SPRUCE: A System for Supporting Urgent
High-Performance Computing

Pete Beckman!, Suman Nadella?, Nick Trebon?, and Ivan Beschastnikh?®

Mathematics and Computer Science Division, Argonne National Laboratory
9700 S. Cass Avenue, Argonne, IL 60439 beckman@mcs.anl.gov
Computation Institute, The University of Chicago/ Argonne National Laboratory
5801 S. Ellis Avenue, Chicago, IL 60637 snadella,ntrebon@uchicago.edu
Computer Science Dept, The University of Washington
Seattle, WA 98195 ivan@cs.washington.edu

Modeling and simulation using high-performance computing are playing an in-
creasingly important role in decision making and prediction. For time-critical
emergency decision support applications, such as influenza modeling and se-
vere weather prediction, late results may be useless. A specialized infrastruc-
ture is needed to provide computational resources quickly. This paper describes
the architecture and implementation of SPRUCE, a system for supporting ur-
gent computing on both traditional supercomputers and distributed comput-
ing Grids. Currently deployed on the TeraGrid, SPRUCE provides users with
“right-of-way tokens” that can be activated from a Web-based portal or Web
service invocation in the event of an urgent computing need. Tokens are trans-
ferrable and can be restricted to specific resource sets and priority levels. Once
a session is activated, job submissions may request elevated priority. Based on
local policy, computing resources can respond, for example, by preempting ac-
tive jobs or raising the job’s priority in the queue. This paper also explores
the strengths and weaknesses of the SPRUCE architecture and token-based
activation for urgent computing applications.

1 Introduction

Scientific computing is playing an ever-increasing role in making critical deci-
sions. For example, global climate modeling played a key role in influencing
the Kyoto Protocol for the reduction of greenhouse gas emissions [1]. Likewise,
computer models have helped large metropolitan areas plan for new highways
and congestion relief [2]. While decision makers would like simulation results
as soon as possible, there is often little urgency or a deadline to complete the
computation. Developing public policy is rarely fast. There are, however, grow-
ing sets of problem domains where key decisions must be made quickly with
the aid of large-scale computation. In these domains, “urgent computing” is
essential, and late results are useless. A computer model capable of determin-
ing where tornadoes will form must provide early warning to local residents.
A computation to predict the flow of airborne contaminants from a ruptured

2 Pete Beckman, Suman Nadella, Nick Trebon, and Ivan Beschastnikh

railcar must guide evacuation while there is still time. These on-demand large-
scale computations cannot wait in a job queue for Grid resources to become
available. However, neither can the scientific community afford to keep multi-
million dollar infrastructures idle until required by an emergency. Instead, we
must develop technologies that can support urgent computation. Scientists need
mechanisms to find, evaluate, select, and launch elevated-priority applications
on high-performance computing (HPC) resources. Those computations might
re-order, preempt, or terminate existing jobs to provide the needed cycles in
time. SPRUCE, the Special PRiority and Urgent Computing Environment, is
a system for providing resources quickly and efficiently to high-priority appli-
cations that must get computational power without delay. This paper makes
two contributions: it presents and analyzes an architecture for supporting ur-
gent computing across large production Grids, and it provides implementation
experiences from the TeraGrid [3] deployment.

1.1 Requirements for Supporting Urgent Computing

Urgent computing can be supported in many ways. Priority queues, admin-
istrative intervention, and emergency stand-by resources could all be used to
provide compute cycles quickly. While these methods may be effective for some
usage scenarios, however, they cannot provide a feature-rich architecture capa-
ble of supporting large, distributed Grids. A Grid-based architecture for urgent
computing must meet the following design requirements:

— Urgent computing jobs must occur within a clearly defined “session.” Sys-
tem administrators are notified when sessions begin, permitting periods of
increased attentiveness and, if needed, human intervention to provide the
resources required.

— The system must support possibly different urgent computing policy frame-
works among Grid resource providers and coexist with ongoing operations.
For example, some HPC centers may support preemption for certain appli-
cations or priorities, while other HPC centers may provide only “run-next”
priority following the normal completion of existing jobs.

— Permission to initiate an urgent computing session must be easily trans-
ferrable so team leaders, managers, and senior personnel can respond quickly
to emergency situations.

— Application team leaders must be able to quickly assemble and authorize sets
of users to submit priority jobs across a Grid that spans multiple sites and
administration domains.

