
  

PythonCLServiceTool: A Utility for 
Wrapping Command-Line Applications for 
The Grid 
David E. Konerding and Keith R. Jackson 

Distributed Systems Department 

Lawrence Berkeley National Laboratory, 

Berkeley, CA 94720 

California, USA 

[dekonerding,krjackson]@lbl.gov 

WWW project page: http://dsd.lbl.gov/gtg/projects/PythonCLServiceTool/ 
  

Abstract. 

The international science community has invested large amounts of money in 
developing numerical and computational codes for everything from basic math 
to application specific codes. These codes are now a vital part of the scientific 
process. However, running these codes can be challenging. Many require a 
highly specialized environment, and may only run in a few locations. To 
maximize the usage of these codes, it is necessary to enable network access to 
them. We discuss our recent work in developing automated tools to enable 
network access to command line applications using Grid[1] tools. 



2 WWW project page: http://dsd.lbl.gov/gtg/projects/PythonCLServiceTool/ 
 

1. Introduction 

The international science community has invested large amounts of money to 
develop numerical and computational codes for everything from basic math libraries 
to application specific codes. These codes are now a vital part of the scientific 
process. However, their usage often requires a specialized environment, and may 
only run in a small number of locations. To maximize the usage of these codes, it is 
necessary to enable remote network access to them. In this paper we will discuss our 
work to use Grid technologies to expose numerical/computational codes as Grid 
services. A Grid service is simply a network accessible service that uses standard 
protocols to describe its interface and for access. Typically today these protocols are 
based on industry standard Web Services[2]. 

 
We will begin the paper by looking at related work in the Web Service area. We 

will then look at the architecture of our system, PyCLST (Python Command Line 
Service Tool). After examining the overall architecture, we will look at a concrete 
example of PyCLST usage. Following a brief look at performance, we will discuss 
our future plans and conclusions. 

2. Related Work 

There are several existing software products which provide similar functionality to 
PyCLST.  SOAP::Clean[3] (written in Perl) and O’SOAP[4] (written in O’CAML) 
served as the initial inspiration for PyCLST and provide a limited set of the 
functionality in PyCLST.  The primary difference between PyCLST and 
SOAP::Clean/O’SOAP is that PyCLST is architected around Grid standards rather 
than plain SOAP[5].  This has a number of implications including:  

1. Grid services enhance the security support in SOAP.  SOAP lacks a 
standard authorization mechanism.  Many Grids use a standard 
authorization mechanism based on a gridmap file. Grid security[6] also 
provides single-sign-on to reduce the number of times a user must enter 
their password. Another important feature Grid services offer is delegation. 
Delegation allows a user to grant some sub-set of her rights to a third-party. 
For example, after a computational job has run, output files might need to 
be moved to tertiary storage. While the user could manually move the files, 
it would be easier to have the computational service move them for her. 
Delegation allows the user to grant the service the right to interact with the 
tertiary storage system on her behalf. 

2. SOAP has limited support for data transport.  Binary data must be base-64 
encoded which adds a 33% overhead, and large files must be broken into 
chunks for efficient transfer.  Grid services provide efficient, high-
performance, and secure data transport.  We will use the standard 
GridFTP[7] protocol to transfer large input and output files between clients 
and services.  

3. SOAP has no standard support for building stateful web services.  Each 
SOAP service typically does this in an ad-hoc manner. Some use cookies, 



PythonCLServiceTool: A Utility for Wrapping Command-Line Applications for The 
Grid

3

 
others pass session identifiers with each SOAP message, but there is no 
standard way to manage state in Web Services. Grid services adopt the WS-
Resource Framework[8] set of standards to provide state management. In 
particular, the Resource Context subset of WS-RF provides a unique 
“handle” shared between the service and client that refers to a particular 
request stream.  The WS-Lifetime subset is used to manage the lifecycle of 
the service (create and destroy a resource context) and WS-
ResourceProperty is used to manipulate meta-data associated with the 
service and provide a substrate for state change notification. 

4. SOAP has no support for asynchronous notifications, so the command line 
client needs to periodically poll the server for result data or keep a request 
open for a long time. Grid services adopt the WS-Notification[9] to provide 
asynchronous notifications. 

 
Each of these features is used by PythonCLServiceTool to provide enhanced 

functionality relative to SOAP::Clean and O’SOAP.  Further, because client 
computers commonly have firewalls that prevent WS-Notification data being 
retrieved, we include code that detects and works around firewalls using a polling-
based, rather than callback-based, response mechanism. 

