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Abstract. The propositional dynamic logic PDL is one of the most successful 
variants of modal logic; it plays an important role in many fields of computer 
science and artificial intelligence. As a logical basis for the W3C-recommended 
Web ontology language OWL, description logic provides considerable 
expressive power going far beyond propositional logic as while as the reasoning 
is still decidable. In this paper, we bring the power and character of description 
logic into PDL and present a dynamic logic ALC-DL for the semantic Web. The 
logic ALC-DL inherits the knowledge representation ability of both the 
description logic ALC and the logic PDL. With an approach based on Buchi 
tree automaton, we prove that the satisfiability problem of ALC-DL formulas is 
still decidable and is EXPTIME-complete. The logic ALC-DL is suitable for 
modeling and reasoning about dynamic knowledge in the semantic Web 
environment. 
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1 Introduction 

The propositional dynamic logic PDL is one of the most successful variants of modal 
logic[1]. It is widely used in many fields of computer science and artificial intelligence. 
In order to enhance the knowledge representation capability of PDL and 
correspondingly extend the application domain, many extended logics were proposed 
by introducing action constructors into PDL[2-4]. 

Description logic is a family of languages for describing and reasoning about the 
knowledge of static domains. It plays an important role in the semantic Web, acting as 
the logic basis of the W3C-recommended Web ontology language OWL. A feature of 
description logic is that it provides considerable expressive power going far beyond 
propositional logic, while reasoning is still decidable. 

In this paper, we bring the power and character of description logic into dynamic 
logic. This work is motivated by the fact that, in order to model Web services, actions, or 
intelligent agents in the semantic Web, one has to deal with lots of knowledge 
represented as ontologies. Since the Web ontology language OWL is based on description 
logic, the combination of description logic and dynamic logic will provide the capability 



to deal with both the static knowledge of ontology and the dynamic knowledge on actions 
and services. 

For the simplicity of presentation, this paper take the typical logic ALC as an 
example of description logics and adopt it to extend the propositional dynamic logic 
PDL. As a result, an extended dynamic logic named ALC-DL is presented, which 
inherits the knowledge representation capability of both the description logic ALC 
and the propositional dynamic logic PDL. With the help of the Buchi tree automaton, 
the satisfiability problem of ALC-DL formulas is investigated and demonstrated to be 
EXPTIME-complete. 

2 Dynamic Logic ALC-DL 

The dynamic logic ALC-DL is constructed by embracing the description logic ALC 
into the propositional dynamic logic PDL. From the point of view of syntax, ALC-DL 
is constructed by replacing all the atomic propositions of PDL with ABox assertions 
and TBox axioms of ALC.  

Primitive symbols of ALC-DL are a set NC of concept names, a set NR of role 
names, and a set NI of individual names. Starting from these symbols, with the help of 
a set of constructors, the concepts, formulas and actions of ALC-DL can be 
constructed inductively.  

Definition 1. Concepts of ALC-DL are formed according to the following syntax rule: 
                C, D ::= Ci | ¬C | C⊔D | ∀R.C  

where Ci∈NC, R∈NR. Furthermore, concepts of the forms C⊓D and ∃R.C can also 
be introduced as abbreviations of concepts ¬(¬C⊔¬D) and ¬(∀R.¬C) respectively.  

A general concept inclusion axiom is an expression of the form C⊑D, where C, 
D are any concepts. A concept assertion (resp., role assertion) is of the form C(p) 
(resp., R(p,q)), where C is a concept, R∈NR, and p,q∈NI. 

Definition 2. Formulae of ALC-DL are formed according to the following syntax rule: 
  ϕ, ψ ::= C⊑D | C(p) | R(p,q) | <π>ϕ | ¬ϕ | ϕ∧ψ 

where p, q∈NI, R∈NR, C, D are concepts, and π is an action.  

Formulas of the forms [π]ϕ, ϕ∨ψ, ϕ→ψ, false and true can also be introduced 
as abbreviations of formulas ¬<π>¬ϕ, ¬(¬ϕ∧¬ψ), ¬(ϕ∧¬ψ), ϕ∧¬ϕ  and 
¬(ϕ∧¬ϕ) respectively. Formulas of the form <π>ϕ are called action existence 
assertions. 

