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Abstract. Matchmaking has been a subject of research for many years, but the
increasing uptake of service-oriented computing, of which the Grid can be seen
as a particular instance, has made effective and flexible matchmaking a neces-
sity. Early approaches to matchmaking and current schemes in the Grid com-
munity, like ClassAds, take a syntactic point of view, essentially matching up
literals or satisfying some simple constraints for the purpose of identifying com-
putational resources. The increasing availability of web services shifts attention
to the function of the service, but WSDL can only publish (limited) information
about the signature of the operation which tells the client little about what the
service actually does. The focus in the MONET (www.monet .nag.co.uk)
and GENSS (genss.cs.bath.ac.uk) projects has been on describing the
semantics of mathematical services and developing the means to search for
suitable services given a problem description. In this paper we discuss (i) the
schema extending WSDL that we call Mathematical Service Description Lan-
guage (MSDL), (ii) a number of ontologies for describing various properties of
mathematical services, (iii) an approach to describing pre- and post-conditions
in OpenMath (www.openmath.org) and (iv) an extensible, generic match-
making framework along with a suite of match plug-ins that are themselves web
services.

1 Relevance to Computational Science

A long term vision for computational science is the realization of a desktop environ-
ment for scientific research, where the scientist is as easily able to find data sets, the
algorithms to manipulate them and the means to display them — in silico experiments
— as they currently do with physical materials in the laboratory — in vivo experi-
ments.

The ability to solve large computational science by the coordinated use of dis-
tributed resources has been advocated by a number of researchers. Work in this area
has primarily focused on the development of “Problem Solving Environments” (PSEs).
A PSE is a complete, integrated computing environment for composing, compiling,
and running applications in a specific area [10]. In many ways, a PSE is seen as a
mechanism to integrate different software construction and management tools, and ap-
plication specific libraries, within a particular problem domain. One can therefore have
a PSE for financial markets [4], for gas turbine engines [8], etc. Focus on implement-
ing PSEs is based on the observation that previously scientists using computational
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methods wrote and managed all of their own computer programs — however now com-
putational scientists must use libraries and packages from a variety of sources, and
those packages might be written in many different computer languages. Engineers and
scientists now have a wide choice of computational modules and systems available,
enough so that navigating this large design space has become its own challenge. A sur-
vey of 28 different PSEs by Fox, Gannon and Thomas (as part of the Grid Computing
Environments WG) can be found in [9], and practical considerations in implementing
PSEs can be found in Li et al. [14]. Both of these indicate that such environments
generally provide “some back-end computational resources, and convenient access to
their capabilities”. Furthermore, work-flow features significantly in both of these de-
scriptions. In many cases, access to data resources is also provided in a similar way to
computational ones.

In [7] the authors identify how the original multiphysics problem —in this case a gas
turbine engine simulation — may be considered as a set of smaller simulation problems
on simple geometries that need to be solved simultaneously while satisfying a set of
interface conditions. These simpler problems may be chosen to reflect the underlying
structure/geometry/physics of the system to be simulated, or artificially created by
scientific computing techniques such as domain decomposition. For physical systems
and devices, these sub-problems are usually modelled by partial differential equations.
The next step is to create a network of collaborating solver agents in which each such
agent deals with one of the sub-problems defined earlier. This work therefore also can
be considered as an aspect of PSEs, where a larger problem is decomposed and handed
off to independent agents which can then aggregate their results.

Looking at these two aspects of PSEs together, we can see the need for a “match-
making” process, which is able to: (i) decompose a larger problem into smaller com-
ponents, based on very specific domain dependent information; (ii) map each of these
smaller problem components to particular solvers that can be found in a registry. The
granularity of the decomposition process and the capability inherent within each prob-
lem solver provides two constraints on the usefulness of this approach.