1.2 SPRUCE Architecture

Our architecture for urgent computing uses a token-based system to address
these requirements. Tokens can have various levels of priority and different
sets of resources applicable to them. Initiating an urgent computing session

SPRUCE: A System for Supporting Urgent High-Performance Computing 3

begins with the initialization, or “activation,” of a token via a Web portal or
command line. Tokens are simple authorization codes and therefore completely
transferrable either electronically or on a printed card. This design is based
on existing emergency response systems proven in the field, such as the pri-
ority telephone access system supported by the U.S. Government Emergency
Telecommunications Service within the Department of Homeland Security [4].
Users of the priority telephone access system, such as key managers at hospi-
tals, fire departments, government offices, and 911 centers, carry a wallet-sized
card with an authorization number. Cardholders can use the code to place
high-priority phone calls that jump to the top of the queue for both land- and
cell-based traffic. Even if circuits are completely jammed because of a disaster,
important traffic can get the priority needed. Since tokens are transferrable,
users benefit from tremendous flexibility during critical-response situations.

To support token-based access to elevated-priority resources, the SPRUCE
architecture has three main components: user workflow and client-side job sub-
mission tools, a Web service-based user interface to manage tokens, and local
resource provider agents that can respond to the request for priority access. The
remainder of this paper presents the design and implementation of each of these
components, an analysis of the architecture, and our experiences deploying the
system on the TeraGrid.

2 SPRUCE User Workflow

The SPRUCE workflow is designed for the application teams that can provide
computer-aided decision support. Each application team is organized by its
principal investigator (PI). The PI selects the computational “first responders,”
senior staff who can evaluate the request, initiate a SPRUCE session, and engage
the other team members. The first responders hold the right-of-way tokens
and decide when they should be used based on the best available information
and the policies of the Grid system. The PI also selects an “interpreter” to
translate the raw data and simulation output into advice for decision makers.
For example, imagine an application that models airflow across a city and can
be used to evaluate contamination scenarios. The results of that simulation
may have many subtle details that need interpretation and presentation to city
managers as they formulate response scenarios.

Figure 1 illustrates how the SPRUCE workflow is initiated. A trigger causes
the computational first responders to spring into action. The trigger may be
automatic, such as an automated warning message from a tsunami alarm buoy,
or human generated, for example by a phone call to the PI. For many applica-
tions, the computing request may include a deadline. If the results cannot be
provided before the deadline, the window for effective decision-support will have
passed. The scientists must choose an appropriate priority level for the situa-
tion based on the importance of the job to be submitted. SPRUCE right-of-way
token holders must adhere to the policies concerning activation and must use

4 Pete Beckman, Suman Nadella, Nick Trebon, and Ivan Beschastnikh

Automated s S
Trigger e o
First
Responder

Human Trigger

Activate Token

—

Add Users

Fig. 1. SPRUCE workflow and token activation

discretion, in the same way that citizens are expected to use good judgment
before dialing 911. Users must be aware that misuse can result in the revocation
of their tokens.

Interaction with the SPRUCE system starts by activating a right-of-way
token. A Web-based portal built on Web services is provided, where the token
manipulations can be performed. Additionally, the Web service functionality
may be incorporated into automated work-flows, thereby avoiding human inter-
vention in managing tokens. Activation is described in greater detail in Section
3. Often, running a large simulation involves numerous scientists who are re-
sponsible for tasks ranging from acquiring the most recent data set to producing
a visualization for analysis. The initiator of the SPRUCE session can indicate
which scientist or set of scientists will be able to request elevated priority while
submitting urgent jobs.

2.1 Choosing Resources

When a scientist wants to choose a resource to run on, two factors must be con-
sidered. The application needs to be fine tuned to suit the resource environment,
and the policy pertaining to priority access should be functioning correctly.
With the token activated and the application team specified, scientists can
organize their computation and submit jobs. Naturally, there is no time to port
the application to new platforms or architectures or to try a new compiler.

SPRUCE: A System for Supporting Urgent High-Performance Computing 5

Urgent Computation Request Q
Deadline
e Urgency Level
User Team
J
Live Job/Queue Data
Platform Next Available Job (Policy Based)
NCSA::Cobalt Immediate
q the globus'toolkit > SDSC:Elimidata | (42 min, 128 nodes) ; (168 min, 512 nodes)
o SDSC:Datastar | (5.3 hrs, 1024 nodes) .
MDS4 Service PSC::Rachel Immediate ’;%

Site Policies

Platform Policy i |
NCSA::Cobalt Human-in-the-loop, immediate access, kill
existing jobs, 15 min. turnaround Advisor

SDSC::Datastar Normal priority, no EDS support

SDSC::Elimidata Automated, next job l

PSC::Rachel Automated, immediate access, kill existing
jobs, 10 min turnaround

Warm Standby Validation History

SPRUCE Data

NCSA::Cobalt Tornado 8 days ago 95%
NCSA::Cobalt City Airflow 14 days ago 98%
Best HP
SDSC::Elimidata City Airflow 45 days ago 78% est c
— Resource
SDSC::Elimidata Influenza 30 days ago 59%