Definition 3. Actions of ALC-DL are formed according to the following syntax rule: 
            π, π' ::= α | ϕ? | π⋃π' | π ; π' | π* 

where α∈NA, and ϕ is a formula. Actions of the forms α, ϕ?, π⋃π', π;π' and π* are 
respectively called atomic actions, test actions, sequential actions and iterated actions.  

The interpretation structure of ALC-DL is a combination of the interpretation 
structure of PDL and the interpretation of ALC. In such a structure, each action is 



interpreted as a binary relation between states, while each state is mapped to a 
classical interpretation of description logic.  

Definition 4. A ALC-DL interpretation structure is of the form M=(W,T,Δ,I), where, 
(1) W is a non-empty finite set of states; 
(2) T is a function which maps each action name αi∈NA to a binary relation 

T(αi)⊆W×W; 
(3) Δ is a non-empty set of individuals; and  
(4) I is a function which associates with each state w∈W a description logic 

interpretation I(w)=(Δ,·I(w)), where the function·I(w) 

(i) maps each concept name Ci∈NC to a set Ci
I(w)⊆Δ, 

(ii) maps each role name Ri∈NR to a binary relation Ri
I(w)⊆Δ×Δ, and 

(iii) maps each individual name pi∈NI to an individual pi
I(w)∈Δ, with the 

constraints that pi
I(w)=pi

I(w') for any state w'∈W. The interpretation pi
I(w) is also 

represented as pi
I, since it is not effected by the state w. 

Definition 5. Given an interpretation structure M=(W,T,Δ,I), the semantics of 
concepts, formulas and actions of ALC-DL are defined inductively as follows. 

Firstly, for each state w∈W, a concept C is interpreted as a set CI(w)⊆Δ which is 
defined inductively as follows:  

(1) (¬C)I(w) := ΔM
 \ CI(w); 

(2) (C⊔D)I(w) := CI(w) ∪ DI(w); 
(3) (∀R.C)I(w) := { x | for every y∈Δ: if (x, y)∈RI(w), then y∈CI(w)}. 

  Secondly, for each state w∈W, the satisfaction-relation (M,w)⊨ϕ for any 
formula ϕ is defined as follows:  

(4) (M,w) ⊨ C(p)  iff  pI ∈ CI(w); 
(5) (M,w) ⊨ R(p,q)  iff  (pI,qI) ∈ RI(w); 
(6) (M,w) ⊨ C⊑D  iff  CI(w) ⊆ DI(w); 
(7) (M,w) ⊨ <π>ϕ  iff  some state w'∈W exists with (w,w')∈T(π) and 

(M,w')⊨ϕ; 
(8) (M,w) ⊨ ¬ϕ  iff  it is not the case that (M,w)⊨ϕ; 
(9) (M,w) ⊨ ϕ∧ψ  iff  (M,w)⊨ϕ and (M,w)⊨ψ. 
Finally, each action π is interpreted as a binary relation T(π)⊆W×W according to 

the following definitions:  
(10) T(ϕ?) := {(w,w)∈W×W | (M,w)⊨ϕ}; 
(11) T(π⋃π') := T(π) ∪ T(π'); 
(12) T(π ; π') := {(w,w')∈W×W | there is some state u∈W with (w,u)∈T(π) and 

(u,w')∈T(π')}; 
(13) T(π*) := reflexive and transitive closure of T(π). 

Definition 6. An ALC-DL formula ϕ is satisfiable if and only if there is an 
interpretation structure M=(W,T,Δ,I) and a state w∈W such that (M,w)⊨ϕ. 



The satisfiability problem of formulae is a primary inference problem for ALC-
DL. Many other inference problems which we might concern can be reduced to this 
problem. For example, given a knowledge base K=(T, A) of the description logic ALC, 
we want to know whether it is consistent or not. Since the TBox T is a finite set 
composed of general concept inclusion axioms, and the ABox A is a finite set 
composed of concept assertions, negations of concept assertions, role assertions, and 
negations of role assertions, it is obvious that both T and A are formula sets of the 
logic ALC-DL, and therefore the consistence problem of the knowledge base K can be 
decided by checking whether the conjunction of all the formulas contained in T and A 
is satisfiable or not. 