 
Kepler[10], an open source workflow execution tool built on the Ptolemy 

Framework[11], has a Web Service Harvester.  The Harvester inspects WSDL[12] 
files and builds workflow actors which are capable of accessing the service defined 
by the WSDL file.  This allows users to easily interface Kepler with existing web 
services without having to write code for new actors.  Many other systems provide 
similar functionality, however, unlike PythonCLServiceTool, these tools are only 
used to generate client bindings to an existing service. Because 
PythonCLServiceTool exposes command-line applications using a standard web 
service interface and provides a WSDL file describing the service, tools like the Web 
Service Harvester can be used to generate their own clients to the wrapped service. 

3. Architecture 

3.1 Overview of general architecture 

Developers configure PythonCLServiceTool clients and servers using a simple user-
written configuration file containing named sections populated by key/value pairs.  
Because all PythonCLServiceTool clients and servers have a great deal of common 
functionality with just a small amount of command-specific generated code, a 
collection of template files are interpolated at client/server generation time.  The 
command line parsing code is generated programmatically. 

 
PythonCLServiceTool uses several existing Python frameworks rather than 

duplicating existing functionality.  PythonCLServiceTool uses an asynchronous I/O 



4 WWW project page: http://dsd.lbl.gov/gtg/projects/PythonCLServiceTool/ 
 

framework called Twisted[13] for grid and web service communications, as well as 
external process management.  Because the service can handle multiple simultaneous 
requests without delay, we needed an asynchronous I/O library.  Without this 
functionality, the service would block on data send/receive operations and on process 
launching/management.   

 
PythonCLServiceTool co-opts an existing standard Python framework used for 

packaging and distributing software called setuptools[14] for generating clients and 
servers.  Setuptools provides an extensive plug-in framework normally intended for 
package installation, but we also use it for template substitution and service 
configuration and deployment.  Optionally, the runtime and configuration files for 
the server can be packaged into a single executable file for easy server deployment.   
PythonCLServiceTool uses the setuptools bdist_egg and bdist_wininst features to 
build a self-contained installer containing the entire service or client runtimes.   

 
The PythonCLServiceTool server generation process creates a Twisted server, 

the server configuration file, and the necessary runtime code for running the server.  
The PythonCLServiceTool client generation process creates a Twisted client, a client 
configuration file, and the necessary runtime code for running the client.  Optionally 
the runtime and configuration files for the client can be packaged into a single 
executable file for easy client distribution.  The client interface is intended to be 
exactly like the command line interface. It uses the same flags, and ideally should be 
a direct replacement for the command line application. However, because the client 
and server processes run in different file system contexts, and users will want to run 
jobs on files stored on the client computer, PyCLST adds a special syntax to the 
command-line shell that indicates that the referred-to file should be transferred to the 
server before job execution.  

 
To ensure that only valid users may access deployed services, PyCLST supports 

the standard grid-map-file format which is used by the Globus Toolkit®[15] to 
authorize users based on the subject name contained in their X.509[16] certificate.  
Also, if the PyCLST server is run with super-user privileges, it will change identity 
to run the application as the local user specified in the map-file. 

 

3.2 Configuration file format.   

The configuration file is based on the Windows INI file format as interpreted by the 
Python ConfigParser module.  A sample configuration file that wraps the blast 
command is seen in Figure 1.  As you can see, it is a simple set of name value pairs 
separated out into different sections. 

 
The user specifies the name of the executable to be run on the server side.  The 

executable name should be specified as an absolute path to ensure that other 
executables earlier in the server container's PATH are not executed. 

 



PythonCLServiceTool: A Utility for Wrapping Command-Line Applications for The 
Grid

5

 
The developer specifies the name of the service, which is normally the same as 

the suffix of the executable pathname (the name of the binary).  The service name is 
incorporated into the service in a number of ways: it is used to form a unique name 
for the server configuration files, the name of the generated SOAP parsing and 
encoding scripts, and the WSDL file. 

 
The developer specifies all of the arguments that the executable is capable of 

accepting.  There are two main types of arguments that command line applications 
are capable of taking:  

 
• Positional arguments derive their meaning from their position in the 

command line.  Developers indicate the position of an argument through 
the prefix name of the argument, for example, all position argument 
definitions starting with "arg1" refer to the argument in the first (left-
most) position.  The Unix cat command outputs the contents of files in 
left-to-right positional order on the command line. In this example, the 
configuration file specifies that the cat command can take up to three 
positional arguments (technically, the cat command can take many more 
but we left that out for brevity).  All the positional arguments are 
specified as 'optional' because the cat command can be invoked without 
any positional arguments, in which case cat will read from standard 
input.   

