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Abstract. To improve solution efficiency and automation of assembly sequence 
planning, a symbolic ordered binary decision diagram (OBDD) technique for 
assembly sequence planning problem based on unordered partition with 2 parts 
of a positive integer is proposed. To convert the decomposition of assembly li-
aison graph into solving unordered partition with 2 parts of positive integer N, a 
transformation method from subassembly of the assembly to positive integer N 
is proposed, the judgment methods for the connectivity of a graph and geomet-
rical feasibility of each decomposition combined with symbolic OBDD tech-
nique is proposed too, and all geometrically feasible assembly sequences are 
represented as OBDD-based AND/OR graph. Some applicable experiments 
show that the symbolic OBDD based algorithm can generate feasible assembly 
sequences correctly and completely. 
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1 Introduction 

Assembly sequence planning is to find the feasible or optimal sequence that put the 
initially separated parts of an assembly together to form the assembled product, and 
always plays a key role in determining important characteristics of the tasks of as-
sembly and of the finished assembly. Since 1984, a number of assembly sequence 
planning systems have been developed, such as precedence relations method [1], cut-
set decomposition method [2] and soft computing technique [3], etc. Precedence rela-
tions method based on a set of questions whose answers lead to establishment condi-
tions, from which one can reason the geometrically feasible assembly sequence. 
However, it will become a difficult and error-prone process for all but simplest as-
semblies. Cut-set decomposition method generates the assembly sequences by appli-
cation of cut-set algorithm based on an assumption that the sequence of assembly is 
the reverse of disassembly sequence. This method suffers from the fact that there may 
be an exponential number of candidate cut-sets, and this may lead to the so-called 
combinatorial explosion, but it is easy to be programmed, so that it has been the most 



commonly used method for generating assembly sequence. Soft computing technique 
can find good solutions quickly for complex products, but cannot generate feasible 
assembly sequences completely and cannot find optimal solutions. 

Essentially, generating assembly sequences is one of typical combinatorial com-
puting problem. It is well known that the number of feasible assembly sequences 
increases exponentially with the number of parts or components composing the whole 
products. In recent years, efficient symbolic algorithm based on ordered binary deci-
sion diagram (OBDD) or variant have been devised for hardware verification, model 
checking, testing and optimization of circuit [4,5], and have been demonstrated that 
the symbolic algorithms can deal with large scale problems which traditional algo-
rithm can’t solve. Recently, there has emerged a class of OBDD-based approaches in 
assembly sequence planning. Gu, Xu and Yang proposed symbolic OBDD representa-
tions for mechanical assembly sequences [6], the experimental results show that the 
storage space of OBDD based representation of all the feasible assembly sequences is 
less than that of AND/OR graph do. Gu and Liu developed an symbolic OBDD algo-
rithm for assembly sequence planning which is limited to monotone linear assembly 
[7]. Gu and Xu presented a novel scheme to integrate constraint satisfaction problem 
model with OBDD for the assembly sequence planning, but the procedure consumes a 
lot of time with the problem of backtracking [8]. 

In this regard, this paper references the idea of cut-set decomposition method, and 
integrates unordered partition with 2 parts of a positive integer which is used to gen-
erate all feasible true cut-set with OBDD symbolic technique to generate assembly 
sequence. Based on symbolic OBDD assembly model of liaison graph and translation 
function, the one-to-one correspondence between the parts set of assembly 
V={v0,v1,…,vn-1}and sets W={20,21,…,2n-1} is established firstly, so that any non-
empty subset V′ of V can be represented as a unique positive integer N (1≤N≤2n−1). 
After this, the decompositions of sub-graph of liaison graph with parts set V′ can be 
enumerated by unordered partition with 2 parts of a positive integer, and the connec-
tivity of each segment and geometrical feasibility corresponding to each of decompo-
sitions are checked by symbolic OBDD technique, and all geometrically feasible as-
sembly sequences are represented by OBDD-based AND/OR graph. Finally, some 
applicable experiments show that the novel algorithm can generate feasible assembly 
sequences correctly and completely. 