If an ALC-DL formula is just a Boolean connection of general concept inclusion 
axioms, concept assertions and role assertions, then it is also called a Boolean 
knowledge base of the description logic ALC[5]. A Boolean knowledge base B is 
consistent if and only if there is an interpretation structure M=(W,T,Δ,I) and a state 
w∈W such that (M,w)⊨ϕi for every ϕi∈B. It is EXPTIME-complete to decide whether a 
Boolean knowledge base of the description logic ALC is consistent or not[5]. 

3 An Automata-based variant of ALC-DL 

In order to adopt Buchi tree automaton for studying the satisfiability problem of ALC-
DL formulae, be similar with the approach used in [6], we use automata on finite 
words rather than regular expressions to describe complex actions of ALC-DL. 

Firstly, for any ALC-DL action π, taking it as a regular expression, then the 
language L(π) represented by it is defined as following: ①L(π):={π} if π is an atomic 
action or a test action, ②L(π⋃π'):=L(π)∪L(π'), ③L(π ; π'):={l1l2 | l1∈L(π) and 
l2∈L(π')}, and ④L(π*):=L(π0)∪L(π1)∪L(π2)∪…, where L(π0) is the empty word ε, 
and L(πi):= L(πi–1;π) for every i≥1. Obviously, all the possible executions of π are 
captured by the words in L(π).  

Secondly, we introduce some notations on nondeterministic finite automata. 

Definition 7. A nondeterministic finite automaton (NFA) A=(Q,Σ,ρ, q0, F) consists 
of a finite set of states Q, a finite input alphabet Σ, a transition function ρ:Q×Σ

→2Q, an initial state q0∈Q, and a set of final states F⊆Q. 

The transition function ρ can also be inductively extended to a functionρ': Q
×Σ*→2Q, such that ρ'(q,ε)=q and ρ'(q, ωa) =ρ(ρ'(q, ω), a) for any q∈Q, ω∈Σ* 
and a∈Σ, where ε is the empty word.  

Given a NFA A=(Q,Σ,ρ, q0, F), a word ω∈Σ* is accepted by it if and only if 
ρ'(q0, ω)∈F. The language accepted by A is the set of all the words accepted by A, 
and is denoted as L(A). 

For the simplicity of presentation, for any NFA A=(Q,Σ,ρ, q0, F), we use QA,Σ
A,ρA, qA and FA to denote the set of states, the alphabet, the transition function, the 
initial state, and the set of final states of this automaton respectively. Furthermore, for 



any NFA A and any state q∈QA, we use Aq to denote the automaton which is 
constructed by setting the initial state of A as q, i.e., Aq=(QA,ΣA,ρA, q, FA). 

Now, for any ALC-DL action π, there must be a NFA A such that L(A)=L(π)[7]. 
On the contrary, given any NFA A=(Q,Σ,ρ, q0, F) whose input alphabet Σ is 
composed of atomic actions and test actions of ALC-DL, an ALC-DL action π can also 
be constructed such that L(π)=L(A). Based on this fact, we can replace each action of 
ALC-DL by a corresponding NFA, and combine Definition 2 and Definition 3 to the 
following definition. 

Definition 8. Let Φ0 be a set composed of all the general concept inclusion axioms, 
concept assertions and role assertions of ALC-DL. Use ΦA (resp., ΠA) to denote the 
sets of all the formulae of ALC-DL (resp., all the NFAs of ALC-DL). Then, ΦA and 
ΠA are the smallest sets satisfying the following conditions:  

(1) Φ0 ⊆ΦA; 
(2) if ϕ, ψ∈ΦA, then {¬ϕ, ϕ∧ψ}⊆ΦA; 
(3) if A∈ΠA and ϕ∈ΦA, then <A>ϕ∈ΦA; 
(4) if A=(Q,Σ,ρ, q0, F) is a NFA with Σ=NA∪{ϕ? | ϕ∈ΦA}, then A∈ΠA. 