 
• Option arguments start with one or two dashes and may be followed by 

a value.  "Option" in this context is taken from the Python optparse 
module, and does not mean that it is optional whether the argument is 
required. It merely indicates that this type of argument is typically used 
to indicate an optional different behavior. The developer indicates 
whether an option argument has a value associated with it and whether 
it is "optional".  Option arguments with no value look like "-X" while 
arguments with a value look like "-X something".  In this example, we 
specify two of cat's option arguments, -n and --version.   The -n option 
to cat causes it to print line numbers at the beginning of each line.  The 
“—version” option causes cat to output its version number. 

 
There are a number of complex issues associated with argument parsing.  

Although the vast majority of applications follow simple conventions of allowing a 
mix of positional and option command line arguments, several perverse applications 
have much more complex rules.  A comprehensive review of all applications (or 
even just standard Unix commands) is far beyond the scope of this document.  
Nevertheless, there are commands such as tar, dd, and find, each of which violates 
some of the conventions supported by PythonCLServiceTool.  Tar allows multiple 
options to be coalesced into a single option (such as -xvf, which means extract 
verbosely from a file).  PythonCLServiceTool has no configuration file syntax to 
support expressing when variables can be coalesced, and would interpret this as a 
single option called "xvf", which would not be recognized.  The user can work 



6 WWW project page: http://dsd.lbl.gov/gtg/projects/PythonCLServiceTool/ 
 

around this restriction by specifying the options separately, "-x -v -f".  dd is an odd  
Unix command which does not prepend its option arguments with dashes, so options 
look like "count=BLOCKS" instead of "-count BLOCKS".  The developer can 
simply define these as positional arguments, losing some of the power of option 
arguments.  The find command has a complex, stateful command line in which order 
matters.  There is no support for checking for valid ordering at the client-side in 
PythonCLServiceTool; in this case, the find command run on the server will report 
an error.  We reasoned that the tar, dd, and find behaviors are relatively rare and did 
not justify additional configuration file syntax or option parsing code.   Ideally, all 
applications would conform to the GNU standard for command line options, and we 
would support exactly that standard, but our support covers the vast majority of cases 
without being unduly complex.  Fortunately the scientific applications we are 
targeting typically follow the GNU standard anyway. 

 

3.3 Grid Toolkit Support 

PythonCLServiceTool uses the pyGridWare[17] toolkit to support all of its grid- 
and web-services functionality.  The pyGridWare toolkit includes code to generate 
Python grid services from WSDL files, as well as runtime libraries for constructing 
and running grid services and clients.  PyGridWare provides support for the WS-
Resource Framework collection of standards used by grid services, as well as WS-
Notification.  When building a grid service, pyGridWare generates a text  file that 
contains all the configuration details for the service (such as encryption, 
authorization, and authentication, as well as logging and other common service 
functionality), a script containing all the code to start the service on a deployment 
host, and the generated code for a specific grid service.   

 
The code generated by PythonCLServiceTool follows standard WSRF practices 

in using a standard web service to manage multiple stateful instances.  This ensures a 
deployed service can handle multiple simultaneous requests, each with its own 
“context” that ensures individual results are delivered to the correct user. 

3.4 Template files and Code generation.  

When the developer requests server or client code generation, a collection of 
template files which contain all the generally required common functionality are 
string interpolated using the configuration file substitution values for name and 
executable.    The command line client stub, pyGridWare server container startup 
scripts, client and server runtime libraries, server configuration file, WSDL[12], and 
XML schema[18] corresponding to the interface of the service are generated.  These 
WSDL and XML schema files can be re-used by other applications that can re-
implement either the client or service sides of a PythonCLServiceTool instance. 
Users are not tied to using our Python clients. The usage of standard web service 
protocols means that new clients can be generated in any language that supports the 
WSRF/WS-N protocols suites. The output filenames from the template substitution 



PythonCLServiceTool: A Utility for Wrapping Command-Line Applications for The 
Grid

7

 
are based on the input filenames, but are string interpolated to customize them to the 
service instance.  This allows co-installation of the runtime code for several services 
in the same directory. 