Fig. 2. The SPRUCE advisor helps choose the best resource

Applications must be prepared for immediate use—they must be in “warm
standby.” All of the application development, testing, and tuning must be com-
plete before freezing the code and marking it ready for urgent computation.
Grids such as the TeraGrid have dozens of large-scale computational resources.
The SPRUCE architecture supports large, diverse Grids; but ultimately the
science teams must select the best resources for their application. Maintaining
and validating the accuracy of a simulation require programmer resources, and
often application teams narrow their efforts to a handful of favorite platforms
and sites. Additionally, these sites should have their priority policy in place
and all the hooks needed to implement it immediately when needed. In the
same way that emergency equipment, personnel, and procedures are periodi-
cally tested for preparedness and flawless operation, SPRUCE proposes to have
applications and policies in warm standby mode, being periodically tested and
their date of last validation recorded.

From this pool of Grid resources where the validated application awaits in
warm standby, the team must select where to submit their jobs. This process can
be challenging. In a distributed Grid linking resources provided by independent
resource providers, different urgent computing policies will exist. One site may
provide only a slightly increased priority to SPRUCE jobs, while another site

6 Pete Beckman, Suman Nadella, Nick Trebon, and Ivan Beschastnikh

may kill running jobs and hand the entire supercomputer to extremely urgent
computations. On resources where existing jobs are not killed or preempted, cur-
rent job load will affect resource selection. Data movement may also constrain
resource selection. To support finding and choosing resources, SPRUCE users
may select resources manually or may use an automated SPRUCE “advisor”
(see Figure 2).

The proposed SPRUCE advisor needs four pieces of data to recommend
where jobs should be submitted: the deadline for results, the estimated running
time of the job, each site’s urgent computing policy expressed as a schedul-
ing algorithm for SPRUCE jobs, and the current status of job queues at the
resource sites, which can be provided via MDS4 [5] on the TeraGrid. By combin-
ing these parameters with the application validation histories for each resource,
several resources can be recommended or even automatically selected. If man-
ual selection of the resource is preferred, the user may analyze the job queue
status reports from MDS4 and examine previous warm standby results from
the SPRUCE database to make a decision. Once the resource is selected, the
user submits the job with a designated urgency.

2.2 Prioritized Job Submission

SPRUCE provides support for both Globus-based urgent submissions and di-
rect submission to local job-queuing systems. Currently all the major resource
managers such as Torque, LoadLeveler, and LSF and schedulers such as Moab,
Maui, PBS Pro, and Catalina are supported. The system can be extended to
any scheduler with little effort. Authorized users who have active tokens need
only to specify an additional “urgency” parameter when submitting their jobs.

The Globus Toolkit [6] for Grid computing provides the TeraGrid with uni-
form tools for authentication, job submission, file transfer, and resource de-
scription. Users can submit remote jobs to any of the TeraGrid platforms. By
extending the Resource Specification Language (RSL) [7], which is used by
Globus to identify user-specific resource requests, we give the user the ability
to indicate a level of urgency for jobs. A new “urgency” parameter is defined
for three levels: critical (red), high (orange), and important (yellow). Urgency
levels are used in two places. Gridwide policies and guidelines can help scientists
organize and differentiate potentially competing jobs by urgency. On the back
end, the resource provider can enable site-local response protocols according to
urgency.

The urgency can be specified within a Globus submission job script. Figure
3 shows an example. The site-local job manager agents check for validity of the
request based on the token attributes applicable to that particular user and
respond accordingly.

Unlike the Globus RSL, local job queue submission interfaces, such as the
PBS command gsub [8], are often not trivially extended to accept new param-
eters. To specify the urgency level when submitting directly to a computer’s

SPRUCE: A System for Supporting Urgent High-Performance Computing 7

> more globus_test.rsl

+

(&

(resourceManagerContact =
site-contact.teragrid.org/jobmanager-spruce)
(rsl_substitution =

(HOMEDIR "/soft/spruce/examples"))
(executable = $(HOMEDIR)/mpihello)
(jobType = mpi)

(host_types = ia64-compute)
(host_xcount = 4)

(urgency = red)

(stdout = $(HOMEDIR)/globus_stdout)
(stderr = $(HOMEDIR)/globus_stderr)
)

> globusrun -o f globus_test.rsl
Jobnumber.resource.teragrid.org

Fig. 3. globusrun usage with additional job submission parameters

local job queue usually requires a modified job submission command or a wrap-
per script. SPRUCE provides a spruce_sub script that accepts the additional
command line parameter, which can be yellow, orange, or red depending on the
required priority.