2 Technical Background

The work reported here stems from a series of projects, each focusing on different con-
tributions to the goal of building a computational environment for scientific research:

— OpenMath provides an extensible framework for the authoring of mathematical
ontologies

— MONET demonstrates feasibility of semantic processing from user query to ser-
vice invocation [5]

— GENSS generalizes the matchmaking/brokerage component [16] and extends
matching to conditions and effects [18]

— KNOOGLE implements an open architecture for matchmaking and brokerage
[12]

We will now discuss each of these and their contribution in some more detail.
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2.1 OpenMath

The objective of OpenMath is to provide both a framework for authoring mathematical
ontologies and to provide some fundamental ontologies. We write of ontologies in the
plural because OpenMath supports a structured collection of ontological information
built from components called content dictionaries — referred to as CDs. OpenMath
does not attempt to be a complete ontology of mathematics, but rather provides a com-
prehensive core, including the basic mathematical structures (group, ring, field etc.),
key constants and common operations/functions (trigonometric, hyperbolic, integra-
tion, differentiation etc.). New specialized mathematical ontologies can be added as
the need arises and thus contribute to the broader corpus of mathematical ontologies,
including private CDs (subject to a validation process defined and implemented by the
OpenMath Foundation).

Many browsers support the presentation of mathematical markup through a plug-
in for the W3C recommendation MathML, which takes two aspects depending usage:
(i) MathML-P is for presentation and (ii) MathML-C is for content. The purpose of the
latter is similar to OpenMath, namely to provide a neutral format for the communica-
tion of mathematical information between software components. However, MathML-
C is a fixed ontology that only handles a subset of mathematics. OpenMath comple-
ments MathML-C by being extensible and by being the defined extension language for
MathML-C.

OpenMath markup to some extent still reflects the period of its inception, when
XML was a developing language. Consequently, there is little use of the more recent
more sophisticated features of XML. OpenMath is intended to be as lightweight as
possible so there are relatively few markup tags (see The OpenMath Standard v2.0
[26] for more detail: what follows is an abstracted summary from the standard for the
sake of making this article self-contained):

— OMS: denotes a symbol, where the string name of the symbol and the CD in which
it is defined are attributes of the tag: <OMS cd="arith" name="minus">

— OMYV: denotes variable, where the string name of the variable is given in the name
attribute of the tag

— OMLI: denotes integer, for example <OMI>2</0OMI>

— OMB: denotes a byte array and wraps a base64-encoded XML string

— OMSTR: denotes a string value

— OMF: denotes IEEE floating point number and the attributes may indicate size and
even a value represented as a hexadecimal string

— OMA: denotes application, where its first child is the operator and the remaining
children are the operands.

— OMBIND: denotes the binding constructor which has three children, a binder, a
variable (specified by OMBVAR) and a body

— OMBVAR: variables used in binding constructor as above

— OME: error constructor, which has an arbitrary number of children, the first de-
noting the error and the remainder being OpenMath object relating to the error.
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<om:OMOBJ><om: OMA>
<om:0OMS cd="arithl" name="minus"/>
<om:OMA>
<om:0MS cd="arithl" name="power"/>
<om:0MV name="x"/>
<om:0OMI>2</om:0OMI>
</om:OMA>
<om:OMA>
<om:OMS cd="arithl" name="power"/>
<om:0OMV name="y"/>
<om:0OMI>2</om:0OMI>
</om:0OMA></om:OMA>
</om:0OMOBJ>

Fig. 1. OpenMath representation of z> — y2

— OMATTR: the attribution constructor is used to wrap a sequence of attribute
pairs which is how additional textual and semantic annotations of objects are con-
structed.

— OMATP: the attribute pair constructor is used in conjunction with OMATTR
above.

— OMFOREIGN: the foreign constructor, which allows the inclusion of arbitrarily
encoded data, such as:

<OMFOREIGN encoding="text/x-latex">\sin (x)</OMFOREIGN>

By way of illustration the OpenMath representation of -2 —4? is shown in Figure 1.
Detailed information about OpenMath, including the OpenMath 2.0 standard (June
2004) are available from the OpenMath website at www . openmath.org.

By providing the means to structure, author and publish markup for any aspect
of mathematics, OpenMath establishes a way to describe both the functionality of
any piece of mathematical software and the data that it inputs and outputs in an ap-
plication and network neutral format. Thus it contributes to the goal of enabling the
inter-operation of mathematical software components wherever they may be deployed.

2.2 MONET

MONET — Mathematics On the NET — had the objective of demonstrating the poten-
tial of semantic web techniques in service discovery, and given the partners’ previous
work with OpenMath, specifically mathematical service discovery, composition and
invocation. Project details are available via http://monet .nag.co.uk, but we
now summarize the main contributions of the project.