 
Some Python code specific to a PythonCLServiceTool instance is generated 

automatically (not from template files). The command-line parser and encoding and 
decoding routines are generated automatically from the argument definitions in the 
configuration file, because this generated code is highly dependent on the specific 
details of the command line application arguments. 

 
PythonCLServiceTool utilizes nearly all the basic features of a WSRF based Grid 

client and service.  It has been carefully documented to make it clear how basic Grid 
functionality (such as web service code generation, notifications, security, and 
deployment) can be used from Python.  Developers are welcome to use and adapt the 
template file and code generation features of PythonCLServiceTool to develop their 
own grid applications. 

3.5 Tool Usage and Deployment 

PythonCLServiceTool leverages an existing Python project-building installation 
framework known as setuptools.  It uses setuptools to string interpolate the template 
files, build deployable service instances, and build distributable clients.  We chose to 
use setuptools because Python users are familiar with the standard setuptools 
commands; a simple 
% python setup.py install 
will generate the code, configure the service, and deploy it. 
 

The PythonCLServiceTool generated service is typically deployed as a collection 
of files: the server configuration file, server startup script, and server runtime 
implementation code.  The service configuration file is a simple text file with the 
same syntax as the PythonCLServiceTool configuration file used to generate the 
client and service.  It defines logging, SSL security, authorization, the server port and 
interface, URLs to the grid services and the name of the executable.  The startup 
script is either a shell script (on Unix-like platforms) or a DOS batch file (on 
Windows).  The server runtime contains all the string-interpolated template files  

 
PythonCLServiceTool uses the Twisted framework and pyGridWare toolkits to 

provide a web server that hosts the specific service instance.  Multiple service 
instances (corresponding to different command-line applications) can be co-located 
into a single web server directory; this simplifies using a single machine to host 
multiple services (it is also possible to have multiple separate servers each using a 
different port).   

 
When a client requests the service to run the command line, the service parses the 

SOAP-encoded command line, and uses the Twisted Framework to fork an external 
process that executes the command line.  Twisted's internal asynchronous reactor 



8 WWW project page: http://dsd.lbl.gov/gtg/projects/PythonCLServiceTool/ 
 

support provides standard output, standard error and process return code to the 
service instance without blocking the service container.  As bits of standard output 
and error become available from the process, the service instance pushes that data to 
the client via notifications.  If firewall or other considerations disallow client 
notification support the client will detect it and poll the server.   

 
The client side script is designed to be easily distributed to users.  It uses the 

setuptools feature bdist_rpm to produce an RPM on RPM-based Linux systems.  It 
can build self-contained executables for DOS- and Unix-like systems which include 
the client scripts, runtime libraries, and, configuration file.  From the perspective of a 
user, the client script operates identically to the original command line (insofar as the 
configuration file is an accurate representation of the original command line's 
arguments).   

3.6 File staging 

Because users frequently have files stored locally that they need to process remotely, 
PythonCLServiceTool provides the ability to specify input files that are to be staged 
onto the server.  PyCLST allows the user to specify local files, which are to be 
transferred to the server, through a special command-line syntax.  The filename of 
the local file is enclosed in an '{' and '}'.  For example:  
% cat.sh {/tmp/localInputFile}  
will transfer the file /tmp/localInputFile from the client machine to a temporary 
directory on the server, and when the job runs on the service, it will have the 
temporary file name substituted into the command line. 

 
Files are currently staged by base64 encoding by default but the staging 

mechanism could also be implemented using GridFTP, RFT, or other file movement 
mechanisms.  This support is necessary for moving large data files.  In the future 
PyCLST will optionally create a server working directory for each job instance and 
transfer all the files created in the directory during job execution back to the client. 

4. Example Usage of PythonCLServiceTool 

4.1 Wrapping the NCBI BLAST application blastpgp 

We now demonstrate a concrete example of using PythonCLServiceTool: wrapping 
a very popular bioinformatics tool called BLAST[19].  Specifically, we will 
demonstrate wrapping the blastpgp command distributed with NCBI BLAST.  
blastpgp searches a protein sequence database against a protein query sequence, 
permitting gaps in the alignments between query and database sequences.  Biologists 
use this application to identify novel genes based on their similarity to existing, well-
characterized genes.  BLAST is significantly faster than other sequence-search 
algorithms, although it is not as accurate as methods such as Hidden Markov Models.  