From the user’s perspective, with the job submitted, the final step to the
workflow is waiting for the job to be run and the data analyzed. If the resource
does not launch the job as expected or if there are run-time errors, the job can
be killed or dequeued by using the normally supported tools for the system.
Behind the scenes, during the submission process the job is also checked against
activated right-of-way tokens. Jobs for users without valid session tokens or
unauthorized urgency levels will not be queued. They are rejected immediately.
The authorization mechanism is described in the next section.

3 SPRUCE Portal

The SPRUCE portal provides a single-point of administration and authorization
for urgent computing across an entire Grid. It consists of three parts:

— The Web-based administrative interface lets privileged users use a standard
Web browser to create, issue, monitor, and deactivate right-of-way tokens. It
also allows SPRUCE administrators to manage the portal, including adding
other administrators, registering new resources, and changing notification
email addresses.

— The Web service-based user interface permits token holders to activate an
urgent computing session and manage user permissions. Additional features
include monitoring session and user information.

8 Pete Beckman, Suman Nadella, Nick Trebon, and Ivan Beschastnikh

— The authentication service verifies jobs. Local site job manager agents ask
the remote SPRUCE portal to validate urgent computing jobs. Provided that
the user is associated with an active urgent computing session for the local
resource and the requested level is within bounds, the portal approves the
request.

3.1 Right-of-Way Tokens

Many possible implementations exist for authorizing an emergency computa-
tion, ranging from digital certificates, signed files, and proxy authentication
servers to shared-secret passwords. In emergency situations, however, simpler
is better. Relying on complex digital authentication and authorization schemes
could easily become a stumbling block to timely response. Instead, SPRUCE
uses simple, transferrable right-of-way tokens (see Figure 4). Tokens are unique
16-character strings that are issued to scientists who have permission to re-
quest urgent priority. When a token is created, several important attributes are
set: the resource list of included machines, maximum allowable priority, lifetime
(period for which elevated priority jobs may be submitted), and expiration date
of the token.

Sites can enforce their own policies for each of the allowed priorities. The
intent is to have jobs with higher priority displace lower-priority jobs if resources
are limited during instances of simultaneous requests. By carefully selecting the
attributes of tokens when they are created, local site administrators can make
decisions regarding the relative importance of projects and the resources they
may use for urgent computation. SPRUCE can support distributed computation
in the form of “cross-site” tokens for which resources at multiple sites, or even
all resources in the Grid, can be utilized. After a token’s lifetime has run out,
another token must be activated if additional priority computation is required.

P

L

SPRUCE W

Urgent Computing
Right-of-Way Token

spruce.teragrid.org

Inblﬁ]
©

TeraGrid”

Fig. 4. SPRUCE “right-of-way” token

We emphasize that the right-of-way token is not related to machine access
or authentication. Users must already have an account and be able to log on
and authenticate in the traditional manner. The token allows the user only

SPRUCE: A System for Supporting Urgent High-Performance Computing 9

to request elevated priority for job submission. Without the token, requests
for elevated job priority are simply logged and then ignored. Moreover, after
activating the token, only jobs submitted with special, elevated-priority job
parameters, described in Section 2.2, will receive unique treatment.

3.2 Administration Interface

Distributed Grids have multiple administration domains. Some Gridwide poli-
cies and procedures can be set for all participating resource providers. For the
TeraGrid, the Grid Infrastructure Group (GIG) coordinates the software in-
frastructure, allocation and usage reporting, user support, and Grid security.
While each resource provider, such as the San Diego Supercomputer Center,
the University of Chicago, or the Texas Advanced Computing Center, has a
loosely defined “service level agreement” for participation in the TeraGrid, they
are nevertheless independent organizations. To support multiple administration
domains and virtual organizations across multiple overlapping Grid systems,
SPRUCE maintains a hierarchical Web-based administration interface, which
is organized into three levels, each granted powers within its respective domain.
Ordered by increasing privileges, these are the site (Grid resource provider),
virtual organization, and root administrative domains. Figure 5 illustrates the
hierarchical nature of the admin interface.

Site Admin Site Admin Site Admin Site Admin
* Manage *Manage *Manage * Manage
site tokens site tokens site tokens site tokens
Virtual Org Admin Virtual Org Admin
*Manage site resources *Manage site resources
*User management *User management
*Cross-site tokens *Cross-site tokens
Root Admin

*Manage virtual organizations
=Administrator access to all portal functions

Fig. 5. SPRUCE portal hierarchy of functionality

To permit possibly differing resource and management policies at each site,
SPRUCE supports multiple sites under a virtual organization. A token created
by a site administrator may be used only for resources present at that site. This
strategy enables the site administrator to use SPRUCE in the wider context
of a large multisite Grid as well as privately, for local machines and users. The
administrator may create and distribute tokens that are limited in scope to the
computers the site operates. For example, a local earthquake-modeling team
working with an HPC center can be presented tokens that are valid only on the

10 Pete Beckman, Suman Nadella, Nick Trebon, and Ivan Beschastnikh

specific supercomputer designated for that research. The local administrator is
also responsible for managing the identities of local users as well as the list of
machine hosts supporting SPRUCE.