An important problem to solve at the outset was how to publish information about
mathematical web services in a way that could be used to help achieve the project
goals. Consequently, an embedding of WSDL [28], called Mathematical Service De-
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scription Language (MSDL)! was defined to incorporate the necessary semantic infor-
mation to support the discovery process. As with some OpenMath design decisions,
MSDL is a product of its time: OWL-S was not completed and the tools for DAML-S
were relatively experimental, so while the structure of MSDL documents mimicked
these more general approaches to service description, they were under project control
and allowed demonstration of principle. A complementary Mathematical Query De-
scription Language (MQDL) was defined for posing queries. The structure of the two
schemas is necessarily very similar, comprising the following elements:

Classification: The specification of what the service does (a more detailed description
appears in [5] and [16]):
— Reference to a problem description library — terms supplied by the Mathe-
matical Problem Description Language (MPDL).
Reference to taxonomies, e.g. to GAMS (Guide to Available Mathematical
Software) [3].
Supported Semantics, such as which OpenMath CDs the application can pro-
cess.
Supported Directives, such as solve, prove and decide.
Implementation Details: information about the specific service
— A reference to an Algorithm Description, using entities from the OpenMath
CD containing symbols for describing algorithmic complexity.
— Software Details — information about the hosting software package.
Hardware Details — self explanatory.
Algorithmic Properties, including attributes such as accuracy and resource us-
age.
— Descriptions of actions needed to solve a problem.
It should be noted that not all of the Classification or Implementation details are
mandatory.
Service Interface Description: Typically a WSDL document.
Service Binding Description: Map from abstract problem components and actions to
elements of the service interface.
Broker Interface: The API exposed to the broker. Typically, this is a service URI and
an interface description.

The demonstrator architecture is shown in Figure 2 and allows us to trace out two
scenarios:

— Service registration: the provider registering a service submits a MSDL document,
elements of which refer to the MONET and the OpenMath ontologies. The reg-
istry manager then processes elements of the mathematical service description into
OWL because that is the representation over which the Instance Store operates.
That description is then entered into the repository and the process is complete.

— Service discovery and invocation: the client seeking a service submits a Math-
ematical Query Description Language (MQDL) document to the Plan Manager.

! The XSD schema for MSDL is available from http://monet .nag.co.uk/cocoon/
monet /publicdocs/index.html
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Fig. 2. The MONET Architecture

The mathematical elements of the problem description are then translated into
OWL and passed to the Instance Store to find any candidate services according to
a description logic querying process. The plan manager selects one of the candi-
date services and then invokes the execution manager to handle the actual calling
of the web service. The results are then returned as a Mathematical Explanation
Language (MEL) document to the client.

From a practical point of view the MONET architecture demonstrated the feasi-
bility of semantic match making, but the demonstrator was very limited in that there
is only one repository, one matching technique and one selection policy. Furthermore
the matching technique was essentially using signature information and computing the
equivalent of a multi-method look-up. Nevertheless, by demonstrating end-to-end sup-
port for computational problems using ontological information and web services it had
established the viability of the approach and raised awareness of the direction future
semantic grids research might take.

2.3 GENSS

The purpose of the GENSS (Grid-enabled Numerical and Symbolic Services) was to
build on the outputs of MONET and, in particular to tackle the more complex problems
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inherent in reasoning about the conditions and effects of services, while building links
with the UK’s e-Science research program, arguing that semantic discovery of (math-
ematical) services was an important enabling activity for e-Science. The main outputs
of the project are more sophisticated approaches to mathematical service matching, in-
cluding mathematical analysis of the conditions and effects, the use of multiple match-
ing techniques and access to multiple registries. A detailed report on the matching
techniques appears in [16] while the revised architecture is discussed in [12]. We now
summarize the main contributions of the project.

GENSS Matchmaking Strategy The information source for the matchmaking pro-
cess remains as for MONET: the MQDL describing the query and the MSDL document
describing the service, but now attention was focused on working with the information
about the conditions and effects in each case. One of several difficulties is that the ex-
pressions marked up with OpenMath in the condition and effect fields of the problem
and service description may be equivalent semantically, but be written very differently.
To begin to tackle this problem the expressions are normalized — not in the sense that
there is any absolute normal form for mathematics, just the right one for the current
purpose. Thus a fairly standard set of transformation is carried out dealing with:

— Logical equivalences — using standard rewrites

— Associative operators — are flattened, so for example the OpenMath equivalent of
(+ a (+ b c)) becomes (+ a b c).