PythonCLServiceTool: A Utility for Wrapping Command-Line Applications for The 
Grid

9

 
In this example we will assume that the host on which the service is deployed 
already has the BLAST databases installed and properly formatted, while the query 
sequence is stored on the client machine.  

 
A minimal blastpgp command line looks like the following:  
 
% blastpgp –i query.fa –d database 
 
The –i option lists a local filename which contains the query sequence, while the –d 
options lists the name of a database which is located using the BLASTDB variable.  
Because this option does not refer to an actual full path name but rather a collection 
of files in the BLASTDB directory which are prefixed by the database name, 
PythonCLServiceTool is not currently able to stage BLAST database files.  This is 
generally not a problem because normally users would use a database preinstalled 
and formatted at the service. Blastpgp takes a number of options that affect its 
behavior, although except for –i and –d, all of these are optional.  It takes no 
positional arguments. 
The blastpgp wrapper config file is given in Figure 1.  We have wrapped the two 
required options, -i and –d, and also wrapped several other commonly used options: -
o, which allows the output to be redirect to a local (local to the service) file, -e which 
defines a different statistical cutoff threshold than the default, and –m which allows 
the output file format to be adjusted.  Each of the options takes a value, and other 
than –i and –d are optional (not required).  To create the service and client, enter  
% python setup.py install.  
 
In this example, running python setup.py install deploys both the service and the 
client to the local Python installation.  

 

4.2 Running the Example 

After the service and client have been deployed, start the service container.  The 
name of the service container startup script on Unix-like systems is start-
container_blastpgp.sh and on Windows is start-container_blastpgp.bat.  The server 
can be started in any directory; that directory will act as the “current directory of the 
server”, meaning executable files will be run from that location and relative file path 
references will be computed from that location.  Create a protein sequence query file 
in the current directory.  Call it test.fa and have it contain the following query 
sequence:  
 
>gi|33357914|pdb|1P85|M 
MDKKSARIRRATRARRKLQELGATRLVVHRTPRHIYA 
QVIAPNGSEVLVAASTVEKAIAEQLKYTGNKDAAAAV 
GKAVAEALEKGIKDVSFDRSGFQYHGRVQALADAARE 
AGLQF 
 

Download the sample database pdbaa from 
ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/pdbaa.gz 



10 WWW project page: http://dsd.lbl.gov/gtg/projects/PythonCLServiceTool/ 
 

and decompress it in this directory.  Next run the blastpgp command  
% formatdb –o T –I pdbaa 
to create the BLAST index file. 
 

Run the client command, which is called blastpgp.sh on Unix-like systems and 
blastpgp.bat on Windows, with the following options: -d pdbaa –I test.fa.  If it is 
successful, blastpgp will print many lines of useful information including which 
sequences in the database match the query, the alignments of those sequences to the 
query, and statistical scores.  
 

Finally, test the client with a local file. Move the test.fa file created in the service 
deployment directory to /tmp or some other folder, and run the following command 
(if your shell (most Unix shells do) has its own use for { and }, quote those 
characters with \): 
% blastpgp.sh –d pdbaa –I {test.fa}.  

5. Performance 

A natural question arises when exposing numerical/computational codes as Grid 
services. Is the performance adequate? Despite the obvious benefits of exposing your 
codes over the network, if the performance is not sufficient it will not be used. 
Because PyCLST is based on the Python WSRF toolkit, pyGridWare, we will focus 
on examining the performance of pyGridWare. We will discuss the basic XML 
parsing performance and the additional overhead of various security options. 

In pyGridWare the overwhelming majority of the overhead is in XML parsing. 
Messages must be serialized into an XML format before crossing the wire, and then 
de-serialized back into Python on the receiving end. Clearly the choice of an 
underlying XML parser is very important. We were able to gain a factor of 20 
performance gain by switching to a C based XML parser with a Python interface 
from a pure Python XML parser.  

We recently tested pyGridWare using a 2.0GHz dual opteron Linux machine. 
When running both client and server on the same machine to avoid network round 
trip time, we see that basic WSRF operations take a little less then 10ms per 
operation. Over 90% of this time is XML parsing. This is the baseline for what is 
possible, but in a real-world application security will become important. 