2 Formulating Assembly Knowledge via OBDD 

Liaison graph is one of the role model for generating assembly sequences. Liaison 
graph is a undirected connected graph G=<V,E>, where V is a set of vertices that rep-
resent parts, and E is a set of edges that represent any of certain user-defined relations 
between parts called liaisons. 

Given an assembly and its liaison graph G=<V,E>, we can convert the liaison 
graph to an OBDD by encoding the parts of the assembly with a length-l binary num-
ber, where l=⎡log2|V|⎤, each parts in V can be encoded as a vector of binary variables 
x=[x0x1…xl-1]. Essentially, the liaisons are a relation on parts, so a liaison (a,b)∈E can 



be encoded as a vector of binary variables [x0x1…xl-1y0y1…yl-1], where [x0x1…xl-1] and 
[y0y1…yl-1] are the encoded binary vectors corresponding to part a and b respectively. 
Hence, the liaison (a,b) can be represented as a Boolean characteristic function: 

 ξ( x0, x1, … , xl-1, y0, y1, …, yl-1)=α0⋅α1⋅…⋅αi ⋅…⋅αl−1⋅β0⋅β1⋅…⋅βi ⋅…βl−1 

where αi is the appearance of variable xi corresponding to i+1 bit code of part a, and 
βi  is the appearance of variable yi corresponding to i+1 bit code of part b. If xi=1, then 
αi =xi, else αi=xi′. If yi=1, then βi =yi, else βi=yi′. Hence, the liaison graph G can be 
represented by the following characteristic function: 

 φC(x, y)= ∑ ξ( x0, x1, … , xl-1, y0, y1, … , yl-1) 

where x=[x0x1…xl-1], y=[y0y1…yl-1]. 
The liaison graph provides only the necessary conditions but not sufficient to as-

sembly two components. To be a feasible assembly operation, it is necessary that 
there is a collision-free path to assembly parts. Gottipolu and Ghosh [9] defined trans-
lational function to represent the relative motion between parts of assembly. 

Translational function T: P×P→{0,1}6, where P is a set of parts, {0,1}6 is a 0-1 
vector space with six dimension, each dimension correspond to the one of six direc-
tions of triorthogonal Cartesian coordinate system. Here, directions 1, 2, 3, 4, 5 and 6 
indicate the six directions +X, +Y, +Z, –X, –Y, and –Z of X, Y and Z axes respectively. 

Let (a, b)∈P×P, the correspond value of T function is 0-1 vector space with six 
dimension (T1(a,b), T2(a,b), T3(a,b), T4(a,b), T5(a,b), T6(a,b)), where Ti(a,b)=1 
(i=1,2,…,6) if the part b has the freedom of translational motion with respect to the 
part a in the direction i, Ti(a,b)=0 if the part b has no freedom of translational motion 
with respect to the part a in the direction i. 

For any part a and b, if Ti(a,b)=1, then it can also be represented by the Boolean 
function ξ( x0, x1, … , xl-1, y0, y1, …, yl-1). Hence, the ith component of translational 
function T can be represented by the following characteristic function: 

0 1 1 0 1 1 0 1 1 0 1 1( , ,..., , , ,..., ) ( , ,..., , , ,..., )
iT l l l lx x x y y y x x x y y yΦ ξ− − − −= ∑  

3 Formulating Subassembly via Integer 

For an assembly with n parts, a subassembly of assembly can be characterized by its 
set of parts, and can be represented by an n-dimensional binary vector [x0x1…xn-1] in 
which the ith component is 1 or 0, respectively, if the ith part is involved in the subas-
sembly or not. So the assembly can be represented by full one binary vector. 

Theorem 1 Let parts set V={v0,v1,…,vn-1}, and a function f(vi)=2i (i=0,1,…, n−1). 
If a function g(x0,x1,…,xn-1)= 

1
( )

i

i
x

f v
=
∑ , where xi=0 or 1, then any integer k 

(1≤k≤2n−1) is correspond to one and only one subassembly. 