— Context dependent equivalences — for example i +1 > 0 = ¢ >=1if € Z, but
notifi € Q.

— Alpha conversions — consistent naming of variables in problem and service, so
that name comparison is meaningful

— Commutative operators — reorder arguments to bring constants towards the oper-
ator (and subsequently evaluate constant combinations) and so that the left hand
side is less than the right hand side.

— Conversion to disjunctive normal form to capture, if present, the alternatives be-
tween pre- and post-conditions.

As aresult, the conditions and effects take on the form Q(L(R)) where:

— (@ is a quantifier block e.g. Vz3y s.t. - - -
— L is a block of logical connectives e.g. A, V,=>,---
— Ris ablock of relations. e.g. =, <, >, #, - --

With a summary of the normalization process in place, the two scenarios of reg-
istration and discovery become relatively straightforward: in the first case, the service
description is normalized and stored in the registry; in the second the query is normal-
ized and the registry is traversed calculating a similarity value between the query and
each service. This latter results in a list of URIs ordered by similarity value.

Matching techniques A major development in GENSS was the idea of a matchmaker
shell within which several match modes could be applied to the service and aggregate
match scores computed. Thus, several matchers were deployed for use in the GENSS
matchmaker:
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— Structural: used to determine whether task and capability match exactly; cheap if
not often very successful

— Syntax+Ontology: used to compare elements and attributes in task and capability
using the taxonomic structure of types to test for inclusion relations

— Ontological reasoning: as had previously been demonstrated in MONET (de-
scribed in section 2.2)

— Function: use conditions and effects expression to establish whether: T.,,q =
Ceona NCefp = Teyy; in other words do the conditions of the capability subsume
those of the task and do the effects of the task subsume those of the condition. In
fact, the tests applied aim to establish the equivalence of the given expressions:

— Algebraic equivalence: where we wish to show that Q — S = 0 algebraically
by translating the expression into the input syntax of a computer algebra sys-
tem and calculating the difference. In general undecidable, but the approach
outlined may be useful in practice. For example: 22 — y? and (z + y)(z — ).
The idea stems from the work of Richardson [21] on the identification of zero.

— Value substitution: where we wish to show that @ — S = 0 by substituting ran-
dom values for the variables in the relation sub-expressions in the Q(L(R))
structure outlined above. This must be done with care: variables must be re-
named consistently and the same random value substituted for a given variable
in each expression. If the result is zero, it is only evidence not proof of equiv-
alence. This relies on later work also by Richardson [22] on the so-called
Uniformity Conjecture

The computation of the similarity score is quite detailed and not easily summarized,
so the interested reader is referred to [16].

GENSS Architecture and Critique The GENSS architecture is shown in Figure 2.3
in which we can identify the various differences with MONET. The most obvious is
that not only are there multiple matcher mechanisms, but those matchers are deployed
as web services that are accessed from the matchmaker. The second key difference is
the adoption of a standard registry component, namely a UDDI registry. However, there
are still several aspects of this design that can be criticized: (i) the matcher work-flow
is fixed (ii) UDDI registry searching is based on textual information (iii) the selection
policy is fixed as the service with the highest similarity score

Work-flow enactment In a further development from MONET where we had posited
a stand-alone broker, in GENSS we also demonstrated how the matchmaker shell could
be turned into a web service and then built into a work-flow. The enactment system
used was Triana®. Like other such systems, it works by scouring specified resources,
such as UDDI registries for services and then displays them in a selection palette on the
side. In Figure 4, the broker has simply been interposed between a widget to read input
from the user and another for the display of results, while in Figure 5 the output from
running the query are displayed. Although this only demonstrates the functionality, it
also suggests the capability, given sufficient suitable services in available registries, of

2 Details of Triana can be found via www.trianacode.org
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Fig. 3. The GENSS Architecture

constructing work-flows including proxy services. By “proxy” service, we mean that
some work-flow elements are instances of the broker that when invoked can discover
and call the appropriate service to meet the requirements, which may themselves have
only been established dynamically earlier in the work-flow.

Generation of Semantic Descriptions The final contribution from GENSS has been
an initial investigation of how mathematical information may be used to help gener-
ate service descriptions automatically. It is widely appreciated that authoring WSDL
is a tedious and error-prone process, so that several Java IDEs will now generate it
automatically for the user. However, we need to generate MSDL, including pre- and
post-condition information.