We also call formulas of the form <A>ϕ as action existence assertions. 
Correspondingly, the semantics defined by Definition 5 should be updated. It can 

be realized by two steps.  
Firstly, rules (11), (12) and (13) of Definition 5 are replaced by the following 

single rule: 
(11') T(A):= {(w,w')∈W×W | there exist some positive integer m≥0, some word 

l1…lm∈L(A) and m+1 states u0, u1, …, um∈W, such that u0=w, um=w' and (ui－1,ui)∈li
T 

for every 1≤i≤m}. 
Secondly, rule (7) of Definition 5 is updated as follows: 
(7') (M,w)⊨<A>ϕ  iff  there is some state w'∈W such that (w,w')∈AT and 

(M,w')⊨ϕ. 
Obviously, from the point of view of representation and reasoning ability, the 

automata-based variant of ALC-DL presented here is equivalent with the logic defined 
in former section. Furthermore, for any ALC-DL action π in a regular expression form, 
the NFA A satisfying L(A)=L(π) can be constructed in polynomial time, with a 
property that the number of states in A is linearly bounded by the size of π[7]. 
Therefore, the satisfiability problem of ALC-DL formulae can be studied based on the 
variant presented in this section, and all the results from this study are also suitable 
for the logic defined in former section. 

4 Buchi tree automaton for ALC-DL formulae 

Taken a similar approach used in the literatures of [3] and [6], we study the 
satisfiability problem of ALC-DL formulae by Buchi tree automaton. Given any ALC-
DL formula ϕ, we will construct a Buchi tree automaton Bϕ such that there exists a 
one-to-one correspondence between the models of ϕ and the language accepted by Bϕ, 



and by which the satisfiability problem of ϕ can be decided by checking whether the 
language accepted by Bϕ is empty or not. Before going to more details, we firstly 
introduce some notations. 

Definition 9. For any finite set Σ and any natural number k, let [k] denote the set 
{1,…,k}. A function T: [k]*→Σ is called a k-ary Σ-tree. The empty word ε is 
called the root of the tree. Furthermore, for any x∈[k]* and i∈[k], the node xi is called 
the ith-child of the node x. 

For any infinite non-empty word γ∈[k]ω, we use γ[0] to denote the empty word ε, 
and use γ[n] (where n≥1) to denote the word formed by the former n characters of the 
word γ. The word γ is also called a path of a k-ary Σ-tree. It is obvious that the path 
γ starts from the root ε, and sequentially goes through notes γ[1], γ[2], γ[3] and so on. 

Definition 10. A Buchi tree automaton B on k-ary Σ-trees is a quintuple B=(Q,Σ,
ρ, I, F), where Q is a finite set of states, Σ is a finite alphabet, ρ⊆ Q×Σ×Qk is 
the transition relation, I⊆Q is the set of initial states, and F⊆Q is the set of accepting 
states.  

Let T be a k-ary Σ-tree. Then, a run of a Buchi tree automaton B on T is a k-ary 
Q-tree r:[k]*→Q such that r(ε)∈I, and (r(x), T(x), r(x1), …, r(xk))∈ρ for all nodes 
x∈[k]*. A run r of B on T is accepting if and only if inf(r, γ)∩F ≠∅ for every path 
γ∈[k]ω, where inf(r, γ) is a set composed of the states in Q that occur infinitely often 
along the path γ, i.e., inf(r, γ) = {q∈Q | for every n≥0, there always exists some m≥n 
with γ[m]=q}. 

Let B be a Buchi tree automaton on k-ary Σ-trees. Then, a k-ary Σ-tree T is 
accepted by B if and only if there exists an accepting run of B on T. The language 
accepted by B, denoted as L(B), is the set of all the k-ary Σ-trees accepted by B. 

Let ϕ be an ALC-DL formula for deciding whether it is satisfiable or not. We 
will construct a Buchi tree automaton Bϕ for it. Some notations used in the 
construction is defined as follows. 

Firstly, for any ALC-DL formula ψ, let sub(ψ) be a set composed of all the sub-
formulae of ψ. More precisely, sub(ψ) is defined inductively as follows: 

(1) if ψ is a general concept inclusion axiom, concept assertion or role assertion, 
then sub(ψ):={ψ}; 

(2) if ψ is of the forms ¬ψ' or <π>ψ', then sub(ψ):={ψ}∪sub(ψ'); 
(3) if ψ is of the form ψ'∧ψ'', then sub(ψ):={ψ}∪sub(ψ')∪sub(ψ''). 
Secondly, let cl(ϕ) be the smallest set satisfying the following conditions: 
(1) ϕ∈cl(ϕ); 
(2) if ψ∈cl(ϕ), then sub(ψ)⊆cl(ϕ); 
(3) if ψ∈cl(ϕ), then ¬ψ∈cl(ϕ); 
(4) if <A>ψ∈cl(ϕ), then ψ∈cl(ϕ) for each test action ψ?∈ΣA; 
(5) if <A>ψ∈cl(ϕ), then <Aq>ψ∈cl(ϕ) for each state q∈QA. 