While security is essential to running production level Grid services, it does add 
significant overhead. Using the same testing environment as before, we examined 
two different authentication mechanisms. The first is based on the widely used IETF 
standard TLS[20] protocol. This is the same protocol used on the WWW to interact 
with your bank, or place an order on Amazon. The second authentication mechanism 
uses XML security primitives to sign the SOAP messages being exchanged. In both 
cases, a Python binding to the open-source OpenSSL[21] toolkit provides the 
cryptographic primitives. Tests using the TLS protocol take approximately 25ms per 
operation. By using the support in the TLS protocol to re-use a security context, it is 
possible to amortize this overhead over a number of calls. Message level security 



PythonCLServiceTool: A Utility for Wrapping Command-Line Applications for The 
Grid

11

 
based on XML security is significantly slower. Operations take approximately 65ms 
per round-trip. 

While there are many applications where introducing a 10ms overhead would be 
unacceptable, we have found that for the applications we are targeting the 
performance of PyCLST is acceptable. For example, a typical BLAST query may 
run for 30 seconds. When you amortize the 25ms overhead over the entire 30 second 
run, the PyCLST overhead is negligible. 

6. Future Work 

6.1 Wrapping Command Line Applications for Grid Workflows 

We anticipate that PythonCLServiceTool will be used to wrap command lines that 
are integrated into workflows.  When multiple grid services are orchestrated together 
as a workflow, it is desirable for the user running the workflow to be able to delegate 
their credentials to services which carry out work on their behalf.  This is an 
important feature for enabling an important optimization, which is that services will 
communicate in a third-party manner without sending the results of jobs back to the 
client, and also eliminates the need for users to type their passwords for each 
individual operation in the workflow.  For example, BLAST output is frequently 
parsed by a secondary program to produce a compacted representation.  It would be 
inefficient for a workflow to run an external BLAST program, collect the standard 
output, then forward it on to the standard input of the parsing program; instead, it is 
much more efficient for the standard output of the BLAST program to be connected 
directly to the standard input of the parsing program.  This sort of third-party 
communication requires that the two services have the appropriate permissions, 
which is enabled through credential delegation.  Credential delegation is also 
essential for access to other grid services such as WS-GRAM and RFT, support for 
which will be included in a future version of PythonCLServiceTool.  These features 
will allow PythonCLServiceTool to add important functionality, including the ability 
to run jobs through an external scheduler, and reliably manage transfers of 
collections of large input/output files. 

 
6.2 Authentication and Authorization 

Currently, PythonCLServiceTool does not carry out any special checks to ensure that 
a client request is from an authorized user.  This could lead to denial of service and 
other attacks on the service.  PythonCLServiceTool will adopt an authorization 
model analogous to Globus based on the gridmap file.  This model uses public-key 
cryptography combined with a file that maps user certificates into user names.  When 
the client connects to the server, the server requires it to provide a certificate which 
states the identity of the user.  The server validates the certificate, ensuring that it 
comes from a trusted source, and then uses the user name in the certificate to map to 



12 WWW project page: http://dsd.lbl.gov/gtg/projects/PythonCLServiceTool/ 
 

a local user.  If a client request is presented without a valid certificate, the server will 
immediately terminate the request. This file adopts the same format as the Globus 
gridmap file and performs effectively the same functionality.  For example, this line 
in the gridmap file: 
"/DC=org/DC=doegrids/OU=People/CN=David E. Konerding 692119" dek 
indicates that a client who presents a certificate with the distinguished name in 
quotes will be mapped to the local user dek.  Multiple certificates can be mapped to a 
single user on the system which is convenient if it is desired not to add any "extra" 
user accounts on the system.   
 
In addition to supporting grid-map-file based authorization, we will also implement a 
standard authorization interface. This will allow others to plug in other more flexible 
means of authorization, i.e., SAML[22], VOMS[23], etc. 

6.3 Advanced File and Job Support 

Many applications output collections of files in the run directory of the service, 
and these files will need to be available to the client.  Therefore, 
PythonCLServiceTool will be enhanced to support several higher-level data transfer 
mechanisms to facilitate high-performance, reliable file transfer as implemented by 
RFT and access to storage resource managers and brokers including SRM[24] and 
SRB[25]. 
The current PythonCLServiceTool model is to execute an application on the service 
host.  However, in many situations the service host is not the most applicable 
location to execute the application.  Therefore, PythonCLServiceTool will be 
enhanced to include submission to external batch schedulers using the standard WS-
GRAM interface.   
 

6.3 Fault tolerance 

There are a number of aspects which could cause a job to fail while running on the 
service.  Further, there are events which could cause the service container to crash.  
To ensure that the service container is reliable, and outstanding requests persist 
beyond a crash, the service will store its internal state in a durable disk file using a 
lightweight but powerful embedded RDBMS, “sqlite”[26].   
 
