϕ },

– IwR := ( (∆×∆) \ { (pI , qI) | R(p, q) ∈ O } ) ∪ R+
w ∪ R−w .

Be similar with the semantics of atomic action definitions, this definition is
also based on the minimal-change semantics [12]. For any pair (w,w′) ∈ T (α),
any primitive concept name A and any role name R, it must be A+

w ⊆ AI(w
′), A−w

∩ AI(w′) = ∅, and nothing else changes from AI(w) to AI(w
′) with the possible

exception of the occluded literals. Similarly, the interpretations RI(w) and RI(w
′)



should satisfy that R+
w ⊆ RI(w

′), R−w ∩ RI(w
′) = ∅, and nothing else changes from

RI(w) to RI(w
′) with the possible exception of the occluded literals. Those parts

that might change arbitrarily by the presence of occluded literals are captured
by the set IwA and the set IwR .

For example, consider a Web service system in which customers are able
to buy books online, a Web service for the customer Tom to buy the book
KingLear can be described according to the following extended atomic action
definition:

BuyBookTom,Kin

≡ ( { customer(Tom), book(KingLear) }, { },
{ instore(KingLear)/bought(Tom,KingLear),
instore(KingLear)/¬instore(KingLear),
instore(KingLear)/notify(Tom,NotifySucceed),

¬instore(KingLear)/notify(Tom,NotifyBookOutOfStock) } )

According to this definition, if the book KingLear is in store, then the formula
bought(Tom,KingLear), ¬instore(KingLear) and notify(Tom,NotifySucceed)
will become true after the execution of the service, otherwise Tom will be notified
by the notification NotifyBookOutOfStock.

4 Reasoning mechanisms for extended atomic action
definitions

In order to provide reasoning services for extended atomic action definitions,
for any atomic action α defined by some extended atomic action definition α ≡
(P,O,E), we introduce a procedure Expand(α) to transform it into some action
of the form α1 ∪ ... ∪ αn, where each αi (1 ≤ i ≤ n) is an atomic action defined
by an atomic action definition.

More precisely, for the definition α ≡ (P,O,E), let O = { φ1, ..., φm } and
let E = { ϕ1/ψ1, ..., ϕk/ψk }, then the procedure Expand(α) operates according
to the following steps:

1. Construct an empty set AC on atomic action definitions.
2. According to the set P and these k conditional post-conditions contained in
E, construct 2k atomic action definitions as follows:

α0 ≡ (P ∪ {ϕ¬k , ..., ϕ¬3 , ϕ¬2 , ϕ¬1 }, { })
α1 ≡ (P ∪ {ϕ¬k , ..., ϕ¬3 , ϕ¬2 , ϕ1}, {ψ1})
α2 ≡ (P ∪ {ϕ¬k , ..., ϕ¬3 , ϕ2, ϕ

¬
1 }, {ψ2})

α3 ≡ (P ∪ {ϕ¬k , ..., ϕ¬3 , ϕ2, ϕ1}, {ψ2, ψ1})
α4 ≡ (P ∪ {ϕ¬k , ..., ϕ3, ϕ

¬
2 , ϕ

¬
1 }, {ψ3})

...

α2k−1 ≡ (P ∪ {ϕk, ..., ϕ3, ϕ2, ϕ1}, {ψk, ..., ψ3, ψ2, ψ1})



I.e., start from the set P of pre-conditions and an empty set of post-conditions,
be corresponding to each conditional post-condition ϕi/ψi (1 ≤ i ≤ k), add
either ϕi or ϕ¬i into the pre-condition set, and add ψi into the postcondition
set as while as ϕi is added into the pre-condition set.