Finally, for any set h⊆cl(ϕ), it is called an ALC-Hintikka set of ϕ if it satisfies 
the following five conditions:  

(H1) for every formula ψ∈sub(ϕ): ψ∈h if and only if ¬ψ∉h; 
(H2) if ψ∧ψ∈h, then both ψ∈h and ψ∈h; 
(H3) if ¬(ψ∧ψ)∈h, then either ¬ψ∈h or ¬ψ∈h; 
(H4) if ¬<A>ψ∈h and qA∈FA, then ¬ψ∈h; 
(H5) if ¬<A>ψ∈h, then for any state q∈QA and any test action ψ?∈ΣA: it must 

be ¬ψ∈h or ¬<Aq>ψ∈h whenever q∈ρA(qA, ψ?). 

Algorithm 1. Given any ALC-DL formula ϕ, let Hϕ be a set composed of all the ALC-
Hintikka sets of ϕ, let Πϕ be a set composed of all the atomic actions occurring in ϕ, 
let є1, є2, …, єk be all the action existence assertions contained in cl(ϕ), and let Λϕ = 
Hϕ×(Πϕ∪{⊥})×{0,…,k}. Then, the corresponding Buchi tree automaton Bϕ=(Q,Λ
ϕ,ρ, I, F) is a Buchi tree automaton on k-ary Λϕ-trees, and is constructed as follows:  

(1) Q := Λϕ×{∅, ↑}; 
(2) I := { ((h, π, l), d) ∈Q | ϕ∈h and d=∅ }; 
(3) F := { ((h, π, l), d) ∈Q | d=∅ }; and 
(4) ( ((h0, π0, l0), d0), (h, π, l), ((h1, π1, l1), d1), …, ((hk, πk, lk), dk) )∈ρ if and 

only if 
(i) (h0, π0, l0) = (h, π, l); 
(ii) let T be a conjunction of all the (positive or negative) general concept 

inclusion axioms, (positive or negative) concept assertions, and (positive or negative) 
role assertions contained in h, then, as a Boolean knowledge base, T is consistent; 

(iii) for each 1≤i≤k, if єi∈h0 and єi is of the form <A>ψ, then there exist some 
integer n≥0, some word w=ψ1?...ψn?∈ΣA

* composed of test actions, and some state 
q1∈QA such that {ψ1,...,ψn}⊆h0, q1∈ρA(qA,w) and either ①q1∈FA, ψ∈h0, πi=⊥, li=0, 
or ②there is some atomic action α∈ΣA and some state q2∈QA with q2∈ρA(q1,α), 
єj=<Aq2>ψ∈hi, πi=α and li=j; 

(iv) for each 1≤i≤k, if there is some formula ¬<A>ψ∈h0, some state q∈QA and 
some atomic action α∈ΣA with q∈ρA(qA,α ) and πi=α , then it must be 
¬<Aq>ψ∈hi; 

(v) for each 1≤i≤k, di=↑ if and only if either ①d0=∅, li≠0 and єi∈h, or ②
d0=↑, li≠0 and l0=i. 

The following property holds for the Buchi tree automaton constructed above: 

Theorem 1. An ALC-DL formula ϕ is satisfiable if and only if the language accepted 
by the corresponding Buchi tree automaton Bϕ is not empty. 

This theorem can be proved with a similar process presented in [3]. Due to space 
limitations, we omitted the proof here. 

Let n be the length of ϕ. In the rest of this section, we give an analyses for the 
complexity of the satisfiability problem.  



Firstly, according to the constructions presented above, the cardinality of cl(ϕ) is 
polynomial in n, and the cardinality of Hϕ is at most exponential in n. Therefore, for 
the Buchi tree automaton Bϕ= (Q,Λϕ,ρ, I, F), cardinalities of both Λϕ and Q are at 
most exponential in n. At the same time, since the number of action existence 
assertions contained in cl(ϕ) is polynomial in n, the cardinality of the relationship ρ 
is at most exponential in n. So, the size of the Buchi tree automaton Bϕ is at most 
exponential in n. 