Another aspect of maintaining a reliable service is to instrument the service with 
logging functions.  This logging is invaluable when, inevitably, something goes 
wrong with the service.  We will integrate support for the NetLogger[27] library, a 
lightweight but high-performance network logging toolkit designed for use in 
distributed systems like a Grid. NetLogger integration will enable service developers 
to get fine-grained views of their service’s operation, which is invaluable both during 
debugging and when diagnosing server failures. 
 



PythonCLServiceTool: A Utility for Wrapping Command-Line Applications for The 
Grid

13

 
6.4 Programmatic interfaces to legacy programs.   

As we stated earlier, PythonCLServiceTool was initially targeted at wrapping 
command line applications, exposing the standard input, standard output/error, and 
return code of an application.  However, some legacy applications expose their 
functionality at a library rather than application level.  We will enhance 
PythonCLServiceTool so that it can be used to wrap libraries in addition to 
applications.  These libraries will be accessed through a small command-line client 
stub which can be used to create service library instances, create instances of data 
structures defined by the library, invoke functions in the instance, and ultimately 
destroy the library instance.   

 
Many Fortran applications can be automatically wrapped using the f2py[28] 

application.  This application parses Fortran source code for a library and generates 
Python modules that can call the Fortran functions in the library directly.  
C and C++ applications can be wrapped using SWIG[29].  SWIG parses C and C++ 
source code for a library and generates Python modules that can call the C/C++ 
functions in the library directly. 
 

6.5 Config file format 

We have identified a number of problems which cannot be addressed using our 
existing configuration file format.  The format, while simple, is cumbersome for 
applications with large numbers of option arguments, unbounded number of 
positional parameters, and complex command line parameters that interact with each 
other.  Future versions of PythonCLServiecTool will switch to an XML-based file 
format that will allow for much more extensive specification of command line 
behavior and will expose many more implementation details in 
PythonCLServiceTool to the developer.  Since the existing format is useful for many 
simple applications, a translator from the existing format to the XML format will be 
provided. 

 
The new XML file format will add support for more complex/varied command 

line formats (such as better support for /option formats used on Windows), including 
mechanisms for overriding the default file transfer behavior, redirection of I/O via 
third party interactions, interactions between command line options, and detection of 
invalid command lines on the client side. 

 

6.6 Better self-contained deployment 

We are investigating the use of py2exe[30] on Windows and freeze on UNIX to 
create a more self-contained deployment including the Python runtime.  The current 
single-executable deployment contains only the service or client runtime libraries 
and startup script, thus it requires a valid Python installation on the target machine.  
We will use Py2exe and freeze to take the generated PythonCLServiceTool package, 



14 WWW project page: http://dsd.lbl.gov/gtg/projects/PythonCLServiceTool/ 
 

and combine it with a full Python installation and the required runtime libraries to 
provide a single executable that can be easily deployed to a service or client host.  

7. Conclusion 

PythonCLServiceTool addresses two existing problems facing the community: 
how to make applications available to scientists without distributing the entire 
software package, and how to make legacy application available on the grid without 
extensive retrofitting. 

 
As shown in the Performance section, PythonCLServiceTool adds marginal 

overhead compared to typical long-running scientific applications.  Although there is 
some cost to XML parsing and security, these represent only a tiny fraction of the 
overall time spent running the application. 

 
There are still several remaining features which must be implemented before 

PythonCLServiceTool can be used in production environments.  The authorization 
functionality needs to be implemented so that only authorized users can invoke the 
service.  Command-line syntax and back-end support for high-performance file 
transfers is required before large files and standard input/output can be used.  Fault-
tolerance, recovery and logging must be implemented for the service to be useful in 
long-running production environments.  Finally, the configuration file syntax needs 
to be significantly enhanced to support these features and to allow for more 
sophisticated command line support.  Nevertheless, PyCLST has shown the value of 
simple automated tools to help expose legacy applications as Grid services. 