We had been working with the Aldor language® and its algebra package as a means
to remove the GENSS broker’s dependency on Maple and thus on licensed software.
The Aldor type system derives from that of Axiom/Scratchpad and provides a two-
level categorical-style polymorphic dependent-type structure that has been established
is adequate, while still remaining decidable for checking, to capture correctly the many
mathematical relations required in building a strongly-typed computer algebra system.
The consequence of this expressive power is that because the type system actually
captures the necessary mathematical knowledge about the function it implements, it
can be used for:

— Automatic wrapper generation

3 The detailed history of Aldor is quite complicated, but it is probably sufficient to say that it
inherits from the computer algebra system Axiom (market by Numerical Algorithms Group
for some years) and Scratchpad (developed by IBM over many years) and is BSD-license
software
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— Automatic generation of OpenMath for service description signatures and for (part
of the) conditions and effects

However, it should be emphasized that the OpenMath generation depends on the avail-
ability of the appropriate CDs in OpenMath to reflect the corresponding types in Aldor.
There are several other delicate technical issues that are covered in detail in [18].

GENSS Outcomes The contributions of the project are outlined above, but to put
them in the context of this article, the project demonstrated that it was possible to go
further on the problem of service discovery to examine conditions and effects and that
it was practical to deploy and invoke multiple matchers using the basic technology of
the semantic web — web services — and even to integrate the broker with work-flow
enactment, thus making the broker work with the primary components for computa-
tional science.

3 A generic matchmaker/broker

Reflection on the design and limitation of the GENSS architecture have fed into a
further project called KNOOGLE (pronounced noo-gl), in which the previous system
is being re-factored to produce robust generic tools, and demonstrated in the context
of other current UK e-Science projects.

From a client point of view, the brokerage function can be parameterized by three
requirements:

— Where to find descriptions of entities to match against
— How to match the query against a description
— How to choose between the matched descriptions

Some clients may like to have each of these fixed, whereas others might like the op-
portunity to control some or even all of these at the point of calling the broker. Thus
there is a complete spectrum ranging from no fixed actions to all three being fixed. For
each case, we specify what information the client must provide:

— A set of registries identifies the places to look for candidate services

— A set of matchers, deployed as web services, identifies how to calculate a similarity
score between the query and a service (note: each matcher web service must take
a query description and a service description as arguments and deliver a score in
the range [0, 1])

— A selection policy, defined as a query over the match results, identifies one or no
service to invoke. More details about specifying selection policy appear later.

These three issues lead to a refinement of the GENSS architecture of Figure 2.3 result-
ing in the KNOOGLE architecture of Figure 6, where:

— The registries have been replaced by the UDDI-compliant Grimoires registry,
which supports semantic querying for services and the annotation of services with
various forms of metadata (string, URL and RDF). The broker now accepts a list
of such registries to search for candidate services
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— The matchers are specified as a list of URLs identifying WSDL service descrip-
tions. These matchers are treated as alternatives in that each matcher is invoked
with the query and the service description, resulting in a match-score. This score
is then asserted into a RDF store associating matcher, service and score for subse-
quent assessment by the selection policy.

— The selection policy is specified as a query in the RDQL language over the set of
RDF triples that resulted from the matching process. This query should result in
the identification of either no service, in the case that none satisfies the selection
policy, or one service that does.

Current Developments The KNOOGLE project [20] is currently running and has the
target of delivering tools for end-user construction and deployment of brokers by the
middle of 2007. The broker functionality is planned for demonstration in the context of
two related current projects (also in the UK): (i) GridSAM [6] which provides a client
interface for the submission and monitoring of jobs using the JSDL [1] framework and
(i) Taverna, which is a work-flow enactment system that has seen much use in the
bio-informatics domain. We now describe these two demonstrators in more detail.

GridSAM: The aim of the GridSAM project is to provide an executable submis-
sion and monitoring service. Each GridSAM instance has a set of processors on which
it may execute programs. The clients of the GridSAM instances must provide their in-
put data and the executable they wish to run, they must also provide a JSDL document
which gives constraints on where and how their program is to be run. The GridSAM in-
stance creates a DRMConnector, which translates the JSDL to processor-specific JCL
and executes the job on the distributed resources. The GridSAM instance also provides
tools to monitor the job’s progress.