Secondly, during the process of constructing the Buchi tree automaton Bϕ, 
majority of the time is spent on step (4) for checking condition (ii). Since the 
cardinality of each ALC-Hintikka set h is polynomial in n, the size of the Boolean 
knowledge base T is also polynomial in n. So, the time for checking condition (ii) on 
step (4) is at most exponential in n. Since the cardinality of the relationship ρ is at 
most exponential in n too, to sum up, the time used for constructing Bϕ is at most 
exponential in n. 

Finally, since the emptiness problem for Buchi tree automaton is PTIME[6], the 
time used for deciding whether the language accepted by Bϕ is empty or not is at most 
exponential in n. 

To sum up, the complexity upper-bound for deciding whether an ALC-DL 
formula is satisfiable or not is EXPTIME. Together with the fact that the satisfiability 
problem for the propositional dynamic logic is already EXPTIME-complete, we get the 
following result:  

Theorem 2. Satisfiability of ALC-DL formulae is EXPTIME-complete. 

5 Related works 

As a combination of the description logic ALC, the propositional dynamic logic PDL 
and an action theory based on possible models approach, a dynamic description logic 
named DDL is presented in [8] for describing and reasoning about actions. Compared 
with DDL, the logic ALC-DL is also capable for describing the preconditions and 
effects of atomic actions. For example, the formula <α>true→ψ states that the 
formula ψ must be true for the action α to be executed; the formula [α]ϕ states 
that the formula ϕ will be true after the execution of the action α. However, in order 
to set up a complete action theory, some mechanisms out of ALC-DL should be 
introduced to deal with the frame problem and the ramification problem for action 
theories. On the other hand, general concept inclusion axioms contained in TBoxes of 
DDL are restricted to be invariable[9]. However, in ALC-DL, no restrictions are put on 
these knowledge described by the description logic ALC. To sum up, DDL can be 
treated as a special case of the logic ALC-DL. 

By embracing the description logic ALC into the linear temporal logic LTL, a 
linear temporal description logic named ALC-LTL was proposed by Baader et al[5]. 
From the point of view of syntax, ALC-LTL was constructed by replacing all the 
atomic propositions of LTL with ABox assertions and TBox axioms of ALC. The 
satisfiability problem of ALC-LTL was investigated by Baader et al and proved to be 
decidable. In another paper, results on the complexity of this inference problem was 



also demonstrated with the help of the general Buchi automaton[10]. Compared with 
ALC-LTL, the logic ALC-DL is constructed with a similar approach. However, since 
the interpretation structure of ALC-DL is more complex than that of ALC-LTL, we 
have to adopt Buchi tree automaton rather than general Buchi automaton to study the 
satisfiability problem. 

Buchi tree automaton was firstly proposed by Vardi et al[6] and proved to have a 
PTIME complexity on the emptiness problem. The satisfiability problem on formulae 
of the deterministic propositional dynamic logic DPDL was also reduced to the 
emptiness problem by Vardi et al[6], and demonstrated to be EXPTIME. With a similar 
approach, Lutz et al[3] transformed the satisfiability problem of the propositional 
dynamic logic extended with negation of atomic actions into the emptiness problem 
of Buchi tree automaton, and by which demonstrated that the satisfiability problem 
was still decidable with the complexity of EXPTIME-complete. This paper is inspired 
by both Vardi et al.’s work and Lutz et al.’s work. In fact, the Buchi tree automaton 
constructed for ALC-DL formula can be treated as a variant of the Buchi tree 
automaton constructed by Lutz et al[3]. On the one hand, mechanism for dealing with 
negation of atomic actions is deleted from Lutz et al.’s Buchi tree automaton. On the 
other hand, some mechanisms for handling the knowledge described by the 
description logic ALC is introduced here. 

6 Conclusion 

The representation ability of ALC-DL is reflected in two aspects. On the one hand, 
propositions used in the propositional dynamic logic PDL are upgraded to formulas of 
the description logic ALC. Therefore, ALC-DL offers considerable expressive power 
going far beyond PDL, while reasoning is still decidable. On the other hand, ALC-DL 
extends the representation ability of the description logic ALC from static domains to 
dynamic domains. With ALC-DL, knowledge based described by ALC can be 
connected by actions and therefore evolutions of these knowledge based can be 
investigated and well organized.  

One of our future work is to design efficient decision algorithms for ALC-DL. 
Another work is to put ALC-DL into application, by studying the description and 
reasoning of semantic Web services, and the evolution and organization of ontologies. 
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