 

 
 



PythonCLServiceTool: A Utility for Wrapping Command-Line Applications for The 
Grid

15

 
8. Figures 

 
Figure 1 
 
[main] 
name=blastpgp 
executable=/home/portnoy/u5/dek/sw/i386/blast-2.2.13/bin/blastpgp 
 
[optionarguments] 
 
arg1option=-i 
arg1desc= Query [File In] 
arg1hasvalue=True 
arg1optional=False 
 
arg2option=-d 
arg2desc= Database [String] 
arg2hasvalue=True 
arg2optional=False 
 
arg3option=-o 
arg3desc= Output File For Alignment [File out]  
arg3hasvalue=True 
arg3optional=True 
 
arg4options=-e 
arg4desc=Expectation value (E) [Real] 
arg4hasvalue=True 
arg4optional=True 
 
 
arg5option=-m 
arg5desc=alignment view options 
arg5hasvalue=True 
arg5optional=True 
 
## BLAST does not have any position arguments. 
[positionarguments] 
 
 
 
 
 
 
 



16 WWW project page: http://dsd.lbl.gov/gtg/projects/PythonCLServiceTool/ 
 

9. Bibliography 

 
1. Foster, I., C. Kesselman, and S. Tuecke, The Anatomy of the Grid: Enabling 

Scalable Virtual Organizations. Intl. J. Supercomputer Applications, 2001. 
2. Kreger, H., Web Services Conceptual Architecture. 2001, IBM. 
3. Cornell.edu. SOAP::Clean.  2006  [cited; Available from: 

http://www.asp.cornell.edu/SOAP-Clean/. 
4. Cornell.edu. O'SOAP.  2006  [cited; Available from: 

http://www.asp.cornell.edu/osoap/. 
5. Simple Object Access Protocol  (SOAP) 1.1. 2000, W3C. 
6. Globus Project, Grid Security Infrastructure (GSI). 2002. 
7. Globus Project, The GridFTP Protocol and Software. 2002. 
8. Web Services Resource Framework (WSRF) - Primer v1.2. 2006, OASIS. 
9. Web Services Base Notification 1.3 (WS-BaseNotification). 2006, OASIS. 
10. Ludascher, B., et al., Scientific Workflow Management and the Kepler 

System. Concurrency and Computation: Practice & Experience, 
2005(Special Issue on Scientific Workflows). 

11. Ptolemy.  2006  [cited; Available from: 
http://ptolemy.eecs.berkeley.edu/ptolemyII/. 

12. Christensen, E., et al., Web Services Description Language (WSDL) 1.1. 
2001. 

13. Twisted.  2006  [cited; Available from: http://twistedmatrix.com/trac/. 
14. Setuptools.  2006  [cited; Available from: 

http://peak.telecommunity.com/DevCenter/setuptools. 
15. Foster, I., C. Kesselman, and S. Tuecke, The Globus Toolkit and Grid 

Architecture. 2001, In preparation. 
16. Adams, C. and S. Farrell, Internet X.509 Public Key Infrastructure 

Certificate. Mar 1999(2510). 
17. Jackson, K.R. pyGridWare.  2006  [cited; Available from: 

http://dsd.lbl.gov/gtg/projects/pyGridWare/. 
18. Fallside, D.C., XML Schema Part 0: Primer. 2001, W3C. 
19. BLAST.  2006  [cited; Available from: 

http://www.ncbi.nlm.nih.gov/BLAST/. 
20. Dierks, T. and C. Allen, The TLS Protocol Version 1.0. 1999, IETF. 
21. OpenSSL.  2002  [cited; Available from: http://www.openssl.org/. 
22. Security Association Markup Language (SAML) Specification v.1.0. 2002, 

OASIS. 
23. EU DataGrid, VOMS Architecture v1.1. 2003. 
24. Gu, J., A. Sim, and A. Shoshani, The Storage Resource Manager Interface 

Specification, version 2.1. 2003. 
25. Baru, C., et al. The SDSC Storage Resource Broker. in 8th Annual IBM 

Centers for Advanced Studies Conference. 1998. Toronto, Canada. 
26. Sqlite.  2006  [cited; Available from: http://www.sqlite.org/. 
27. Gunter, D., et al. NetLogger: A Toolkit for Distributed System Performance 

Analysis. In IEEE Mascots 2000: Eighth International Symposium on 



PythonCLServiceTool: A Utility for Wrapping Command-Line Applications for The 
Grid

17

 
Modeling, Analysis and Simulation of Computer and Telecommunication 
Systems. 2000. 

28. F2py. 2006. 
29. Beazley, D.M. SWIG : An Easy to Use Tool for Integrating Scripting 

Languages with C and C++. in Proceedings of the 4th USENIX Tcl/Tk 
Workshop. 1996. 

30. Py2exe.  2006  [cited; Available from: http://www.py2exe.org/. 
 
 