Proof. For any k, 1≤k≤2n−1, there must exist an n-dimensional binary vector 
[x0x1…xn-1] such that 

1
( )

i

i
x

f v
=
∑ =k. If xi=1, it means that part vi is involved in the sub-

assembly, otherwise part vi is not involved in the subassembly. 
Assume such an n-dimensional binary vector [x0x1…xn-1] is not unique, then there 

exist at least two n-dimensional binary vectors for the value k. Suppose that   
[x0x1…xn-1] and [y0y1…yn-1] are two n-dimensional binary vectors for the value k. if 
there are only 

1i
x ,

2i
x ,…,

pi
x which have the value 1, where 0≤i1≤i2≤…≤ip≤n−1, then 

g(x0,x1,…xn-1)= 1 22 2 ... 2 pii i+ + + , namely, k= 1 22 2 ... 2 pii i+ + + . If there are only
1j

y ,

2j
y , … ,

qj
y which have the value 1, where 0≤ j1 ≤ j2 ≤ … ≤ jq ≤ n−1, then g(y0,y1,…yn-

1)= 1 22 2 ... 2 qjj j+ + + , that is to say k= 1 22 2 ... 2 qjj j+ + + . Thus 1 22 2 ... 2 pii i+ + + =
1 22 2 ... 2 qjj j+ + + . 
① If k is odd, then it must have i1=0, j1=0, namely, j1=i1. Hence 

3 32 22 2 ... 2 2 2 ... 2p qi ji ji j+ + + = + + +                                 (1) 

Let l= min{i2,i3,…,ip, j2, j3,…, jq}, here might as well assume that l=i2, extract low-
est common multiple 2i in both ends of equation (1), we have 

2 23 2 3 22 2 2 22 (1 2 2 ) 2 (2 2 2 )p qi i j ii i j ii i j i− −− −−+ + + = + +L L  

Hence 

2 23 2 3 22 21 2 2 2 2 2p qi i j ii i j ij i− −− −−+ + + = + + +L L                         (2) 

It is evident that the left of the equation (2) is odd, so there must have 2 22 j i− =1, 
that is j2=i2. Therefore, the following equation holds: 

2 23 2 3 22 2 2 2p qi i j ii i j i− −− −+ + = + +L L                                    (3) 

And it has j3=i3 through the process of the proof similar to that of equation (1). For 
the same reason, there have j4=i4, …, jq=ip. 

② If k is even, it can also proof that j1=i1, j2=i2,…, jq=ip through applying the simi-
lar process of the proof as equation (1).                                                                       � 

For example, the assembly shown in Fig.1 includes 4 parts. We assume that 
f(a)=20, f(b)=21, f(c)=22 and f(d)=23, then according to theorem 1, integer 7 can be 
represent the parts set {a, b, c}. 

4 Generation of Assembly Sequences 

Given an assembly and its liaison graph G=<V, E>, if a decomposition partition the 
graph G into two connected subgraph G1=<V1,E1> and G2=<V2,E2>, where V1∩V2=∅, 
V1∪V2=V, E1⊆V1×V1, E2⊆V2×V2, then this decomposition will be correspond to a 



possible disassembly. In fact, the decomposition of a graph is to divide a set V with n 
parts into two non-intersect subset V1 and V2, such that V1∩V2=∅, V1∪V2=V, and each 
of induced subgraph of subset V1 and V2 are connected. 

          
(a) Assembly               (b) Connection Graph 

Fig. 1.  A Simple Assembly  

Unordered partition with 2 parts of positive integer N is corresponding to a possi-
ble disassembly operation. For the assembly shown in Fig.1, one of the unordered 
partition with 2 parts of integer 15 is 3 and 12, the corresponding disassemble opera-
tion is to disassemble assembly {a,b,c,d} into subassembly {a,b} and {c,d}. So, to 
find all possible disassembly operation is equal to find all unordered partition with 2 
parts of integer N. But it need to check the feasibility of disassembly operation, which 
include two step, one step is check connectivity of each sub-graph after disassemble 
operation, the other step is check geometrical feasibility of two subassembly. 