The next level of administration is for the virtual organization spanning
several sites, such as the TeraGrid. The administrator for the TeraGrid GIG
may issue tokens for resources at multiple sites, in accordance with the policies
and service level agreement and management structure of the Grid system.
Activating a cross-site token provides users a large collection of machines spread
across multiple sites for their jobs. At this level the administrator for the virtual
organization can also add new sites.

Administrators also have access to the logging and status information main-
tained by the portal. Included among this data are the token activation statistics
and monitoring of failed attempts to use elevated privilege.

3.3 User Interface

The users of the SPRUCE user interface are the scientists responsible for orga-
nizing the application team. Their tasks include monitoring the status of tokens,
activating sessions, and organizing the team that may participate in an urgent
computing session. The interface for this user community must be simple, fast,
and modeled after the workflow described earlier in Section 2. The user services
are specifically designed as Web services in order to enable incorporation into
existing scientific Web portals and work flows. Users who prefer to use a Web-
based interface, can do so at the SPRUCE user portal, which is built on top of
these services.

The first step for a computational first responder is to activate a token by
entering its 16-digit code via a Web service call either from a local workflow or
from the SPRUCE portal. At that instant, the urgent computing session begins.
We expect typical token lifetimes to range from 4 to 24 hours, during which the
submission of priority jobs to the resources is permitted.

With the token activated and the session begun, the next step in the work-
flow is user management. For convenience during an emergency, the users who
will be running the jobs can be “preloaded” onto a token, if known prior. If not,
the participants of the session can be added after token activation. Changes to
the user associations of a token are propagated without delay. After a partici-
pant is associated with an active token, urgent computing jobs will authenticate
correctly. Token holders can also remove participants as needed. All SPRUCE
users may monitor basic statistics such as the remaining lifetime of the token.

Since SPRUCE supports urgent computing for Grid users as well as tradi-
tional supercomputing users, the portal maintains two methods for specifying
the participants in an active session. For those users with Grid credentials,
the Distinguished Name (DN) for the user is appropriate. Sites without Grid
support can use the Unix username of the participant for the resource.

SPRUCE: A System for Supporting Urgent High-Performance Computing 11

3.4 Job Authentication

At the core of the SPRUCE architecture is the notion that only while a right-
of-way token is active may urgent jobs be submitted. In order to support this
notion across a distributed Grid system, a remote authentication step must be
inserted into the job submission toolchain for each resource supporting urgent
computation. Since the SPRUCE portal contains the updated information re-
garding active sessions and users permitted to submit urgent jobs, it is also the
natural point for authentication.

When an urgent computing job is submitted via Globus or the local queue
system, the urgent priority parameters triggers authentication. Remember, this
authentication is not for the user, which has already been handled by the tradi-
tional Grid certificate or by logging into the Unix-based resource, but is really
a “Mother, may I” request for permission to enqueue a high-priority job. That
request is sent via the network to the SPRUCE portal, where it is checked
against active tokens, resource names, maximum priority, and associated users.
If a right-of-way token has already been activated and the other parameters for
the job request are within the constraints of the token, permission is granted.
All transactions, successful and unsuccessful, are logged.

4 Resource Providers

To support urgent computing for supercomputers via the SPRUCE system,
the resource provider must take three actions: register with the SPRUCE por-
tal, formulate a resource specific policy for responding to urgent computing
requests, and install SPRUCE components that interface with the job manager
and queuing system.

4.1 Portal Registration

Sites participating in SPRUCE need an administrative account on the SPRUCE
portal. From that account, administrators can provide the details for each of the
computational resources that will support urgent jobs. The site administrator
will also provide important contact information that can be used for emergency
notification, for example when tokens are activated or critical errors occur.
Once that preliminary information has been set up, the administrator may
begin generating and issuing right-of-way tokens. If the site is a member of a
larger distributed Grid system that is already a part of SPRUCE, it may be
merged with the corresponding virtual organization.