One problem with this architecture is the requirement that the client is in posses-
sion of the executable of the code they wish to execute. The client could be relieved
of this task by keeping the code in a repository, accessible to a broker. Our first use
case addresses this issue by placing the broker between the client and the GridSAM
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instance, so the client sends a description of the problem to the broker, which retrieves
the executable from a repository, sends this to the GridSAM instance, then receives the
results back from the GridSAM instance and forwards these back to the client.

A second problem is that the client may not be aware of the resources available, but
would like to search for suitable resources based on some description of needs. This
too can be addressed by brokerage. Thus in the second use case, the client provides the
executable, which the GridSAM instance sends to a DRMConnector augmented by a
brokerage function. The DRM-broker determines what resources are available to be
used, communicates this to the DRMConnector which then deploys the job, receives
the results and passes these back to the client.

Taverna: The Taverna workbench [19] is a graphical environment with which
users can construct, edit, browse and share work-flows. The application provides three
views: one on available services found either locally or in specified registries, another
depicting the work-flow diagram and a third called the model explorer. This last allows
the user to specify input sources and output locations for the work-flow along with the
actual services that will do the work.

There are numerous components associated with the Taverna system including the
FreeFluo work-flow enactor, the KAVE metadata store and the FETA service discovery
component. FETA uses the myGrid service ontology [29], which provides descriptions
of bioinformatics tasks and data types, to express descriptions of the kind of bioinfor-
matics services sought. However, functional descriptions of bioinformatics services
are hard to formulate because the datatypes involved are usually not defined in any
formal type language[15]. Consequently that service information is typically limited
to the name of the service — which might in itself be descriptive, but such informa-
tion is hard to recover — the names of the operations supported and the names of the
input and output parameters. Thus, the lack of type information means there is even
less than a type signature available, so queries are most likely to be stated in terms of
the name of the service sought. Although the query technology is based on JENA and
RDQL, myGrid users apparently do not normally construct their own RDQL queries:
instead they are provided with some prepared queries from which to choose. Taverna
then presents the results in a similar way to that in which other services which are
listed and they can then be dragged into the work flow like any other service.

The objectives of integrating the KNOOGLE broker with Taverna are

— To demonstrate the integration of the broker with a work-flow enactment system.
This has already been achieved with Triana, but Taverna is the approved work-flow
environment for OMII projects.

— To enhance Taverna through the provision of a flexible external matchmaking fa-
cility to complement the built-in FETA system described above, as well as pro-
viding access to external registries and the adding options for (i) the creation of
bespoke matcher/broker components (ii) access to a range of different matching
technologies (iii) the means to embed proxy services in work-flows that can be re-
solved into actual services through the function of the broker, as described earlier
in section 2.3.
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It is perhaps paradoxical that the result of the evolution of the brokerage architec-
ture described here is now little more than a shell, with almost no function in itself: an
instance of the KNOOGLE broker has no registries, no matching function and no se-
lection function; it can do nothing except wait to be supplied with these three pieces of
information. The result of re-factoring has been to hollow out the original architecture
and delegate the functions either to client-specified parameters or externally supplied
web services. Yet the result is potentially more useful, more flexible and more cus-
tomizable than the original. Perhaps evidence of the validity of the statement “less is
more”.

4 Related Work

A variety of matchmaking systems have been reported in the literature over the last
couple of decades, although it seems that almost all are relatively special-purpose or
domain-specific in some way or another and there is little to indicate success in re-
application outside the domain of their original development. Nevertheless, there are
some valuable ideas to be found as we attempt to show in our review below. From
a computational science perspective, we observe that much of the prior art in match-
making has focused on Al or free text and it is only in the last five years or so, with
the advent of widely accepted ontological frameworks, that there has been rising in-
terest in services and service matching. Parts of this survey have appeared in earlier
publications [16, 12].

The SHADE (SHAred Dependency Engineering) matchmaker [13] operates over
logic-based and structured text languages. The aim is to connect information sources
dynamically. The matchmaking process is based on KQML (Knowledge Query and
Manipulation Language) communication [25]. The content languages of SHADE are
a subset of KIF (Knowledge Interchange Format) [11] as well as a structured logic
representation called MAX (Meta-reasoning Architecture for “X”). Matchmaking is
carried out solely by matching the content of advertisements and requests. There is no
knowledge base and no inference performed, however rules may be added dynamically
making MAX flexible and adaptable.