3. For each atomic action definition αi ≡ (Pi, Ei) (0 ≤ i ≤ 2k − 1) constructed
above, if it is consistent w.r.t. R and T , then do the following operations
sequentially:
(a) Construct an empty set Oi on primitive literals.
(b) For each occlusion φj (1 ≤ j ≤ m), if both φj /∈ Ei ∗R and φ¬j /∈ Ei ∗R,

then add φj into the set Oi.
(c) Let φi,1,...,φi,mi be all the primitive literals contained in the set Oi,

construct 2mi atomic action definitions as follows:

αi,0 ≡ (Pi, Ei ∪ {φ¬i,mi
, ..., φ¬i,3, φ

¬
i,2, φ

¬
i,1})

αi,1 ≡ (Pi, Ei ∪ {φ¬i,mi
, ..., φ¬i,3, φ

¬
i,2, φi,1})

αi,2 ≡ (Pi, Ei ∪ {φ¬i,mi
, ..., φ¬i,3, φi,2, φ

¬
i,1})

αi,3 ≡ (Pi, Ei ∪ {φ¬i,mi
, ..., φ¬i,3, φi,2, φi,1})

αi,4 ≡ (Pi, Ei ∪ {φ¬i,mi
, ..., φi,3, φ

¬
i,2, φ

¬
i,1})

...

αi,2mi−1 ≡ (Pi, Ei ∪ {φi,mi
, ..., φi,3, φi,2, φi,1})

I.e., start from the set Pi of pre-conditions and the set Ei of post-
conditions, be corresponding to each primitive literal φi,j (1 ≤ j ≤ mi),
add either φi,j or φ¬i,j into the post-condition set.

(d) For each atomic action definition constructed above, if it is consistent
w.r.t. R and T , then add it into the set AC .

4. If the set AC is empty, then construct an atomic action definition β0 ≡
({false}, ∅) and return the action β0, else let β1 ≡ (Pβ1

, Eβ1
), ..., βn ≡

(Pβ1 , Eβ1) be all the atomic action definitions contained in AC , construct a
choice action β1 ∪ ... ∪ βn and return it.

As an example, taken the atomic action BuyBookTom,Kin defined in previous
example as an input, the procedure Expand(BuyBookTom,Kin) will return a
choice action as follows:

BuyBookNotified1 ∪BuyBookNotified2
where BuyBookNotified1 and BuyBookNotified2 are defined by the following
atomic action definitions respectively:

BuyBookNotified1

≡ ( { customer(Tom), book(KingLear), instore(KingLear) },
{ bought(Tom,KingLear),¬instore(KingLear),
notify(Tom,NotifyOrderSucceed) } )

BuyBookNotified2

≡ ( { customer(Tom), book(KingLear),¬instore(KingLear) },
{ notify(Tom,NotifyBookOutOfStock) } )



The procedure Expand() is technically designed to guarantee the following
property.

Theorem 1. Let α be an atomic action defined by some extended atomic action
definition α ≡ (P,O,E) w.r.t. an acyclic TBox T , let α1 ∪ ... ∪ αn be the
action returned by the procedure Expand(α), and let AC be an ActBox composed
of atomic action definitions of every αi (1 ≤ i ≤ n). Then, for any model
M = (W,T,∆, I) with M |= T , M |= α ≡ (P,O,E) and M |= AC, it must be
T (α1 ∪ ... ∪ αn) = T (α).

Now we are ready to present a satisfiability-checking algorithm for formulas
that might contain atomic actions defined by extended atomic action definitions.

Algorithm 1 Let AC be an ActBox which might contains some extended atomic
action definitions, let ϕ be a formula defined w.r.t. AC. Then, the satisfiability
of ϕ w.r.t. a TBox T and ActBox AC is decided according to the following steps.

1. Construct a formula ϕ′ and an ActBox AC′ according to the following steps:

(a) set AC′ := ∅ and ϕ′ := ϕ;

(b) for each atomic action occurring in ϕ′, if it is defined in AC by some
atomic action definition α ≡ (P,E), then add α ≡ (P,E) into the set
AC′;

(c) for each atomic action occurring in ϕ′, if it is defined in AC by some
extended atomic action definition α ≡ (P,O,E), then do the following
operations sequentially:

i. call the procedure Expand(α) and let α1 ∪ ... ∪ αn be the action
returned by it;

ii. add all the atomic action definitions of α1, ..., αn into the set AC′;
and

iii. for each occurrence of the action α in the formula ϕ′, replace it with
the action α1 ∪ ... ∪ αn.