4.2 Responding to Urgent Computation

The SPRUCE architecture does not define or assume any particular policy
for how sites must respond to urgent computing requests. This approach com-
plicates the architecture and usage scenarios, but it is unavoidable given the

12 Pete Beckman, Suman Nadella, Nick Trebon, and Ivan Beschastnikh

current state of systems software for supercomputers. When small-memory vec-
tor computers were the standard for HPC computing, preempting jobs was
natively supported. Long-running jobs were routinely suspended, not to sup-
port urgent decision calculations, but simply to permit shorter jobs to achieve
fast turnaround times during compile or debug sessions. Unfortunately, almost
all modern supercomputers have lost this once key feature, and therefore the
SPRUCE architecture cannot simply standardize the strategy for responding to
urgent computation as immediate preemption. Instead, we are left with many
possible choices for supporting urgent computation depending on the systems
software and middleware as well as on constraints based on accounting for CPU
cycles, machine usability, and user acceptance. Given the current technology for
Linux clusters and more tightly integrated systems such as the Cray XT3 and
the IBM Blue Gene, the following responses to an urgent computing request
are some of the possibilities:

— Scheduling the urgent job as “next to run” in a priority queue. This approach
is simple and is highly recommended as a possible response for all resource
providers. All modern queuing and job management systems support priority
queues that will used for selecting the next job to run. No existing compu-
tation is killed; and from the perspective of the user community, the impact
on normal use is low. The urgent job will begin when all of the existing jobs
complete for a given set of CPUs.

— Suspending existing jobs and immediately launching the urgent job. Some sys-
tems allow jobs to be suspended but remain resident in memory (sig STOP).
Running the urgent job will then force some memory paging, but the sus-
pended job could be restarted later. Some applications that use external data
sources and network connections may fail (connections time out and reset) if
they are suspended. If a node crashes, the suspended and the urgent job will
be lost. The urgent compuitation will begin almost immediately, making this
option very attractive in some cases.

— Forcing a checkpoint /restart of running jobs and enqueueing the urgent job
as the next to run. This response is similar to the previous response. Some
architectures support system-based checkpoint/restart. Where it is reliable,
it could be used to support urgent jobs. Jobs will begin when the check-
point completes. For large-memory systems, it could be 30 minutes or more
depending on I/O and disk rates.

— Killing all running jobs and enqueuing the urgent job as next to run. Clearly
this response is drastic and frustrating to users, who will lose their com-
putation. Nevertheless, for extremely urgent computation, what user would
demand a black-hole simulation complete before launching an emergency hur-
ricane flood modeling scenario? Urgent jobs could begin immediately after
existing jobs are killed.

Another factor in choosing the policy for response is accounting and stake-
holder accountability. Certain machines are funded for specific activities, and
only small amounts of discretionary time are permitted. In some cases, there

SPRUCE: A System for Supporting Urgent High-Performance Computing 13

may be no specific “charge code” for urgent computing cycles. Furthermore, in
order to improve fairness, some form of compensation could be provided to jobs
that are killed to make room for an urgent one. For example, users could be
refunded their CPU hours, given extra time for their trouble, and rescheduled
with higher priority. They could then get back on the machine quickly after the
urgent job completes, rather than being relegated to the back of the job queue.

Another idea is to provide discounted CPU cycles for jobs that are will-
ing to be terminated to make room for urgent computation. Some users have
extremely robust and well-integrated problem solving environments that can
perform checkpoint /restart easily. Some users design their software so only one
or two hours of work are lost should a CPU fail or the entire system go down.
Such users should be rewarded. A discounted rate would allow them to regain
their lost work and run more inexpensively.

The calculation of “maximum time to begin” may play an important role
in choosing a response strategy. For machines that support checkpoint/restart
or simply killing existing jobs, the maximum time to begin can be bounded,
possibly on the order of a few minutes to tens of minutes. If it is easy to calculate
or determine, it can be used in conjunction with the computation deadline for
selecting resources. Unfortunately, jobs with next-to-run priority could wait
hours or days before existing jobs complete. In any case, resource providers are
encouraged to map all three levels of urgency—critical, high, and important—to
clearly defined responses.

Once the resource provider has decided on a policy and has installed
SPRUCE, token holders can activate tokens and associate users, who will then
submit urgent priority jobs in one of two ways. Jobs can request priority access
by specifying urgency parameters either in Globus job submissions or by using
a stand-alone command line spruce_sub as described in Section 2.2. These re-
quests are processed by the SPRUCE Job Manager component, which verifies
the job request and implements the local policy.

Figure 6 gives an overview of how the job requests are handled at the re-
source provider.