For an assembly has n parts, the assembly is correspond to integer 2n−1. We as-
sume unordered partition with 2 parts of positive integer 2n−1 is p and q, p is corre-
spond to the parts set V1, and q is correspond to the parts set V2. Judging the connec-
tivity of induced sub-graph of pars set V1 is as follows: 

 H1(x,y)=V1(x) ∧ φC(x,y) ∧ V1(y) (4) 

1 1( ) ( ( ) ( ( , ) ( , ))) ( )New New H H Reached= ∃ ∧ ∨ ∧x y y x y y x x                  (5) 

 Reached(x)=Reached(x) ∨ New(x) (6) 

New(x) and Reached(x) are initialized as any part in V1(x). Equation (5) and equa-
tion (6) are iterative until Reached(x) is not changed or equation Reached(x)=V1(x) is 
hold. If the equation Reached(x)=V1(x) is hold, then the induced sub-graph of pars set 
V1 is connected, otherwise, it is not connected. 

Judging the connectivity of induced sub-graph of parts set V2 is same to V1. 
If both the induced sub-graph of parts set V1 and V2 are connected, checking the 

geometrical feasibility of subassembly V1 and V2 is to check whether the following 
equation is hold: 

 V1(x)∧V2(y)∧
iTΦ (x,y)=V1(x)∧V2(y)    (i=1,2,...,6) (7) 



If for all i, equation (7) is not hold, then the assembly of subassembly V1 to subas-
sembly V2 is not geometrically feasible, otherwise it is geometrically feasible, and 
insert the assemble operation into OBDD-based AND/OR graph ΦS(x,y). 

For example, the assembly shown in Fig.1 includes 4 parts. The pre-state and post-
state of a disassembled operation can be characterized by [x0x1x2x3] and [y0y1y2y3] 
respectively, where x0 and y0, x1 and y1, x2 and y2, x3 and y3 are encoded binary num-
ber corresponding to part a, b, c and d, respectively. If xi=1 then the corresponding 
part is involved in the subassembly, otherwise it is not involved. We still assume that 
f(a)=20, f(b)=21, f(c)=22 and f(d)=23, then the disassembled processes of the assembly 
are shown in table1. 

Table 1.   the disasssembled process of assembly shown in Fig.2 

N p q V1 V2 Disassembled Operation 
15 3 12 {a, b} {c, d} x0′x1′x2x3y0y1y2y3+ 

x0x1x2′x3′y0y1y2y3 
15 7 8 {a, b, c} {d} x0x1x2x3′y0y1y2y3 
3 1 2 {a} {b} x0′x1′x2′x3′ y0y1y2′y3′ 
12 4 8 {c} {d} x0′x1′x2′x3′y0′y1′y2y3 
7 2 5 {b} {a, c} x0x1′x2x3′y0y1y2y3′ 
7 3 4 {a, b} {c} x0x1x2′x3′y0y1y2y3′ 
5 1 4 {a} {c} x0′x1′x2′x3′y0y1′y2y3′ 

 
As shown in Table 1, the Boolean characteristic function of all feasible 

disassembled sequences of the assembly shown in Fig.1 can be formulated as: 
 ΦS(x,y)= x0′x1′x2x3y0y1y2y3+ x0x1x2′x3′y0y1y2y3+ x0x1x2x3′y0y1y2y3+ x0′x1′x2′x3′y0y1y2′y3′+  

x0′x1′x2′x3′y0′y1′y2y3+ x0x1′x2x3′y0y1y2y3′+ x0x1x2′x3′y0y1y2y3′+ x0′x1′x2′x3′y0y1′y2y3′ 

Based on an assumption that the sequence of assembly is the reverse of that of dis-
assembly, the OBDD representation of all feasible assembled sequences of the as-
sembly are shown in Fig.2 (all the edges point to the terminal 0 which is omitted for 
clarity). 

 
Fig. 2. OBDD Representation of Assembled Sequence of the Assembly Shown in Fig.1 
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