COINS (COmmon INterest Seeker) [13] is a matchmaker over free text descrip-
tions.. The motivation behind COINS is given as a need for matchmaking over large
volumes of unstructured text on the Web and the unsuitability of existing matchmak-
ing technology for such an application domain. Initially the free text matchmaker was
implemented as the central part of the COINS system but it turned out that it was
also useful as a general purpose facility. As in SHADE the access language is KQML.
The System for the Mechanical Analysis and Retrieval of Text (SMART) [23] infor-
mation retrieval system is used to process the free text, producing a document vector
using SMART’s stemming and “noise” word removal, after which document vectors
are compared using inverse document frequency. Such technology could usefully be
redeployed now as a web service and straightforwardly incorporated into a broker us-
ing the architecture outlined above.
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LARKS (Language for Advertisement and Request for Knowledge Sharing) [24]
was developed to enable interoperability between heterogeneous software agents and
had a strong influence on the DAML-S specification. The system uses ontologies de-
fined by a concept language ITL (Information Terminology Language). The technique
used to calculate the similarity of ontological concepts involves the construction of a
weighted associative network, where the weights indicate the belief in relationships.
While it is argued that the weights can be set automatically by default, it is apparent
that the construction of realistically weighted relationships requires human input and
thus impacts the general deployment of such technology.

InfoSleuth [17] is described as a system for discovery and retrieval of informa-
tion in open and dynamically changing environments. The brokering function provides
reasoning over the advertised syntax and the semantics. InfoSleuth aims to support co-
operation among several software agents for information discovery, where agents have
roles as core, resource or ontology agents. There is a distinguished broker agent encap-
sulating a matching function, which serves to bring agents requiring services together
with those offering. The matching operations are a mixture of syntactic, structural and
ontological proximity, inspiring the similar mechanisms developed in GENSS.

The GRAPPA [27] (Generic Request Architecture for Passive Provider Agents)
system allows multiple types of matchmaking mechanisms to be employed within
a system. It is based on receiving arbitrary matchmaking offers and requests, where
each offer and request consist of multiple criteria. Matching is achieved by applying
distance functions which compute the similarities between the individual dimensions
of an offer and a request. Using specialized aggregation functions, the similarities are
projected to a single value to constitute a match score. There is a clear link between
the ideas in GRAPPA and our final KNOOGLE architecture.

MathBroker [2] is a project at RISC-Linz with some elements in common with
those described here, including providing semantic descriptions of mathematical ser-
vices. It too uses MSDL, however it seems that most of the matchmaking is achieved
through traversing taxonomies, while actual understanding of the pre- and post-
conditions is still regarded as an open problem.

In the main, matchmaking research projects have tried to deliver generic results,
capable of being adapted subsequently for particular domains. However, the motivation
for many such projects has primarily been e-commerce (as a means to match buyers
with sellers, for instance), where it is hard to describe accurately the actual function
of a service, compared to the case of mathematical functions. In other cases, the work
has been driven by a specific language, notably KQML in some cases above, which
although powerful, does not enjoy widespread appeal.

In contrast, we believe that the approach we have outlined here, has attempted to
learn from this history, by putting as little as possible in the matchmaker/broker itself
and building on the power of web services and work-flow enactment, technologies
that at present appear to have good prospects for the medium-term, to provide a “late-
binding” of whatever functionality is desired, while also offering a degree of future-
proofing through the means to publish new matching techniques and rapidly deploy
new brokers using them.
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5 Conclusions

We have presented a short history of a selection of closely related projects that have
fortuitously led one into another to deliver a series of outputs that could be very ben-
eficial for the provision and up-take of computational science services. From Open-
Math, we obtain a general framework for mathematical semantic annotation of ser-
vices, (as well as a lingua franca for communication between mathematical services).
From MONET we get the confirmation that ontological reasoning can help in service
discovery. From GENSS, we see how mathematical reasoning over the ontological de-
scription of conditions and effects can make that discovery process more precise. And
finally in KNOOGLE, with the benefit of hindsight, we see better how to engineer an
architecture to deliver past and future matching technology using both mathematical
and a wide range of other techniques.
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