4.3 Handling Urgent Job Submissions

In the Globus architecture, incoming jobs are routed to a job manager. A job
manager tailored to support SPRUCE handles the additional job parameters.
When an urgent SPRUCE job is submitted, a job script is dynamically assem-
bled and passed to the native resource manager such as PBS Pro or Torque. It
then authenticates the request against the portal (see Section 3.4). This filter
makes sure that all job scripts were prepared by the job manager rather than a
user attempting to sneak a job into the high-priority queue without SPRUCE
validation. In the case of the Torque scheduler, a submit-filter [9] script specific
to SPRUCE is run every time a job is submitted. If the user does not have suf-
ficient permission, the request is rejected. If the request passes the verification

14 Pete Beckman, Suman Nadella, Nick Trebon, and Ivan Beschastnikh

User Team X

)
+ SPRUCE Job
Authentication

Urgent Computing
Job Submission /
Conventional

Job Submission
Parameters

S

3 Priority Job
ﬁ Queue
. SPRUCE Job
Urgent Computing *
Parameters Manager

_____________ I
Local Site
Policies
a

Supercomputer
Resource

Fig. 6. Resource provider architecture

stage, the actions needed to grant urgent access are performed based on the lo-
cal site policy and the requested priority level. After verification, the native job
scheduler sends the job ID back to Globus, and when the requested resources
become available, the queued job is launched.

Local sites can also support the command line version of the urgency job
submission mechanism in the form of spruce_sub. Submission requests of this
type are also routed through the SPRUCE job manager; hence the implemen-
tation mechanism remains the same. The only difference between these two
submission methods is in the interface.

5 Experiences and Analysis

Currently, SPRUCE is deployed on University of Chicago/Argonne National
Laboratory (UC/ANL), Purdue University, Texas Advanced Computing Cen-
ter (TACC), San Diego Supercomputing Center (SDSC), National Center for
Supercomputing Applications (NCSA) TeraGrid resource providers and is in
the process of being deployed at Indiana University. Louisiana State University
is one of our early non-TeraGrid adopters to use the system for the coastal
modeling project SCOOP [10]. We are working with the LEAD Project [11] as
they gear up to run severe weather simulations in response to real-time weather
data. Tokens are distributed to key members who will act as test users of the

SPRUCE: A System for Supporting Urgent High-Performance Computing 15

system. Efforts are ongoing to configure the applications for periodic warm-
standby tests.

The existing implementation of the system encapsulates all the basic frame-
work necessary to allow urgent job submissions. Team first responders can
activate and associate user identities with tokens. Team members can then
submit jobs with next-to-run priority. The hierarchical administrative domains
described in Section 3.2 allow site administrators to manage local tokens.

At the moment, Globus submissions are restricted to the use of the globusrun
command, and the direct submissions tool spruce_sub does not handle command
line PBS options. All three priority levels map to the next-to-run policy imple-
mented as a priority queue. There are customized distributions to work with
most of the popular resource managers and schedulers, as mentioned in Section
2.2. All of them are compatible with pre-Web services versions of the Globus
Toolkit. Work is under way to extend the flexibility of the submission tools,
enable multisite submissions, and provide extended policy support.

The SPRUCE architecture is designed to work independently or as a part of
the Globus installation. The biggest strength of the design is its flexibility: the
ability to adapt to any environment it might be interfaced with. The user func-
tionality is implemented completely as Web services using Apache AXIS 2 [12].
External portals and workflows can simply use the Web service interfaces from
within their applications. The portal is implemented in PHP and MySQL, uses
the underlying Web services, and runs on the Apache Web server. Using a sim-
ple Web browser, SPRUCE users can interact with the system. Only minimal
additional training is needed, making SPRUCE appropriate for emergency sit-
uations. Likewise, administrators will find the interface easy to navigate and
use regardless of their environment.

One drawback of the current design of the architecture is that there exists
a single point of failure in the form of the portal. If the SPRUCE portal goes
down or the user cannot access it, there is no way other way to route the urgent
jobs. In order to counteract this weakness, the portal will require redundancy
and remote fail-over locations. The existing version of the portal is also subject
to the same variety of attacks as other Internet Web servers, including denial of
service, spoofing, and abuse of software vulnerabilities. These and other exploits
are current research topics and have received considerable attention; we hope
to take advantage of these efforts in our future work.

Another challenge is to allow local sites to establish their own policies while
keeping SPRUCE installation as simple as possible. Each site needs a cus-
tomized version of the job manager depending on site policy and scheduler,
which cannot be bundled into a common distribution. Hence, site administra-
tors must make minor modifications to the distributed SPRUCE job manager
to work with their systems.