2. Since every atomic action occurring in ϕ′ is defined by original atomic ac-
tion definitions discussed in DDL, we can call the procedure provided by
DDL to decide whether the formula ϕ′ is satisfiable w.r.t. T and AC′; if
ϕ′ is satisfiable w.r.t. T and AC′, then return “TRUE”, otherwise return
“FALSE”.

For the formula ϕ′ constructed in this algorithm, according to Theorem 1,
it is straightforward that ϕ′ is satisfiable w.r.t. T and AC′ if and only if ϕ is
satisfiable w.r.t. T and AC . Therefore, this deciding algorithm is correct; i.e.,

Theorem 2. Algorithm 1 returns “TRUE” if and only if the formula ϕ is sat-
isfiable w.r.t. T and AC.



5 Conclusion

In this paper, the dynamic description logic DDL is extended to support oc-
clusions and conditional post-conditions in the description of atomic actions. As
a result, the action theory supported by DDL is compatible with the action
formalism constructed by Baader et.al. [1].

DDL provides an approach to bring the power and character of description
logics into the description and reasoning of dynamic application domains. One
of our future work is to optimize the reasoning mechanisms of DDL. Another
work is to apply DDL to model and reason about semantic Web services.

Acknowledgments. This work was partially supported by the National Nat-
ural Science Foundation of China under Grant Nos. 60903079, 60775035 and
60963010.

References

1. Baader, F., Lutz, C., Milicic, M., Sattler, U., Wolter, F.: Integrating Description
Logics and Action Formalisms: First Results. In: Veloso, M., Kambhampati, S.(eds.)
Proceedings of the 12th Nat. Conf. on Artif. Intell., pp. 572-577. AAAI Press (2005)

2. Calvanese, D., De Giacomo, G., Vardi, M.: Reasoning about Actions and Planning
in LTL Action Theories. In: Fensel, D., Giunchiglia, F., McGuinness, D., Williams,
M.(eds.) 8th Int. Conf. on Principles and Knowledge Representation and Reasoning,
pp. 593-602. Morgan Kaufmann (2002)

3. Chang, L., Lin, F., Shi, Z.: A Dynamic Description Logic for Representation and
Reasoning about Actions. In: 2nd International Conference on Knowledge Science,
Engineering and Management, LNCS vol.4798, pp. 115-127. Springer (2007)

4. Chang, L., Shi, Z., Qiu L., Lin, F.: A Tableau Decision Algorithm for Dynamic
Description Logic. Chinese Journal of Computers, 31(6), 896-909 (2008)

5. De Giacomo, G., Lenzerini, M.: PDL-based Framework for Reasoning about Actions.
In: Gori, M., Soda, G.(eds.) Topics in Artif. Intell., LNCS, vol.992, pp. 103-114.
Springer (1995)

6. Martin, D., Burstein, M., McDermott, D., McIlraith, S., Paolucci, M., Sycara, K.,
McGuinness, D., Sirin, E., Srinivasan, N.: Bringing semantics to web services with
OWL-S. World Wide Web Journal, 10(3), 243-277 (2007)

7. McIlraith, S., Son, T., Zeng, H.: Semantic Web Services. IEEE Intelligent Systems.
16(2), 46-53 (2001)

8. Narayanan, S., McIlraith, S.: Simulation, verification and automated composition
of web services. In: Proc. of the 11th Int. World Wide Web Conference (WWW’02),
pp. 77-88 (2002)

9. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press (2001)

10. Shi, Z., Dong, M., Jiang, Y., Zhang, H.: A Logic Foundation for the Semantic Web.
Science in China, Series F. 48(2), 161-178 (2005)

11. Thielscher, M.: Introduction to the Fluent Calculus. Electron. Trans. Artif. Intell.
2(3-4), 179-192 (1998)

12. Winslett, M.: Reasoning about Action Using a Possible Models Approach. In: 7th
Nat. Conf. on Artif. Intell. pp. 89-93. AAAI Press (1988)