16 Pete Beckman, Suman Nadella, Nick Trebon, and Ivan Beschastnikh
6 Future Work

Two of the most attractive and challenging components of the architecture re-
main to be implemented: the advisor and automated warm-standby testing.
SPRUCE jobs are emergency codes that require active maintenance and have
certain dependencies that must be taken into account by the SPRUCE advisor
before suggesting possible scheduling scenarios to the user. Job-specific infor-
mation such as running time, data dependencies, and other possible computer-
specific characterizations must be collected periodically to ensure that the most
recent information is used by the advisor. Warm standby will automate what
many users currently do by hand and will ensure the reliability of the monitored
emergency codes. It will also help us validate the policy enforcement from time
to time. Work is in progress to implement both features by using the INCA
monitoring system [13] and MDS4 of the Globus Toolkit. Warm-standby appli-
cations require substantial programmer effort, CPU time dedicated to periodic
test runs, and fast data transfer. Since the user applications can best be tested
for their readiness in the actual environment of the person who will be submit-
ting the job, INCA needs to be customized to submit jobs as the user or collect
the data on behalf of the user.

We also plan to incorporate more flexibility to job submissions. Token hold-
ers should be able to aggregate tokens and submit jobs from the portal directly.
Such flexibility will make SPRUCE a one-stop place to get priority access, select
a resource, and submit urgent jobs.

The presented SPRUCE architecture doesn’t deal with data movement,
which is crucial for most high-performance computations. The advisor will need
to take into account transfer delays associated with data movement before ad-
vising on the best set of resources. Warm-standby jobs will also have data
dependencies that must be resolved automatically. Existing data movement
strategies and tools such as the GridFTP project [14] will facilitate SPRUCE.
Token-based network authorization would also be a good fit for network provi-
sioning [15].

7 Conclusions

In this paper we have presented the architecture of SPRUCE, a token-based
service for providing urgent access to high-performance computing resources
modeled after the U.S high-priority telephone system in wide deployment to-
day. The use of tokens allows urgent access to be physically transferrable, and
the tokens have restricted access that is encoded prior to their issue. Tokens
have expiration dates and lifetimes and may be redeemed only on resources that
have been previously encoded into the token. A Web service-based user interface
lets scientists manage their tokens easily and efficiently. Moreover, tokens are
thoroughly tracked, and all user actions may be monitored by a three-tier hierar-
chy of administrative domains allowing site, virtual organization, and SPRUCE
administrators to enforce policies relevant to their administrative domain.

SPRUCE: A System for Supporting Urgent High-Performance Computing 17

We have also shown our initial results and an analysis of the architecture
for our first TeraGrid customers at the University of Chicago, TACC, SDSC,
Purdue University, and NCSA. Currently, we are working on integrating into
LEAD portal so scientists can use SPRUCE within their infrastructure. We
anticipate significant new developments as more TeraGrid sites and user com-
munities bring SPRUCE support online, including an advanced warm-standby
system for periodic testing of emergency codes and policies, a resource selection
advisor, and extensions to provide an urgent data movement capability.

References

1. C. D. Keeling, R. B. Bacastow, and T. P. Whorf, “Measurements of the concen-
tration of carbon dioxide at Mauna Loa Observatory, Hawaii,” Carbon Dioxide
Review, pp. 377 — 385, 1982.

2. K. Nagel, R. Beckman, and C. Barrett, “Transmins for transportation planning,”

in 6th Int. Conf. on Computers in Urban Planning and Urban Management, 1999.

“TeraGrid Project,” http://www.teragrid.org.

“Telecommunications Service Priority (TSP) program,” http://tsp.ncs.gov.

5. J. Schopf, M. D’Arcy, N. Miller, L. Pearlman, I. Foster, and C. Kesselman, “Moni-
toring and discovery in a Web services framework: Functionality and performance
of the Globus Toolkit’s MDS4,” Argonne National Laboratory, Tech. Rep., 2005.

6. I. Foster, “Globus toolkit version 4: Software for service-oriented systems,” in [FIP
International Conference on Network and Parallel Computing, 2005, pp. 2—13.

7. “Globus Resource Specification = Language,” http://www.globus.org/
toolkit/docs/2.4/gram/rsl_specl.html.

8. “PBS ‘gsub’ Job Submission Tool,” http://www.clusterresources.com/
products/torque/docs20/commands/qgsub.shtml.

- w

9. “Torque Submit Filter,” http://www.clusterresources.com/products/torque
/docs20/a.jqsubwrapper.shtml.
10. “Sura Coastal Ocean Observing and Prediction,”

http://www.scoop.lsu.edu/gridsphere/gridsphere.

11. “Linked Environments for Atmospheric Discovery (LEAD),” http://lead.ou.edu/.

12. “Apache AXIS 2,” http://ws.apache.org/axis/.

13. “Test Harness and Reporting Framework (INCA),” http://inca.sdsc.edu.

14. “GridFTP Project,” http://www.globus.org/grid_software/data/gridftp.php.

15. L. Gommans, F. Travostino, John, Vollbrecht, C. de Laat, and R. Meijer, “Token-
based authorization of connection oriented network resources,” in GRIDNETS
Conference Proceedings, October 2004.

